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MULTIPLE SOLUTIONS FOR A QUASILINEAR
(p, q)-ELLIPTIC SYSTEM

SEYYED MOHSEN KHALKHALI, ABDOLRAHMAN RAZANI

Abstract. We prove the existence of three weak solutions of a quasilinear
elliptic system involving a general (p, q)-elliptic operator in divergence form,

with 1 < p 6 n, 1 < q 6 n. Our main tool is an adaptation of a three critical

points theorem due to Ricceri.

1. Introduction

Let Ω be a bounded open subset of Rn with smooth boundary ∂Ω and 1 < p 6 n,
1 < q 6 n. In this article, we show the existence of multiple solutions for system of
elliptic differential equations

−div(a1(x,∇u)) = λg1(x, u) + µFu(x, u, v) in Ω

−div(a2(x,∇v)) = λg2(x, v) + µFv(x, u, v) in Ω
u = 0, v = 0 on ∂Ω

(1.1)

where 1 < p, q 6 n.
Many publication, such as [3, 7, 9], discuss quasilinear elliptic systems involving

p-Laplacian operators and show the existence and multiplicity of solutions. Boc-
cardo and Figueiredo [3] studied the existence of solutions for

−∆pu = Fu(x, u, v) in Ω

−∆qu = Fv(x, u, v) in Ω
u = 0, v = 0 on ∂Ω

where p, q are real numbers larger than 1.
Using the fibering method introduced by Pohozaev, Bozhkov and Mitidieri [7]

proved the existence of multiple solutions for a quasilinear system involving a pair of
(p,q)-Laplacian operators. In [9] the existence of three solutions for the eigenvalue
problem

−∆pu = λFu(x, u, v) in Ω

−∆qu = λFv(x, u, v) in Ω
u = 0, v = 0 on ∂Ω

(1.2)
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where p > n, q > n is ensured for suitable F .
Some other works [8, 12, 11, 10] studied mainly problems involving p-Laplacian

type elliptic operators in divergence form and related eigenvalue problems

−div(a(x,∇u)) = λf(x, u) in Ω
u = 0 on ∂Ω

These operators have p-Laplacian operator as a simple case; i.e., if a(x, s) = |s|p−2s
then for p > 2 we have ∆pu = div(a(x,∇u)) and moreover they have other impor-
tant cases, such as the generalized mean curvature operator div

(
(1+ |∇u|2)

p−2
2 ∇u

)
which is generated by a(x, s) = (1+ |s|2)

p−2
2 s and is used in studying the geometric

properties of manifolds especially minimal surfaces.
The existence of multiple solutions for this type of nonlinear differential equations

was studied in [5, 12]. Many of these results are based on some three critical points
theorems of Ricceri and Bonanno established in [13, 4]. In [15], Ricceri developed
one of his results, [13, Theorem 1] by means of an abstract result, [14, Theorem 4].

In this article, we shall give a variant of Ricceri’s three critical points theorem [15]
which it seems its verification for some type of elliptic operators like div

(
a(x,∇u)

)
is easier. As an application, we study the existence of at least three weak solutions
for (1.1). Our approach in dealing with (1.1) is very close to Ricceri’s one in [15]
but employs some calculations of [10] to adjust it to our problem.

2. Preliminaries

In the sequel, for any ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn by |ξ| we mean the usual Euclidean
norm of ξ; that is, |ξ| =

√
ξ2
1 + ξ2

2 + · · ·+ ξ2
n which is produced by the inner product

ξ · η =
∑n
i=1 ξiηi in which ξ, η ∈ Rn. Also for every 1 6 p < ∞ and open Ω ⊂ Rn

and measurable u : Ω→ R we define

‖u‖Lp(Ω) =
(∫

Ω

|u|pdx
)1/p

and for p > 1 we assume the reflexive separable Sobolev space W 1,p
0 (Ω) is endowed

with the norm

‖u‖p =
(∫

Ω

|∇u|pdx
)1/p

which is equivalent with its usual norm

‖u‖W 1,p
0 (Ω) =

(∫
Ω

|u|p + |∇u|pdx
)1/p

.

By setting p1 = p, p2 = q, and inspired by De Nápoli and Mariani [10] and Deng
and Pi [5], we assume that the ai : Ω×Rn → Rn, for i = 1, 2, satisfy the following
conditions:

(H1) There exists continuous function Ai : Ω × Rn → R such that Ai(x, ξ) has
ai(x, ξ) as its continuous derivative with respect to ξ at every (x, ξ) ∈ Ω×Rn
with the following additional properties:
(a) Ai(x, 0) = 0, ∀x ∈ Ω.
(b) There exists some constant C1 > 0 such that ai satisfies the growth

condition

|ai(x, ξ)| 6 C1(1 + |ξ|pi−1), ∀ξ ∈ Rn. (2.1)
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(c) Ai is strictly convex: For every t ∈ [0, 1]

Ai
(
x, (1− t)ξ + tη

)
6 (1− t)Ai(x, ξ) + tAi(x, η), ∀x ∈ Ω, ∀ξ, η ∈ Rn (2.2)

and this inequality is strict if t ∈ (0, 1).
(d) Ai satisfies the ellipticity condition: There exists a constant C2 > 0

such that

Ai(x, ξ) > C2|ξ|pi , ∀x ∈ Ω, ∀ξ ∈ Rn. (2.3)

Assumption (H1) has some consequences that will be helpful in this article. From
the strict convexity and differentiability of Ai(x, ξ) with respect to ξ, and assump-
tion (H1)(c), we have

Ai(x, η) > Ai(x, ξ) + ai(x, ξ)(η − ξ),

from which it follows that(
ai(x, ξ)− ai(x, η)

)
· (ξ − η) > 0, (2.4)

for every x ∈ Ω and ξ, η ∈ Rn. Also, from (2.4) we obtain

ai(x, ξ + tη)η > ai(x, ξ)η (2.5)

for every t > 0 and ξ, η ∈ Rn.
We say the mapping F : X → X∗ satisfies the S+ condition, if every sequence

{xn}∞n=1 in X such that xn ⇀ x and lim supn→∞〈F (xn), xn − xt〉 6 0 has a
convergent subsequence {xnk}∞k=1 such that xnk → x.

Proposition 2.1. Let X be a reflexive Banach space and F, J : X → R two
C1 functionals on X. If the mapping F ′ : X → X∗ satisfies S+ condition and
J ′ : X → X∗ is compact and F + J : X → R is coercive then F + J satisfies the
Palais-Smale condition.

Proof. If {xn}∞n=1 is a sequence in X such that |F (xn) + J(xn)| < M for some
M > 0 and any n ∈ N and ‖F ′(xn) + J ′(xn)‖ → 0 then coercivity of F + J
implies boundedness of {xn}∞n=1 and since X is reflexive, there exists a subsequence
{xnk}∞k=1 of {xn}∞n=1 and x ∈ X such that xnk ⇀ x. Now compactness of J ′ : X →
X∗ implies there exists x∗ ∈ X∗ such that J(xnk)→ x∗ up to a subsequence. Then
since

〈J ′(xnk), xnk − x〉 = 〈J ′(xnk)− x∗, xnk − x〉+ 〈x∗, xnk − x〉

and {xnk}∞k=1 is bounded and xnk ⇀ x, we have 〈J ′(xnk), xnk −x〉 → 0. Therefore,

lim sup
n→∞

〈F ′(xnk), xnk − x〉

6 lim sup
n→∞

〈F ′(xnk) + J ′(xnk), xnk − x〉 − lim
n→∞

〈J ′(xnk), xnk − x〉

6 lim sup
n→∞

‖F ′(xnk) + J ′(xnk)‖ ‖xnk − x‖ = 0.

Hence, by S+ condition of F ′, for a subsequence of {xnk}∞k=1 without relabeling
xnk → x. �
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3. Main results

First we give a theorem that is a variant of [15, Theorem 1].

Theorem 3.1. Let X be a separable and reflexive real Banach space; I ⊂ R an
interval; Φ : X → R a weakly sequentially lower semicontinuous C1 functional,
bounded on each bounded subset of X and has unique global minimum at x0 ∈ X
and further the mapping Φ′ : X → X∗ satisfies S+ condition and for every bounded
E ⊂ X there exist constants C > 0 and ν > 0 such that for every x ∈ E

Φ(x)− Φ(x0) > C‖x− x0‖ν .
Also suppose J : X → R be a C1 functional with compact derivative such that
for each λ ∈ I, the functional Φ − λJ is coercive and has a strict local not global
minimum at x0.

Then for each compact interval [a, b] ⊂ I, there exists r > 0 with the following
property: for every λ ∈ [a, b] and every C1 functional Ψ : X → R with compact
derivative, there exists δ > 0 such that, for each µ ∈ [0, δ], the equation

Φ′(x) = λJ ′(x) + µΨ′(x)

has at least three solutions whose norms are less than r.

To prove the above theorem, we need the following lemma which is a variant of
[15, Theorem C].

Lemma 3.2. Let X be a separable and reflexive real Banach space, Φ : X → R a
functional that has unique global minimum at x0 ∈ X and furthermore for every
bounded E ⊂ X there exist constants C > 0 and ν > 0 such that for every x ∈ E

Φ(x)− Φ(x0) > C‖x− x0‖ν . (3.1)

Let J : X → R be a weakly sequentially lower semicontinuous functional. Assume
that Φ + J has a local strict minimum at x0 in the strong topology of X and

lim
‖x‖→∞

(
Φ(x) + J(x)

)
=∞.

Then x0 is a strict local minimum of Φ + J in the weak topology of X.

Proof. The main part of the proof is the same as that of [15, Theorem C]. We show
x0 must be a strict local minimum in the weak topology of X. If not, by assumption
there exists ρ > 0 such that

Φ(x0) + J(x0) < Φ(x) + J(x)

for every x ∈ X satisfying ‖x‖ > ρ. Set

B = {x ∈ X : ‖x‖ 6 ρ}.
Since X is separable and reflexive, the set B is metrizable in its weak topology
which we denote its metric by σ. Since we suppose x0 is not a strict local minimum
in weak topology of X, there exists a sequence {xn} in X such that for every n ∈ N,

σ(x0, xn) <
1
n
, Φ(xn) + J(xn) 6 Φ(x0) + J(x0). (3.2)

So, xn ∈ B and xn ⇀ x0. Then weakly sequentially lower semicontinuity of J
implies

lim inf
n→∞

Φ(xn) + J(x0) 6 lim inf
n→∞

Φ(xn) + lim inf
n→∞

J(xn)
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6 lim inf
n→∞

(
Φ(xn) + J(xn)

)
6 Φ(x0) + J(x0).

and therefore,
lim inf
n→∞

Φ(xn) 6 Φ(x0).

But Φ(x0) is the global minimum of Φ(x) so, for a suitable convergent subsequence
of Φ(xn) we have

lim
n→∞

Φ(xn) = Φ(x0)

then by (3.1) we have xn → x0 which contradicts strict local minimality of Φ(x0) +
J(x0) in the strong topology of X by (3.2). �

Proof of Theorem 3.1. Following the arguments in [15, Theorem 1], since any C1

functional with compact derivative on X is weakly sequentially continuous [17,
Corollary 41.9], and in particular, it is bounded on each bounded subset of X, so
for any compact [a, b] ⊂ I and σ > supλ∈[a,b]

(
Φ(x0)− λJ(x0)

)
,

∪λ∈[a,b] {x ∈ X : Φ(x)− λJ(x) < σ}
⊂ {x ∈ X : Φ(x)− aJ(x) < σ} ∪ {x ∈ X : Φ(x)− bJ(x) < σ}.

By the coercivity assumption, the set on the right is bounded and there exists η > 0
such that

∪λ∈[a,b] {x ∈ X : Φ(x)− λJ(x) < σ} ⊂ Bη (3.3)
where Bη = {x ∈ X : ‖x‖ < η}. Now, set

c∗ = sup
Bη

Φ + max{|a|, |b|} sup
Bη

|J |

and choose r > η so that

∪λ∈[a,b] {x ∈ X : Φ(x)− λJ(x) < c∗ + 2} ⊂ Br . (3.4)

Now, for any C1 functional Ψ : X → R with compact derivative, choose a bounded
C1 function g : R → R with bounded derivative such that g(t) = t for every
− supBr |Ψ| 6 t 6 supBr |Ψ|. Then Ψ̃ : X → R defined by Ψ̃(x) = g ◦ Ψ(x) is a
C1 functional on X such that Ψ̃(x) = Ψ(x) for all x ∈ Br. On the other hand, for
every E ⊂ X

Ψ̃′(E) ⊂ g′
(
Ψ(E)

)
Ψ′(E)

and therefore Ψ̃′ : X → X∗ is compact. In addition, by Lemma 3.2 the functional
Φ−λJ has a strict local minimum at x0 in the weak topology of X, for any λ ∈ [a, b].
So, by applying [14, Theorem 4] to the functionals −Ψ̃ and Φ− λJ by taking τ as
the weak topology of X and considering (3.3) and the fact that the topology τΦ−λJ
is weaker than the strong one, the existence of some γ > 0 is deduced such that for
each µ ∈ [0, γ] the functional Φ− λJ − µΨ̃ has at least two local minimum in Bη,
say x1, x2. Now, If

δ = min{γ, 1
supR |g|

}

then for every µ ∈ [0, δ] the functional Φ− λJ − µΨ̃ is coercive by assumption and
satisfies Palais-Smale condition, by Proposition 2.1. Set

S = {u ∈ C([0, 1], X) : u(0) = x1, u(1) = x2},

cλ,µ = inf
u∈S

sup
t∈[0,1]

(
Φ(u(t))− λJ(u(t))− µΨ̃(u(t))

)
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then by the Mountain Pass Theorem [1, Theorem 8.2]), there exists x3 ∈ X distinct
from x1 and x2 such that

Φ′(x3)− λJ ′(x3)− µΨ̃′(x3) = 0, Φ(x3)− λJ(x3)− µΨ̃(x3) = cλ,µ.

Now since

cλ,µ 6 sup
t∈[0,1]

Φ(x1 + t(x2 − x1))− λJ(x1 + t(x2 − x1))− µΨ̃(x1 + t(x2 − x1))

6 sup
Bη

Φ + max{|a|, |b|} sup
Bη

J + δ sup
R
|g| 6 c∗ + 1,

we have Φ(x3)−λJ(x3) < c∗+2 and therefore x3 ∈ Br by (3.4). Since Ψ(x) = Ψ̃(x)
for every x ∈ Br so Ψ′(xi) = Ψ̃′(xi) for i = 1, 2, 3. Thus x1, x2, x3 are three solutions
of Φ′(x) = λJ ′(x) + µΨ′(x) in Br �

Our main tool in studying (1.1) is the following Theorem, which in fact is a
restatement of [15, Theorem 2]. It adopts it to our situation and its proof is the
same as that of [15, Theorem 2], except that we use Theorem 3.1 instead of [15,
Theorem 1], and remove the phrase x̂λ = x0. Therefore we omit its proof.

Theorem 3.3. Let X be a separable and reflexive real Banach space; I ⊂ R an
interval; Φ : X → R a weakly sequentially lower semicontinuous C1 functional that
has unique global minimum at x0 ∈ X and for every bounded E ⊂ X there exist
some constants C > 0 and ν > 0 such that for every x ∈ E

Φ(x)− Φ(x0) > C‖x− x0‖ν .
Let J : X → R be a C1 functional with compact derivative. Finally, setting

α = max
{

0, lim sup
‖x‖→∞

J(x)
Φ(x)

, lim sup
x→x0

J(x)
Φ(x)

}
, β = sup

{J(x)
Φ(x)

: x ∈ Φ−1(]0,∞[)
}
,

assume that α < β. Then, for each compact interval [a, b] ⊂] 1
β ,

1
α [ (with the con-

ventions 1
0 = ∞, 1

∞ = 0) there exists r > 0 with the following property: for every
λ ∈ [a, b] and every C1 functional Ψ : X → R with compact derivative, there exists
δ > 0 such that, for each µ ∈ [a, b], the equation

Φ′(x) = λJ ′(x) + µΨ′(x)

has at least three solutions whose norms are less than r.

Hereafter we denote by X the product real Banach space W 1,p
0 (Ω)×W 1,q

0 (Ω) in
which p, q > 1 and equip it with the norm

‖(u, v)‖ = ‖u‖p + ‖v‖q = (
∫

Ω

|∇u|pdx)1/p + (
∫

Ω

|∇v|qdx)
1
q .

At every (u, v) ∈ X, define

Φ(u, v) =
∫

Ω

A1(x,∇u) dx+
∫

Ω

A2(x,∇v) dx, Ψ(u, v) =
∫

Ω

F
(
x, u(x), v(x)

)
dx,

J(u, v) =
∫

Ω

∫ u(x)

0

g1(x, s) ds dx+
∫

Ω

∫ v(x)

0

g2(x, s) ds dx

in which g1, g2 satisfy the following inequalities for some constant C > 0,

|g1(x, ξ)| 6 C(1 + |ξ|τ−1), |g2(x, ξ)| 6 C(1 + |ξ|κ−1), (3.5)

for a.e. x ∈ Ω where 1 < τ < p and 1 < κ < q.
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Before stating and proving our main result for (1.1), i.e., Theorem 3.8, we estab-
lish some lemmas which are useful in proving this theorem. In fact, we gathered
needed hypotheses of Theorem 3.8 in these lemmas.

Lemma 3.4. Let Φ : X → R be defined as above. If the functions Ai for i = 1, 2
satisfy (H1), then Φ ∈ C1(X; R). In particular Φ′ : X → X∗ is continuous.

Proof. At (u, v) ∈ X for every (ξ, µ) ∈ X and 0 < |t| < 1, by applying the Mean
Value Theorem for Ai’s we obtain

〈Φ′(u, v), (ξ, µ)〉

= lim
t→0

Φ(u+ tξ, v + tµ)− Φ(u, v)
t

= lim
t→0

(∫
Ω

a1(x,∇u+ tθ1(x)∇ξ) · ∇ξ dx+
∫

Ω

a2(x,∇v + tθ2(x)∇µ) · ∇µdx
)

in which 0 < θ1(x), θ2(x) < 1 for every x ∈ Ω. Now by the Cauchy-Schwarz
inequality and (2.1),∣∣a1(x,∇u+ tθ1(x)∇ξ) · ∇ξ

∣∣ 6 C(1 + |∇u+ tθ1(x)∇ξ|p−1
)
|∇ξ|

6 C(1 + 2p−1
(
|∇u|p−1 + |∇ξ|p−1

)
)|∇ξ|,

and since∫
Ω

(1 + 2p−1
(
|∇u|p−1 + |∇ξ|p−1

)
)|∇ξ| dx 6 C

(
m(Ω) + ‖u‖pp + ‖ξ‖pp

)1/p′

‖ξ‖p

where C denotes a constant and m(Ω) is the Lebesgue measure of Ω and p′ = p
p−1

is the Hölder conjugate of p, then the Dominated Convergence Theorem implies

lim
t→0

∫
Ω

a1(x,∇u+ tθ1(x)∇ξ) · ∇ξ dx =
∫

Ω

a1(x,∇u) · ∇ξ dx.

Similarly,

lim
t→0

∫
Ω

a2(x,∇v + tθ2(x)∇µ) · ∇µdx =
∫

Ω

a2(x,∇v) · ∇µdx,

and the functional Φ is Gâteaux differentiable at every (u, v) ∈ X and

〈Φ′(u, v), (ξ, µ)〉 =
∫

Ω

a1(x,∇u) · ∇ξ + a2(x,∇v) · ∇µdx. ∀(ξ, η) ∈ X

Now we prove Φ′ : X → X∗ is continuous. Suppose (un, vn)→ (u, v) in X then by
the Hölder inequality for every (ξ, η) ∈ X we have∣∣〈Φ′(un, vn)− Φ′(u, v), (ξ, µ)〉

∣∣
6
∫

Ω

∣∣∣(a1(x,∇un)− a1(x,∇u)
)
· ∇ξ

∣∣∣+
∣∣∣(a2(x,∇vn)− a2(x,∇v)

)
· ∇µ

∣∣∣ dx
6 ‖a1(x,∇un)− a1(x,∇u)‖Lp′ (Ω)‖ξ‖p + ‖a2(x,∇vn)− a2(x,∇v)‖Lq′ (Ω)‖µ‖q

6
(
‖a1(x,∇un)− a1(x,∇u)‖Lp′ (Ω) + ‖a2(x,∇vn)− a2(x,∇v)‖Lq′ (Ω)

)
‖(ξ, µ)‖,

where q′ = q
q−1 is the Hölder conjugate of q. Hence, it is sufficient to show that

lim
n→∞

‖a1(x,∇un)− a1(x,∇u)‖Lp′ (Ω) + ‖a2(x,∇vn)− a2(x,∇v)‖Lq′ (Ω) = 0.
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If not, we have

lim sup
n→∞

‖a1(x,∇un)− a1(x,∇u)‖Lp′ (Ω) + ‖a2(x,∇vn)− a2(x,∇v)‖Lq′ (Ω) > 0,

then there exists a subsequence of {(un, vn)} which we denote it by the same nota-
tion {(un, vn)} for which

lim
n→∞

‖a1(x,∇un)− a1(x,∇u)‖Lp′ (Ω) + ‖a2(x,∇vn)− a2(x,∇v)‖Lq′ (Ω) > 0. (3.6)

Since (un, vn)→ (u, v) in X, we have un → u and vn → v in W 1,p
0 (Ω) and W 1,q

0 (Ω)
respectively. So there exist subsequences {unk} and {vnk} of {un} and {vn} respec-
tively and some functions g ∈ Lp(Ω) and h ∈ Lq(Ω) such that |∇unk(x)| 6 g(x)
and ∇unk → ∇u a.e. and |∇vnk(x)| 6 h(x) and ∇vnk → ∇v a.e. as well. Thus for
some constant C and a.e. x ∈ Ω we have

|a1(x,∇unk)− a1(x,∇u)| 6 C(2 + |∇unk |p−1 + |∇u|p−1) 6 2C(1 + gp−1)

and by a similar argument

|a2(x,∇vnk)− a1(x,∇v)| 6 2C(1 + hp−1).

Now by the Dominated Convergence Theorem

lim
k→∞

‖a1(x,∇unk)− a1(x,∇u)‖Lp′ (Ω) + ‖a2(x,∇vnk)− a2(x,∇v)‖Lq′ (Ω) = 0,

which contradicts (3.6). Therefore Φ′ : X → X∗ is continuous and a priori Φ ∈
C1(X; R). �

Lemma 3.5. Let Φ : X → R be defined as previously. Then Φ′ : X → X∗ satisfies
S+ condition

Proof. If (un, vn) ⇀ (u, v) in X and

lim sup
n→∞

〈Φ′(un, vn), (un − u, vn − v)〉 6 0 (3.7)

then since un ⇀ u and vn ⇀ v in W 1,p
0 (Ω) and W 1,q

0 (Ω) respectively

lim sup
n→∞

〈Φ′(un, vn), (un − u, vn − v)〉

= lim sup
n→∞

(
∫

Ω

(
a1(x,∇un)− a1(x,∇u)

)
(∇un −∇u) dx

+
∫

Ω

(
a2(x,∇vn)− a2(x,∇v)

)
(∇vn −∇v) dx)

and by (2.4) and (3.7),

lim
n→∞

〈Φ′(un, vn), (un − u, vn − v)〉 = 0,

and obviously

lim
n→∞

∫
Ω

(
a1(x,∇un)− a1(x,∇u)

)
(∇un −∇u) dx = 0, (3.8)

lim
n→∞

∫
Ω

(
a2(x,∇vn)− a2(x,∇v)

)
(∇vn −∇v) dx = 0. (3.9)

We shall prove un → u as a consequence of (3.8), and in a similar way (3.9) implies
vn → v. By imitating the proof of [5, Lemma 2.3], put

Pn(x) =
(
a1(x,∇un)− a1(x,∇u)

)
· (∇un −∇u).
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Then (2.4) implies Pn(x) > 0 and because (3.8), there exists a subsequence of {un}
still denoted by {un} for which limn→∞ Pn(x) = 0 a.e. in Ω. Let

E = ∩n∈N{x ∈ Ω : lim
n→∞

Pn(x) = 0, |∇un(x)| <∞, |∇u(x)| <∞}.

Then m(Ω− E) = 0, limn→∞ Pn(x) = 0 in E.
If x0 ∈ E then by the Mean Value Theorem and inequality (2.3),

|∇un(x0)|p

6 C−1
2 A1

(
x0,∇un(x0)

)
= C−1

2 a1

(
x0, tn∇un(x0)

)
· ∇un(x0) for some tn ∈ (0, 1)

6 C−1
2 a1

(
x0,∇un(x0)

)
· ∇un(x0) by (2.5)

6 C−1
2 [Pn(x0) + a1(x0,∇un(x0))∇u(x0) + a1(x0,∇u(x0)) · (∇un(x0)−∇u(x0))]

6 C−1
2 [Pn(x0) + C1(1 + |∇un(x0)|p−1)|∇u(x0)|+ C1(1 + |∇u(x0)|p−1)|∇un(x0)|

+ a1

(
x0,∇u(x0)

)
· ∇u(x0)] by (2.1)

which implies |∇un(x0)| 6 C for some constant C > 0. Because by our assumption
limn→∞ Pn(x0) = 0, for any polynomial q(t) = tp + ktp−1 +mt+ c with p > 1,

lim
t→∞

q(t) =∞.

Now, if ∇un(x0) 9 ∇u(x0), then {∇un(x0)} has a convergent subsequence which
is denoted by the same notation {∇un(x0)} and converges to a vector v0 6= ∇u(x0).
Hence

lim
n→∞

Pn(x0) = (a1(x0, v0)− a1

(
x0,∇u(x0)

)
) · (v0 −∇u(x0)) > 0,

which contradicts the assumption x0 ∈ E. Therefore, ∇un(x) → ∇u(x) for every
x ∈ E.

As a consequence, Pn(x)→ 0 a.e. in Ω and if

gn(x) = Pn(x)+
(
a1(x,∇un)−a1(x,∇u)

)
·∇u+a1(x,∇u)·(∇un−∇u)+a1(x,∇u)·∇u

then above calculations show that

|∇un(x)|p 6 C−1
2 gn(x); (3.10)

furthermore,
gn(x)→ a1(x,∇u) · ∇u (3.11)

a.e. in Ω. By Lemma 3.4, the hypothesis (un, vn) ⇀ (u, v) implies

lim
n→∞

∫
Ω

(
a1(x,∇un)− a1(x,∇u)

)
· ∇u dx = lim

n→∞
〈Φ′(un, vn)− Φ′(u, v), (u, 0)〉 = 0,

lim
n→∞

∫
Ω

a1(x,∇u) · (∇un −∇u) dx = lim
n→∞

〈Φ′(u, v), (un − u, 0)〉 = 0.

On the other hand, (3.8) gives

lim
n→∞

∫
Ω

Pn(x) dx = 0,

and hence
lim
n→∞

∫
Ω

gn(x) =
∫

Ω

a1(x,∇u) · ∇u. (3.12)

By (3.10), we obtain

|∇un(x)−∇u(x)|p 6 2p−1(|∇un(x)|p + |∇u(x)|p) 6 2p−1(C−1
2 gn(x) + |∇u(x)|p)
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and since ∇un(x)→ ∇u(x) a.e. in Ω, so (3.11) implies

lim
n→∞

C−1
2 gn(x) + |∇u(x)|p = C−1

2 a1(x,∇u) · ∇u+ |∇u(x)|p,

a.e. in Ω. By (3.12) we find

lim
n→∞

∫
Ω

C−1
2 gn(x) + |∇u(x)|p dx =

∫
Ω

C−1
2 a1(x,∇u) · ∇u+ |∇u(x)|p dx

6 C−1
2 ‖a1(x,∇u)‖Lp′ (Ω)‖u‖p + ‖u‖pp.

by the Hölder inequality in which p′ = p
p−1 . Therefore, the Dominated Convergence

Theorem implies

lim
n→∞

∫
Ω

|∇un(x)−∇u(x)|p dx = 0,

and therefore un → u in W 1,p
0 (Ω). Similarly we have vn → v in W 1,q

0 (Ω) and finally
(un, vn)→ (u, v) in X. �

Lemma 3.6. The functional Φ : X → R is weakly sequentially lower semicontin-
uous and the functional J : X → R is C1 with compact derivative and Φ − λJ is
weakly sequentially lower semicontinuous and coercive for each λ ∈ R.

Proof. If (un, vn) ⇀ (u, v) in X and lim infn→∞Φ(un, vn) < Φ(u, v) then there
exists a subsequence of {(un, vn)} denote it by {(unk , vnk)} such that {Φ(unk , vnk)}
converges and limn→∞ Φ(unk , vnk) < Φ(u, v).

Since Φ ∈ C1(X; R) by Lemma 3.4, the Mean Value Theorem implies the exis-
tence of tn ∈ (0, 1) for every n ∈ N such that

Φ(un, vn)− Φ(u, v) = 〈Φ′
(
u+ tn(un − u), v + tn(vn − v)

)
, (un − u, vn − v)〉.

On the other hand, (2.5) implies

〈Φ′(u, v), (ξ, η)〉 6 〈Φ′(u+ tξ, v + tη), (ξ, η)〉 (3.13)

for any t > 0 and (ξ, η) ∈ X. Therefore,

〈Φ′(u, v), (un − u, vn − v)〉 6 〈Φ′
(
u+ tn(un − u), v + tn(vn − v)

)
, (un − u, vn − v)〉

and as a consequence,

lim sup
k→∞

〈Φ′(u, v), (unk − u, vnk − v)〉

6 lim
k→∞

〈Φ′
(
u+ tnk(unk − u), v + tnk(vnk − v)

)
, (unk − u, vnk − v)〉 < 0

which contradicts (un, vn) ⇀ (u, v) since Φ′(u, v) ∈ X∗ by Lemma 3.4. Thus
lim infn→∞Φ(un, vn) > Φ(u, v) and Φ : X → R is weakly sequentially lower semi-
continuous.

It can be shown easily that J is a C1 functional [2, Theorem 2.9] and

〈J ′(u, v), (ξ, η)〉 =
∫

Ω

g1(x, u)ξ + g2(x, v)η dx.

If {(un, vn)} is a bounded sequence in X then it has a weakly convergent sub-
sequence by reflexivity of X which we also denote it by {(un, vn)} and assume
(un, vn) ⇀ (u, v). Since 1 < p, q 6 n, the embedding X ↪→ Lp(Ω) × Lq(Ω) is
compact, up to a subsequence (un, vn) → (u, v) and by [16, Proposition 26.6], the
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Nemytski operators g1 : Lp(Ω) → Lp
′
(Ω) and g2 : Lq(Ω) → Lq

′
(Ω) are continuous

and bounded where p′ = p
p−1 and q′ = q

q−1 . Then∣∣〈J ′(un, vn)− J ′(u, v), (ξ, µ)〉
∣∣

6
∣∣∣ ∫

Ω

(
g1(x, un)− g1(x, u)

)
ξ +

(
g2(x, vn)− g2(x, v)

)
µdx

∣∣∣
6 ‖g1(x, un)− g1(x, u)‖Lp′ (Ω)‖ξ‖Lp(Ω) + ‖g2(x, vn)− g2(x, v)‖Lq′ (Ω)‖µ‖Lq(Ω)

6 max
{
‖g1(x, un)− g1(x, u)‖Lp′ (Ω), ‖g2(x, vn)− g2(x, v)‖Lq′ (Ω)

}
‖(ξ, µ)‖

hence

‖J ′(un, vn)− J ′(u, v)‖
6 max

{
‖g1(x, un)− g1(x, u)‖Lp′ (Ω), ‖g2(x, vn)− g2(x, v)‖Lq′ (Ω)

}
,

for any n ∈ N and (ξ, µ) ∈ X. Therefore, J ′ : X → X∗ is compact and J : X → R
is weakly sequentially continuous by Corollary 41.9 [17]. Hence Φ− λJ are weakly
sequentially lower semicontinuous functionals on X for every λ ∈ R.

By (2.3) we obtain

Φ(u, v) =
∫

Ω

A1(x,∇u) +A2(x,∇v) dx > C2

(
‖u‖pp + ‖v‖qq

)
and since according to (3.5),

J(u, v) 6
∫

Ω

∣∣∣ ∫ u

0

g1(x, s) ds
∣∣∣+
∣∣∣ ∫ v

0

g2(x, s) ds
∣∣∣ dx

6 C
∫

Ω

(|u|+ |u|τ + |v|+ |v|κ) dx

6 C(‖u‖τp + ‖v‖κq ),

(3.14)

we have

Φ(u, v)− λJ(u, v) > C2

(
‖u‖pp + ‖v‖qq

)
− C|λ|

(
‖u‖τp + ‖v‖κq

)
.

Then for every λ ∈ R,

lim inf
‖(u,v)‖→∞

Φ(u, v)− λJ(u, v) =∞

and hence Eλ = Φ− λJ is coercive. �

Now we consider the properties of Ψ that we need in this article.

Lemma 3.7. Let F : Ω×R2 → R be a Carathédory function such that F (x, 0, 0) ∈
L1(Ω) and F (x, u, v) has continuous partial derivatives with respect to u and v in
every x ∈ Ω and for some constant C > 0

|Fu(x, u, v)| 6 C(1 + |u|p−1 + |v|q
p−1
p ), |Fv(x, u, v)| 6 C(1 + |u|p

q−1
q + |v|q−1)

for every x ∈ Ω and u, v ∈ R. Then Ψ ∈ C1(X; R) and its derivative Ψ′ : X → X∗

is compact.

Proof. Since F (x, u, v) is C1 with respect to u, v, then for every x ∈ Ω there exist
γ(x), θ(x) in (0, 1) such that

|F (x, u, v)− F (x, 0, 0)| 6 |F (x, u, v)− F (x, u, 0)|+ |F (x, u, 0)− F (x, 0, 0)|
6 |Fu(x, γ(x)u, 0)||u|+ |Fv(x, u, θ(x)v)||v|
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6 C(1 + |u|p−1)|u|+ C(1 + |u|p
q−1
q + |v|q−1)|v|

6 C(1 + |u|p + |v|q)

hence Ψ(u, v) ∈ R. Also for every (u, v), (ξ, µ) in X and t ∈ R− {0}, by the Mean
Value Theorem,

lim
t→0

Ψ(u+ tξ, v + tµ)−Ψ(u, v)
t

= lim
t→0

1
t

∫
Ω

F
(
x, u(x) + tξ(x), v(x) + tµ(x)

)
− F

(
x, u(x), v(x)

)
dx

= lim
t→0

{∫
Ω

Fu
(
x, u(x) + tθ(x)ξ(x), v(x) + tµ(x)

)
ξ(x) dx

+
∫

Ω

Fv

(
x, u(x), v(x) + tγ(x)µ(x)

)
µ(x) dx

}
,

in which 0 < θ(x), γ(x) < 1 for any x ∈ Ω. But Fu is continuous and

Fu
(
x, u(x) + tθ(x)ξ(x), v(x) + tµ(x)

)
→ Fu

(
x, u(x), v(x)

)
as t→ 0

and for |t| < 1,∣∣Fu(x, u(x) + tθ(x)ξ(x), v(x) + tµ(x)
)
ξ(x)

∣∣
6 C

(
1 + (|u(x)|+ |ξ(x)|)p−1 + (|v(x)|+ |µ(x)|)q

p−1
p

)
|ξ(x)|

therefore, the Dominated Convergence Theorem implies

lim
t→0

∫
Ω

Fu
(
x, u(x) + tθ(x)ξ(x), v(x) + tµ(x)

)
ξ(x) dx =

∫
Ω

Fu
(
x, u(x), v(x)

)
ξ(x) dx

and similarly

lim
t→0

∫
Ω

Fv

(
x, u(x), v(x) + tγ(x)µ(x)

)
µ(x) dx =

∫
Ω

Fv

(
x, u(x), v(x)

)
µ(x) dx.

Therefore,

〈Ψ′(u, v), (ξ, µ)〉 = lim
t→0

Ψ(u+ tξ, v + tµ)−Ψ(u, v)
t

=
∫

Ω

Fu(x, u, v)ξ + Fv(x, u, v)µdx

and Ψ is Gâteaux differentiable at any (u, v) ∈ X and for every (ξ, µ) ∈ X

〈Ψ′(u, v), (ξ, µ)〉 =
∫

Ω

Fu(x, u, v)ξ + Fv(x, u, v)µdx.

The continuity and compactness of Ψ′ can be proved like the continuity of Φ′ and
the compactness of J ′ respectively. �

Now we are ready to prove our next main result which deals with the existence
of three weak solutions for (1.1), by introducing some controls on the behaviour of
antiderivatives of g1 and g2 at zero.

Theorem 3.8. Let g1, g2 satisfy (3.5) and suppose

max
{

lim sup
ξ→0

supx∈ΩG1(x, ξ)
|ξ|p

, lim sup
ξ→0

supx∈ΩG2(x, ξ)
|ξ|q

}
6 0, (3.15)
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where

G1(x, ξ) =
∫ ξ

0

g1(x, s) ds, G2(x, ξ) =
∫ ξ

0

g2(x, s) ds

for any (x, ξ) ∈ Ω × R. Also, suppose the function F : Ω × R2 → R satisfies all
hypotheses of Lemma 3.7 and in addition

sup
{
J(u, v) : (u, v) ∈ X

}
> 0.

Then, if we set

γ = inf
{Φ(u, v)
J(u, v)

: (u, v) ∈ X, J(u, v) > 0, Φ(u, v) > 0
}

for each compact interval [a, b] ⊂]γ,∞[ there exists r > 0 such that for every λ ∈
[a, b], there exists δ > 0 such that for every µ ∈ [0, δ], the problem (1.1) has at least
three weak solutions whose norms in X are less than r.

Proof. First note that if p 6 q then for every bounded E ⊂ X there exists some
constant C > 0 such that

Φ(u, v)− Φ(0, 0) > C2

(
‖u‖pp + ‖v‖qq

)
> C

(
‖u‖p + ‖v‖q

)p = C‖(u, v)‖p

for every (u, v) ∈ E, and if p > q then

Φ(u, v)− Φ(0, 0) > C‖(u, v)‖q.
Furthermore every weak solution of (1.1) is a solution of Φ′(x) = λJ ′(x) + µΨ′(x).
Since 1 < τ < p, 1 < κ < q

lim sup
‖(u,v)‖→∞

J(u, v)
Φ(u, v)

6 lim sup
‖(u,v)‖→∞

C(‖u‖τp + ‖v‖κq )
‖u‖pp + ‖v‖qq

= 0

and (3.5) in conjunction with (3.15) implies, there exist ρ1, ρ2 so that 0 < ρ1 < ρ2

and
G1(x, ξ) +G2(x, η) 6 ε(|ξ|p + |η|q)

for every x ∈ Ω, every ξ, η in R − ([−ρ2,−ρ1] ∪ [ρ1, ρ2]). Since G1(x, ξ), G2(x, η)
are bounded on Ω× ([−ρ2,−ρ1]∪ [ρ1, ρ2]), we can choose C ′ > 0 and p < m < pn

n−p
and q < ` < qn

n−q such that

G1(x, ξ) +G2(x, η) 6 ε(|ξ|p + |η|q) + C ′(|ξ|m + |η|`)
for all (x, ξ) ∈ Ω × R. Now the continuity of the Sobolev embedding implies for
some constant C, independent of ε

J(u, v) 6 C
(
ε(‖u‖pp + ‖v‖qq) + C ′(‖u‖mp + ‖v‖`q)

)
for every (u, v) ∈ X. On the other hand, (2.3) implies Φ(u, v) > C2(‖u‖pp + ‖v‖qq)
and since p < m, q < `

lim sup
(u,v)→(0,0)

J(u, v)
Φ(u, v)

6
Cε

C2
. (3.16)

Since ε > 0 is arbitrary

lim sup
(u,v)→(0,0)

J(u, v)
Φ(u, v)

= 0.

Hence, by (3.16) we have α = 0 in Theorem 3.3 and since all other hypotheses
of Theorem 3.3 for the functionals Φ and J and the point x0 = (0, 0) ∈ X are
established in Lemmas 3.4, 3.5 and 3.6 and the functional Ψ has needed properties
by Lemma 3.7, therefore the result is proved. �
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