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HOPF BIFURCATION FOR SIMPLE FOOD CHAIN MODEL
WITH DELAY

MARIO CAVANI, TEODORO LARA, SAEL ROMERO

Abstract. In this article we consider a chemostat-like model for a simple food
chain where there is a well stirred nutrient substance that serves as food for a

prey population of microorganisms, which in turn, is the food for a predator
population of microorganisms. The nutrient-uptake of each microorganism

is of Holling type I (or Lotka-Volterra) form. We show the existence of a

global attractor for solutions of this system. Also we show that the positive
globally asymptotically stable equilibrium point of the system undergoes a

Hopf bifurcation when the dynamics of the microorganisms at the bottom

of the chain depends on the history of the prey population by means of a
distributed delay that takes an average of the microorganism in the middle of

the chain.

1. Introduction

We consider the food chain model

S′(t) = (S0 − S(t))D − b

γ
S(t)X(t),

X ′(t) = X(t)(bS(t)−D − d

η
Y (t)),

Y ′(t) = Y (t)(dX(t)−D),

(1.1)

where S(0) = S0 ≥ 0, X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0. These equations are in
the form of the chemostat model [7]. The meaning of the variables and parameters
is as follows: S(t) denotes the substrate concentration, X(t) is the concentration
of a prey microorganism population that grows eating the substrate, and Y (t) the
concentration of a predator microorganism population that eats the prey microor-
ganism. The functional responses of the species X(t) and Y (t) are of the so called
Holling type I (or Lotka-Volterra) form (see [5]), where the parameters b and d
denote the per capita growth rate of the prey and the predator respectively; γ and
η represent the growth yield constants of the microorganisms X(t) and Y (t) re-
spectively. The parameter S0 is the concentration in the feed bottle and D denotes
the input rate from the feed bottle and the washout rate from the growth chamber.
This model may be considered as a specialization of some of the systems given in
[1], we shall perform a wide description of the global dynamic of this model in order
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to point out the differences between the dynamic of this system and the one corre-
sponding to a system with a distributed delay that we propose in order to model
the case when the existence of a significative time lag in the growth of the predator
microorganism is considered. The recognition of time delays in the growth response
of a population to changes in the environment has led to extensive theoretical and
experimental studies, however there has been little emphasis in distributed delays
in chemostat models, [8] is very important reference in this direction. Thus, we are
assuming in a more realistic fashion that the growth of the predator is influenced
by the amount of prey in the past. More precisely, we suppose as for example in [3]
or [8], that the predator grows up depending on the weight average over the past
by mean of the the function Z(t) given by the following integral

Z(t) :=
∫ t

−∞
dX(τ)Y (τ)e−D(t−τ)(αe−α(t−τ))dτ, α > 0, (1.2)

therefore, we have the integro-differential system

S′(t) = (S0 − S(t))D − b

γ
S(t)X(t),

X ′(t) = X(t)(bS(t)−D − d

η
Y (t)),

Y ′(t) =
∫ t

−∞
dX(τ)Y (τ)e−D(t−τ)(αe−α(t−τ))dτ −DY (t),

(1.3)

S(0) = S0 ≥ 0, X(0) = X0 ≥ 0, Y (0) = Y0(t) = ϕ(t) ≥ 0 (t ≤ 0). Clearly these
assumptions imply that the influence of the past is fading away exponentially and
the number 1

α could be interpreted as the measure of the influence of the past. So,
to smaller α > 0, the interval in the past in which the values of X are taken, is
bigger ([3, 4, 6, 8]). Also we assume that initial function ϕ is in BC+, the Banach
space of the bounded and continuous functions from (−∞, 0] to R+.

To make the model in more treatable way we perform the change of variables:

t = tD, S =
S

S0
, X =

X

γS0
, Y =

Y

ηγS0
,

b =
bS0

D
, d =

γdS0

D
, α =

α

D
.

Omitting the bars, the nondimensional version of models (1.1) and (1.3) can be
rewritten, respectively, as

S′(t) = 1− S(t)− bS(t)X(t),

X ′(t) = X(t)(bS(t)− 1− dY (t)),

Y ′(t) = Y (t)(dX(t)− 1),

(1.4)

and
S′(t) = 1− S(t)− bS(t)X(t),

X ′(t) = X(t)(bS(t)− 1− dY (t)),

Y ′(t) =
∫ t

−∞
dX(τ)Y (τ)αe−(α+1)(t−τ)dτ − Y (t).

(1.5)

In this article we show the existence of the global attractor for the solutions
of the foregoing systems. We also show that the positive globally asymptotically
stable equilibrium point of (1.4) loses its stability when we model the food chain
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by (1.5). In this case the equilibrium of positive coordinates undergoes a Hopf
bifurcation and more realistic periodic solutions gain the stability.

2. A simple food chain without delay

Here we show some properties of system (1.4).

Lemma 2.1. The positive cone, R3
+, is positively invariant with respect to (1.4).

Proof. As we can see, if S(t∗) = 0 for some t∗ ≥ 0 then S(t) ≥ 0 for all t ≥ t∗. The
positiveness of the functions X(t) and Y (t) are straightforward checked once the
corresponding equations are considered. �

Note that by adding the three equations of (1.4) and defining W (t) = 1−S(t)−
X(t)− Y (t), we obtain a single equation

W ′(t) = −W (t)

with W (0) > 0. It is easy to verify that limt→∞W (t) = 0 and that the convergence
is exponential. This implies that (1.4) has the property of pointwise dissipativity
in the sense that there exists a bounded set B to which the solutions eventually
enter and remain. Thus we have shown the following

Lemma 2.2 (Dissipativity). System (1.4) is pointwise dissipative. Moreover, the
attractors of the solutions are located on the manifold

Σ = {(S, X, Y ) ∈ R3
+ : S + X + Y = 1}. (2.1)

The pointwise dissipative property implies the existence of a unique global at-
tractor of (1.4) which must lie in the manifold Σ.

Lemma 2.3. If d ≤ 1, the predator population Y (t) dies out.

Proof. By taking into account the equation for Y (t) in (1.4) and applying compar-
ative arguments the result follows. �

By virtue of the previous lemma we shall assume for the rest of this article that

d > 1. (2.2)

Another important conclusion of the Dissipativity lemma is that the system can be
simplified by eliminating one variable. In fact by taking

S(t) = 1−X(t)− Y (t),

we obtain the following system of two ordinary differential equations

X ′(t) = (b− 1)X(t)− bX2(t)− (b + d)X(t)Y (t),

Y ′(t) = Y (t)(dX(t)− 1).
(2.3)

Figure 2 shows some numerical examples for the above equation with several values
of b and d.

Lemma 2.4. If b ≤ 1 in (2.3), the prey X(t) and predator populations Y (t) die
out.
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Figure 1. b < 1 and both species extinguish

The proof runs in the same fashion as in Lemma 2.3. As a consequence of the
previous result we will assume in the sequel that b > 1.

System (2.3) has three equilibrium points given by

E0 = (0, 0), E1 =
(b− 1

b
, 0

)
, E2 =

(1
d
,
d(b− 1)− b

d(b + d)
)
.

The stability properties of these points are summarized as follows.

Theorem 2.5. (i) If b < 1, then E0 is the unique equilibrium point of (2.3)
in the positive cone and is globally asymptotically stable.

(ii) If b = 1, the point E0 undergoes a node-saddle bifurcation. And for b > 1
the equilibrium point E1 shows up, and it is globally asymptotically stable
for 1 < b < d

d−1 .
(iii) If b = d

d−1 , the point E1 undergoes a node-saddle bifurcation. And for
b = d

d−1 the equilibrium point E2 shows up, and it is globally asymptotically
stable for

b >
d

d− 1
. (2.4)

Proof. Parts (i) and (ii) follow immediately from a linear analysis of the equilibria
solutions E0 and E1. To show (iii) we use Dulac’s Criterion [4]. Let f1(X, Y ) and
f2(X, Y ) be the corresponding functions in the right hand side of (2.3) for X ′(t) and
Y ′(t) respectively. In our case we look for a function of the form h(X, Y ) = XαY δ

such that the expression ∂hf1
∂X + ∂hf2

∂Y is not zero and does not change its sign while
X > 0 and Y > 0. In doing so, we see that

∂(hf1)(X, Y )
∂X

+
∂(hf2)(X, Y )

∂Y

= [(α + 1)(b− 1)− (δ + 1)]XαY δ + [(δ + 1)d− b(α + 2)]Xα+1Y δ

− (b + d)(α + 1)XαY δ+1.

(2.5)
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Therefore, while X > 0 and Y > 0, (2.5) will be negative if we can find values of α
and δ such that

(α + 1)− δ + 1
b− 1

≤ 0,

(α + 2)− d

b
(δ + 1) ≥ 0.

But it is an easy task to guarantee the existence of such a values α∗ and δ∗ for which
the previous inequalities hold, and therefore the function h(X, Y ) = Xα∗

Y δ∗ sat-
isfies the conditions we were looking for. Hence by applying the Dulac’s Criterion
to this function we conclude that (2.3) has no periodic orbits and the Poincaré-
Bendixson theory implies that equilibrium point E2 is globally asymptotically sta-
ble. �

3. A simple food chain with delay

Now we considered the delayed model given by (1.5). If we take Z(t) in (1.2) as
a change of variable, then following system shows up.

S′(t) = 1− S(t)− bS(t)X(t),

X ′(t) = X(t)(bS(t)− 1− dY (t)),

Y ′(t) = Z(t)− Y (t),

Z ′(t) = αdX(t)Y (t)− (α + 1)Z(t),

(3.1)

with S(0) = S0 ≥ 0, X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0, Z(0) = ϕ(0) ≥ 0. The
relations between the solutions of this system and those of (1.5) are as in the
corresponding description given in [2]. The properties of positiveness and pointwise
dissipativeness hold as in the non-delay model and consequently similar results can
be stated and proved.

Lemma 3.1. The positive cone, R4
+, is positively invariant with respect to (3.1).

Now we set U(t) = 1− S(t)−X(t)− Y (t)− Z(t)
α , and obtain single equation,

U ′(t) = −U(t)

with U(0) > 0. From here, limt→∞ U(t) = 0 and the convergence is exponential,
and again as before (3.1) has the property of pointwise dissipativity.

Lemma 3.2 (Dissipativity). The system (3.1) is pointwise dissipative. Moreover
the attractors of the system are located on the manifold

Λ = {(S, X, Y, Z) ∈ R4
+ : S + X + Y +

Z

α
= 1}. (3.2)

The pointwise dissipative property implies the existence of a unique global at-
tractor of (3.1) which must lie in the manifold Λ.

As before the system can be simplified by the elimination of one variable. In
this case we take

S(t) = 1−X(t)− Y (t)− Z(t)
α
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and obtain a system of three ordinary differential equations,

X ′(t) = (b− 1)X(t)− bX2(t)− (b + d)X(t)Y (t)− b

α
X(t)Z(t),

Y ′(t) = Z(t)− Y (t),

Z ′(t) = αdX(t)Y (t)− (α + 1)Z(t).

(3.3)

See illustration in Figure 3.
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Figure 2. b < 1 and all species extinguish

This system has three equilibrium points:

P0 = (0, 0, 0), P1 = (
b− 1

b
, 0, 0), P2 = (X∗, Y ∗, Y ∗),

where

X∗ =
α + 1
αd

, Y ∗ =
αd(b− 1)− b(α + 1)

d(b(α + 1) + αd)
.

The expression for P2 makes sense only when αd(b− 1)− b(α + 1) > 0, inequality
that is equivalent to

X∗ <
b− 1

b
. (3.4)

For b > 1, the right hand side of 3.4 implies X∗ < 1. The stability properties of
these equilibrium points are summarized as follows.

Theorem 3.3. (i) If b < 1, then P0 is the unique equilibrium point of (3.3)
in the positive cone and it is globally asymptotically stable.

(ii) If b = 1, P0 undergoes a node-saddle bifurcation. For b > 1, P1 appears
and it is globally asymptotically stable for b(α + 1) − αd(b − 1) ≥ 0, or
equivalently

1 < d ≤ (α + 1)b
α(b− 1)

.
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(iii) If d = (α+1)b
α(b−1) , E1 undergoes a node-saddle bifurcation. For

d >
(α + 1)b
α(b− 1)

(3.5)

the point P2 appears and has positive coordinates.

The proof of the above theorem follows from a linear analysis of the equilibria
solutions. Stability properties of the equilibrium point E2 are given in the following
result.

Theorem 3.4. There exists a value d∗ satisfying (3.5) and if d < d∗, E2 is locally
asymptotically stable. If d = d∗ then E2 undergoes a supercritical Hopf bifurcation.

Proof. The Jacobian matrix of (3.3) at the equilibrium E2 is given by

A =

−bX∗ −(b + d)X∗ − b
αX∗

0 −1 1
αdY ∗ α + 1 −(α + 1)


and the corresponding characteristic polynomial is

p(λ) = λ3 + a2λ
2 + a1λ + a0, (3.6)

where

a2 = (α + 2 + bX∗), a1 = bX∗(α + 2 + dY ∗), a0 = (α + 1)(b− 1− bX∗).

To apply the Routh-Hurwitz Criterion we note that a0, a1, a2 are positive and check
the sign of

Φ = a2a1 − a0.

But the sign of Φ is the same of Ψ, where

Ψ(d) =
α2d2(1 + bX∗)

X∗ (a2a1 − a0) .

The above expression can be written as

Ψ(d) = c3d
3 + c2d

2 + c1d + d0,

where

c3 = −α3(b− 1),

c2 = α2b((α + 2)b + (α + 1)(α + 3)),

c1 = α(α + 1)b2(b + (α + 1)(α + 3)),

c0 = (α + 1)3b3.

Here are some properties of Ψ and Ψ′:

lim
d→−∞

Ψ(d) = +∞, Ψ(0) > 0, lim
d→+∞

Ψ(d) = −∞,

lim
d→−∞

Ψ′(d) = −∞, Ψ′(0) > 0, lim
d→+∞

Ψ′(d) = −∞ .

Therefore, there exists a unique value d1 such that Ψ′(d) > 0 for 0 < d < d1,
Ψ′(d1) = 0 and Ψ′(d) < 0 for d > d1. This means that Ψ(d) increases for 0 ≤ d < d1

and decreases for d > d1. But the we can guarantee the existence of a unique value
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d∗ > d1, such that Ψ(d) > 0 for 0 < d < d∗, Ψ(d∗) = 0, and Ψ(d) < 0 for d > d∗.
Moreover, since c2 > 2α2(α + 1),

d∗ > d1 >
(α + 1)b
α(b− 1)

> 1,

so Routh-Hurwitz implies that E2 is locally asymptotically stable for d < d∗ and
unstable for d > d∗. For d = d∗ the equilibrium undergoes a Hopf bifurcation. In
fact,

λ3 + a2(d∗)λ2 + a1(d∗)λ + a0(d∗) = (λ2 + a1(d∗))(λ + a2(d∗)).

To check the Hopf bifurcation, we set λ1(d∗) as the root of (3.6) that assume the
value iω, ω2 = a1(d∗), at d∗ and by

F (λ, d) = λ3 + a2(d)λ2 + a1(d)λ + a0(d)

the characteristic polynomial (3.6) as a function of d. Thus the derivative of the
implicit function λ1 at d∗ is

λ′1(d
∗) = −F ′d(iω, d∗)

F ′λ(iω, d∗)
= −a′2(d

∗)(iω)2 + a′1(d
∗)(iω) + a′0(d

∗)
3(iω)2 + 2a2(d∗)(iω) + a′1(d∗)

,

and

(Re(λ1(d∗))′d = Re((λ1)′d(d
∗))

= − (a1(d∗)a2(d∗)− a0(d∗))′d
a1(d∗)(1 + a2

2(d∗))

= −a2(d∗)b [X∗′
d (α + 2 + dY ∗) + X∗(Y ∗ + dY ∗′

d )]
a1(d∗)(1 + a2

2(d∗))
,

after some boring calculations we can see that the quantity between brackets is
negative, therefore (Re(λ1(d∗))′d > 0, and so the transversality condition required
for the Hopf bifurcation holds.

To verify the properties of stability of the periodic orbit we need to translate
(3.3) and locate its origin at the equilibrium point (X∗, Y ∗, Y ∗). In this case the
new system is

x′ = −bX∗x− (b + d)X∗y − b

α
X∗z − bx2 − (b + d)xy − b

α
xz,

y′ = −y + z,

z′ = αdY ∗x + αdX∗y − (α + 1)z + αdxy.

(3.7)

We perform the following change of variables to transform the above system in a
normal form x

y
z

 = T

u
v
w

 ,

where T is the 3 × 3 matrix whose first and second columns are the real and
imaginary part of the eigenvector associated with the eigenvalue λ1(d∗) and the
third column is the eigenvector associated to the eigenvalue λ0(d∗) = −a2(d∗).
Indeed

T =

A B C
1
ω 1 1
1
ω 0 D
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where

A = −bX∗(ω2 + (αd + b(α + 1))X∗)
ω2 + bX∗ , B =

1
α

+
ω(ω2 + (αd + b(α + 1))X∗)

ω2 + bX∗ ,

C = −b + d

b
+ (

1
α
− α + 2 + bX∗

bX∗ )(α + 1 + bX∗), D = −(α + 1 + bX∗).

Therefore, the system (3.7) takes the form

u′ = ωv + G1(u, v, w),

v′ = −ωu + G2(u, v, w),

w′ = −a2(d∗)w + G3(u, v, w),

(3.8)

with G1(u, v, w)
G2(u, v, w)
G3(u, v, w)

 = T−1

F1(Au + Bv + Cw, u
ω + v + w, u

ω + Dw)
F2(Au + Bv + Cw, u

ω + v + w, u
ω + Dw)

F3(Au + Bv + Cw, u
ω + v + w, u

ω + Dw)


=

 H1u
2 + H2v

2 + H3w
2 + H4uv + H5vw + H6uw

0
αdCw2 + L1vw + L2uw + αdBv2 + L3uv + αdAu2

ω


and

L1 = αd(B + C), L2 = αd(A +
C

ω
), L3 = αd(A +

B

ω
),

H1 = −A(bA +
1
ω

(
b

α
+ b + d)), H2 = −B(b + d + bB),

H3 = −C(b + d + bC +
b

α
D), H4 = −A(b + d + 2bB)− B

ω
(b + d +

b

α
),

H5 = −(B(b + d +
b

α
D) + C(b + d + 2bB)),

H6 = −A(b + d + b(2C +
D

α
))− C

ω
(b + d +

b

α
).

Now we determine approximately the d = d∗-section of the center manifold M
which is tangent to the (u, v)- plane at the origin. This is w = h(u, v), h(0, 0) =
h′u(0, 0) = h′v(0, 0) = 0, and h sufficiently smooth. Then

w = h(u, v) =
1
2
(h11u

2 + 2h12uv + h22v
2) + o(| (u, v) |2). (3.9)

Restricting the system to the center manifold, if (u(t), v(t), w(t)) is a solution of
(3.8) near the origin with a value on M , then it stays locally in M , i.e.,

w(t) ≡ h(u(t), v(t)).

But then

w′(t)− h′u(u(t), v(t))u′(t)− h′v(u(t), v(t))v′(t) ≡ 0, (3.10)
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so by using (3.8), omitting terms of order at least three and equating the coefficients
to zero,

h11 = 2
−2αdBω3 − L3a2(d∗)ω2 + 2αdAω2 + αdAa2

2(d
∗)

ωa3
2(d∗)

,

h12 =
1

a2
2(d∗)

(−2αdA + 2αdBω + a2(d∗)L3),

h22 = 2
2ωαdA− 2αdBω2 − L3a2(d∗)ω + a2

2(d
∗)αdB

a3
2(d∗)

.

To restrict (3.8) to the d = d∗-section of the center manifold M , we introduce new
coordinates, y1 = u, y2 = v, y3 = w − h(u, v) and 3.8) becomes

y′1 = ωy2 +
1
2
h22H5y

3
2 + (h12H5 +

1
2
h22H6)y1y

2
2 + (

1
2
H5h11 + H6h12)y2

1y2

+
1
2
h11H6y

3
1 + H1y

2
1 + H2y

2
2 + H4y1y2 + O(| y |4)

y′2 = −ωy1.

(3.11)

Applying the Bautin’s formula [4, Lemma 7.2.7], we can see that
4ω

3π
V ′′′

y1y1y1
(0, 0) = (3h11h12H5 + h22)H6 +

2
ω

(H1 + H2)H4 (3.12)

�
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