
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 78, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

BOUNDARY EIGENCURVE PROBLEMS INVOLVING THE
P-LAPLACIAN OPERATOR

ABDELOUAHED EL KHALIL, MOHAMMED OUANAN

Abstract. In this paper, we show that for each λ ∈ R, there is an increasing
sequence of eigenvalues for the nonlinear boundary-value problem

∆pu = |u|p−2u in Ω

|∇u|p−2 ∂u

∂ν
= λρ(x)|u|p−2u + µ|u|p−2u on ∂Ω ;

also we show that the first eigenvalue is simple and isolated. Some results

about their variation, density, and continuous dependence on the parameter λ
are obtained.

Editor’s note: After publication, we learned that this article is an unauthorized
copy of “On the principal eigencurve of the p-Laplacian related to the Sobolev trace
embedding”, Applicationes Mathematicae, 32, 1 (2005), 1-16. The authors alone
are responsible for this action which may be in violation of the Copyright Laws.

1. Introduction and Notation

Let Ω be a smooth bounded domain in RN , with N ≥ 1. Let ρ be a function
in L∞(∂Ω) with ρ 6≡ 0 and that can change sign. Let λ, p, µ be real numbers, with
1 < p < ∞. We are interested in the nonlinear boundary-value problem

∆pu = |u|p−2u in Ω (1.1)

|∇u|p−2 ∂u

∂ν
= λρ(x)|u|p−2u + µ|u|p−2u on ∂Ω. (1.2)

Here ∆pu = ∇(|∇u|p−2∇u), which is known as the p-Laplacian and has attracted a
lot of attention because of its applications. It appears in mathematical models for
subject such as glaciology, nonlinear diffusion, filtration problem [17], power-low
materials [14], non-Newtonian fluids [4], reaction-diffusion problems, flow through
porous media, nonlinear elasticity, petroleum extraction, torsional creep problems,
etc. For a discussion and some physical background, we refer the reader to [11].
The nonlinear boundary condition (1.2) describes a flux through the boundary ∂Ω
which depends on the solution itself. For a physical motivation of such conditions,
see for example [16].
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Observe that in the restrictive cases µ = 0 or p = 2, (1.1)–(1.2) becomes linear
and it is known as the Steklov problem [8].

Classical Dirichlet problems involving the p-Laplacian have been extensively
studied by various authors in the cases: λ = 0 and µ = 0; we cite the works
[1, 2, 3, 11, 18, 19]. For the nonlinear boundary condition (1.2), recently the au-
thors in [9] studied the case when µ = 0 and ρ belongs to Ls(∂Ω), which is not
necessary essentially bounded, with an additional condition on its sign.

We set

µ1(λ) = inf
{
‖v‖p

1,p − λ

∫
∂Ω

ρ(x)|v|pdσ : v ∈ W 1,p(Ω),
∫

∂Ω

|u|pdσ = 1
}
, (1.3)

where ‖ · ‖1,p denotes the W 1,p(Ω)-norm; i.e., ‖v‖1,p = (‖∇v‖p
p + ‖v‖p

p)
1/p and ‖ · ‖p

is the Lp-norm, with σ is the Lebesgue measure of RN−1. We understand by the
principal (or first) eigencurve of the p-Laplacian related to Sobolev trace embedding,
the graph of the map µ1 : λ → µ1(λ) from R into R. In [13], the authors proved the
simplicity and isolation of the first eigencurve of Dirichlet p-Laplacian by extending
a similar result shown by Binding and Huang in [7].

Our purpose of this paper is to extend some of the results known in the ordinary
Dirichlet p-Laplacian, by using suitable Sobolev trace embeddings which lead to
a nonlinear eigenvalue problem where the two parameter eigenvalues appear at
the nonlinear boundary condition. We show that µ1(λ) is simple and isolated for
any λ ∈ R. Note that to show the simplicity (uniqueness) result, we use a simple
convexity argument, by remarking that the energy functional associated with (1.1)–
(1.2) is convex in up for nonnegative functions u, without use in any way C1(Ω)
and L∞(Ω) regularities of the eigenfunctions. Here our process is new.

Remark that µ1(0) = λ1 the optimal reciprocal constant of the Sobolev embed-
ding W 1,p(Ω) ↪→ Lp(∂Ω). For the particular case µ = 0 and ρ ∈ Ls(∂Ω) (for a
suitable s), the isolation and simplicity of the first eigenvalue of (1.1)–(1.2) are
studied by [9].

The main objective of our work is to extend this result to any λ ∈ R, by using
new technical methods.

The rest of the paper is organized as follows. In Section 2, we establish some
definitions and preliminaries. In Section 3, we use a variational method to prove
the existence of a sequence of eigencurves of (1.1)–(1.2). In Section 4, we prove the
simplicity and the isolation results of each point of the first eigencurve. Finally, in
Section 5, we show some results about variations of the weight as a direct application
of the simplicity result.

Definitions. In this paper, all solutions are weak solutions; i.e., u ∈ W 1,p(Ω) is a
solution of (1.1)–(1.2), if for all v ∈ W 1,p(Ω),∫

Ω

|∇u|p−2∇u∇vdx +
∫

Ω

|u|p−2uvdx =
∫

∂Ω

(λρ(x) + µ)|u|p−2uvdσ. (1.4)

If u ∈ W 1,p(Ω)\{0}, then u shall be called an eigenfunction of (1.1)–(1.2) associated
with the eigenpair (λ, µ).

Set
M =

{
u ∈ W 1,p(Ω) :

∫
∂Ω

|u|pdσ = 1
}
. (1.5)

We say that a principal eigenfunction of (1.1)–(1.2), an any eigenfunction u ∈ M,
u ≥ 0 a.e. on Ω̄ associated to pair (λ, µ1(λ)).
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Define the energy functionals on W 1,p(Ω) as

Φλ(u) =
1
p
‖u‖p

1,p −
λ

p

∫
∂Ω

ρ(x)|u|pdσ =
1
p
‖u‖p

1,p + Φ(u), λ ∈ R

and

Ψ(u) =
1
p

∫
∂Ω

|u|pdσ.

It is clear that for any λ ∈ R, solutions of (1.1)–(1.2) are the critical points of
Φλ restricted to M. We shall deal with operators T acting from W 1,p(Ω) into
(W 1,p(Ω))′. T is said to belong to the class (S+), if for any sequence vn weakly
convergent to v in W 1,p(Ω), and lim supn→+∞〈Tvn, vn − v〉 ≤ 0, it follows that
vn → v strongly in W 1,p(Ω), where (W 1,p(Ω))′ is the dual of W 1,p(Ω) with respect
to the pairing 〈·, ·〉.

2. Existence Results

We will use Ljusternick-Schnirelmann theory on C1-manifolds, see [19]. It is
clear that for any λ ∈ R, the functional Φλ is even and bounded from below on M.
Indeed, let u ∈M, then

Φλ(u) ≥ 1
p
(‖u‖p

1,p − |λ|‖ρ‖∞,∂Ω).

So that
Φλ(u) ≥ 1

p
(λ1 − |λ|‖ρ‖∞,∂Ω) > −∞, (2.1)

where λ1 = µ1(0) is the reciprocal of the optimal constant in the Sobolev trace
embedding W 1,p(Ω) ↪→ Lp(∂Ω). By employing the Sobolev trace embedding, we
deduce that

• Ψ and Φ are weakly continuous
• Ψ′ and Φ′ are compact.

The following lemma is the key to show the existence of eigenvalues.

Lemma 2.1. For each λ ∈ R, we have
(i) (Φλ)′ maps the bounded sets in the bounded sets;
(ii) if un ⇀ u (weakly) in W 1,p(Ω) and (Φλ)′(un) converges strongly in the

space (W 1,p(Ω))′, then un → u (strongly) in W 1,p(Ω);
(iii) the functional Φλ satisfies the Palais-Smale condition on M; i.e., for each

sequence (un)n ⊂M, if Φλ(un) is bounded and

(Φλ)′(un)− cnΨ′(un) → 0, (2.2)

with cn = 〈(Φλ)′(un),un〉
〈Ψ′(un),un〉 . Then, (un)n has a convergent subsequence in

W 1,p(Ω).

Proof. (i) Let u, v ∈ W 1,p(Ω). Thus

〈(Φλ)′(u), v〉 =
∫

Ω

|∇u|p−2∇u∇vdx +
∫

Ω

|u|p−2uvdx +
∫

∂Ω

ρ(x)|u|p−2uvdσ.

By Hölder’s inequality, we obtain

|〈(Φλ)′(u), v〉| ≤
( ∫

Ω

|∇u|(p−1)p′dx
)1/p′

‖∇v‖p +
( ∫

Ω

|u|(p−1)p′dx
)1/p′

‖v‖p
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+ |λ|‖ρ‖∞,∂Ω

( ∫
∂Ω

|u|(p−1)p′dσ
)1/p′

‖v‖p,∂Ω

= ‖∇u‖p−1
p ‖∇v‖p + ‖u‖p−1

p ‖v‖p + |λ|‖ρ‖∞,∂Ω‖u‖p−1
p,∂Ω‖v‖p,∂Ω.

Now, the trace Sobolev embedding W 1,p(Ω) ↪→ Lp(∂Ω) ensures the existence of a
constance c > 0 such that

‖w‖p,∂Ω ≤ c‖w‖1,p, for each w ∈ W 1,p(Ω).

Therefore,

‖(Φλ)′(u)‖ ≤ ‖∇u‖p−1
p ‖∇v‖p + ‖u‖p−1

p ‖v‖p + cp|λ|‖ρ‖∞,∂Ω)‖u‖p−1
1,p ‖v‖1,p.

It is clear that

‖∇u‖p−1
p ‖∇v‖p + ‖u‖p−1

p ‖v‖p ≤ ‖u‖p−1
1,p ‖v‖1,p.

Combining the above inequalities, we conclude that

|〈(Φλ)′(u), v〈| ≤ (1 + cp|λ|‖ρ‖∞,∂Ω)‖u‖p−1
1,p ‖v‖1,p,

for any u, v ∈ W 1,p(Ω). It follows that

‖(Φλ)′(u)‖ ≤ (1 + cp|λ|‖ρ‖∞,∂Ω)‖u‖p−1
1,p ,

where ‖ · ‖ denotes the norm of (W 1,p(Ω))′. This implies assertion (i).
(ii) We use the condition (S+) as follows. (Φλ)′(un) being a convergent sequence

strongly to some f ∈ (W 1,p(Ω))′. Thus, we have by calculation

〈Aun, v〉 = 〈−∆pun, v〉+
∫

Ω

|un|p−2unvdx +
∫

∂Ω

|∇un|p−2∇unνv dσ, (2.3)

for any v ∈ W 1,p(Ω), where A is an operator defined from W 1,p(Ω) into (W 1,p(Ω))′

by

〈Au, v〉 =
∫

Ω

|∇u|p−2∇u∇vdx +
∫

Ω

|u|p−2uv dx.

This operator satisfies the condition (S+) because −∆p does it [13].
If we take v = un − u in (2.3) we obtain

〈Aun, un − v〉

= 〈−∆pun, un − v〉+
∫

Ω

|un|p−2un(un − u)dx +
∫

∂Ω

|∇un|p−2∇unν(un − u) dσ.

Introducing (Φλ)′(un), we deduce that

〈Aun, un − u〉 = 〈(Φλ)′(un)− f, un − u〉+ 〈f, un − u〉 − 〈(Φλ)′(un), un − u〉.
Using the compactness of Φ′, we find that as n →∞,

lim sup
n→+∞

〈Aun, un − u〉 ≥ 0.

Hence un → u strongly in W 1,p(Ω), in virtue of the condition (S+).
(iii) From (2.1) we deduce that (un)n is bounded in W 1,p(Ω). Thus, without loss

of generality, we can assume that un ⇀ u (weakly) in W 1,p(Ω) for some function
u ∈ W 1,p(Ω). It follows that Ψ′(un) → Ψ′(u) in (W 1,p(Ω))′ and pΨ(u) = 1, because
pΨ(un) = 1,∀n ∈ N∗. Hence u ∈ M. Since (un)n is bounded, then (i) ensures
that {(Φλ)′(un)} is bounded. By a calculation we obtain via (2.2) that {(Φλ)′(un)}
converges strongly in (W 1,p(Ω))′. Consequently, from (ii) we conclude that un → u
(strongly) in W 1,p(Ω). This achieves the proof of Lemma. �
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Set Γk = {K ⊂M : K symmetric, compact and γ(K) = k}, where γ(K) = k is
the genus of K; i.e., the smallest integer k such that there is an odd continuous
map from K to Rk\{0}.

Next, we establish our existence result.

Theorem 2.2. For each λ ∈ R and each integer k ∈ N∗,

µk(λ) := inf
K∈Γk

max
u∈K

Φλ(u)

is a critical value of Φλ restricted to M. More precisely, there exists uk(λ) ∈ M
such that

µk(λ) = pΦλ(uk(λ)) = max
u∈K

pΦλ(u)

and (uk(λ), µk(λ)) is a solution of (1.1)–(1.2). Moreover, µk(λ) → +∞, as k →
+∞.

Proof. In view of [19], we need only to prove that for any k ∈ N∗,Γk 6= ∅ and the
last assertion. Indeed, since W 1,p(Ω) is separable, there exist (ei)i≥1 linearly dense
in W 1,p(Ω) such that supp ei∩supp ej = if i 6= j, where supp ei denotes the support
of ei. We can suppose that ei ∈M (if not we take e′i = ei

pΨ(ei)
).

Let k ∈ N∗ and Fk = span{e1, e2, . . . , ek}. Fk is a vector subspace and dimFk =
k. If v ∈ Fk, then there exist α1, . . . , αk in R such that v =

∑i=k
i=1 αiei. Thus

Ψ(v) =
i=k∑
i=1

|αi|pΨ(ei) =
1
p

i=k∑
i=1

|αi|p,

because Ψ(ei) = 1, for i = 1, 2, . . . , k. It follows that the map v → (pΨ(v))1/p is a
norm on Fk. Hence, there is a constant c > 0 so that

c‖v‖1,p ≤ (pΨ(v))1/p ≤ 1
c
‖v‖1,p, ∀v ∈ Fk.

That is,

c‖v‖1,p ≤
( ∫

∂Ω

|v|pdσ
)1/p

≤ 1
c
‖v‖1,p, ∀v ∈ Fk.

This implies that the set

V = Fk ∩
{
v ∈ W 1,p(Ω) : ‖v‖p,∂Ω ≤ 1

}
is bounded. Because V ⊂ B(0, 1

c ), where

B(0,
1
c
) = {v ∈ W 1,p : ‖v‖1,p ≤

1
c
}.

Moreover V is a symmetric bounded neighborhood of the origin 0. Consequently,
from [19, Proposition 2.3], we deduce that γ(Fk ∩M) = k. Then Fk ∩M ∈ Γk

(because Fk ∩M is compact, since it exactly equals to the boundary of V).
To complete the proof, it suffices to show that for any λ ∈ R, µk(λ) → +∞,

as k → +∞. Indeed, let (en, e∗j )n,j be a biorthogonal system such that en ∈
W 1,p(Ω), e∗j ∈ (W 1,p(Ω))′, the (en)n are dense in W 1,p(Ω); and the (e∗j )j are total
in (W 1,p(Ω))′. Set for any k ∈ N∗

F⊥k−1 = span(ek+1, ek+2, ek+3, . . . ).
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Observe that for any for any K ∈ Γk, K ∩ F⊥k−1 6= ∅ (by [19, (g) of Proposition
2.3]). Now, we claim that

tk := inf
K∈Γk

sup
K∩F⊥k−1

pΦλ(u) → +∞, as k → +∞.

Indeed, to obtain the contradiction, assume for k large enough that there is uk ∈
F⊥k−1 with

∫
∂Ω
|uk|pdσ = 1 such that

tk ≤ pΦλ(uk) ≤ M,

for some M > 0 independent of k. Therefore,

‖uk‖p
1,p − λ

∫
∂Ω

ρ(x)|uk|pdσ ≤ M.

Hence
‖uk‖p

1,p ≤ M + λ‖ρ‖∞,∂Ω < ∞.

This implies that (uk)k is bounded in W 1,p(Ω). For a subsequence of (uk)k if
necessary, we can suppose that (uk) converges weakly in W 1,p(Ω) and strongly in
Lp(∂Ω). By our choice of F⊥k−1, we have uk ⇀ 0 in W 1,p(Ω). Because 〈e∗n, ek〉,
for all k ≥ n. This contradicts the fact that

∫
∂Ω
|uk|pdσ = 1, for all k and the the

claim is proved.
Finally, since µk(λ) ≥ tk we conclude that µk(λ) → +∞, as k → +∞ and the

proof is complete. �

3. Simplicity and isolation of µ1(λ)

3.1. Simplicity. First, observe that solutions of (1.1)–(1.2), by an well-known
advanced regularity, belong to C1,α(Ω̄), see [20].

Lemma 3.1. Eigenfunctions associated to µ1(λ) are either positive or negative in
Ω. Moreover if u ∈ C1,α(Ω) then u has definite sign in Ω̄.

Proof. Let u be an eigenfunction associated to µ1(λ),. Since Φλ(|u|) ≤ Φλ(u) and
Ψ(|u|) = Ψ(u), it follows from (1.3) that |u| is also an eigenfunction associated to
µ1(λ). Using Harnack’s inequality, cf. [14], we deduce that |u| > 0 in Ω and by
continuity we conclude that has definite sign in Ω̄. In fact |u| > 0 in Ω̄ because
∂u
∂ν (x0) < 0 for any x0 ∈ ∂Ω with u(x0) = 0, by applying Hopf’s Lemma, see
[21]. �

Theorem 3.2 (Uniqueness). For any λ ∈ R, the eigenvalue µ1(λ) defined by (1.3)
is a simple; i.e., the set of the eigenfunctions associated with (λ, µ1(λ)) is {tu1(λ) :
t ∈ R}, where u1(λ) denotes the principal eigenfunction associated with (λ, µ1(λ)).

Proof. By Theorem 2.2 it is clear that µ1(λ) is an eigenvalue of the problem (1.1)–
(1.2) for any λ ∈ R. Let u and v be two eigenfunctions associated to (λ, µ1(λ)),
such that u, v ∈M. Thus in virtue of Lemma 3.1 we can assume that u and v are
positives.

Note that W 1,p(Ω) 3 w → ‖∇w‖p
p; w →

∫
∂Ω
|w|pdσ and w →

∫
∂Ω

ρ(x)|w|pdσ are

linear functionals in wp, for wp ≥ 0. Hence if we consider w =
(

up+vp

2

)1/p
, then

it belongs to W 1,p(Ω) and
∫

∂Ω
|w|pdσ = 1. Consequently, w is admissible in the
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definition of µ1(λ). On the other hand, by the convexity of χ → |χ|p we have by
calculation the following inequalities∫

Ω

|∇w|pdx =
1
2

∫
Ω

|up−1∇u + vp−1∇v|p(up + vp)1−pdx

=
1
2

∫
Ω

∣∣ up

up + vp

∇u

u
+

vp

vp + up

∇v

v

∣∣p(up + vp)1−pdx

≤ 1
2

∫
Ω

( up

up + vp
|∇u

u
|p +

vp

vp + up
|∇v

v
|p

)
dx

≤ 1
2

∫
Ω

(|∇u|p + |∇v|p)dx.

(3.1)

By the choice of u and v, we deduce that∣∣∣∣t∇u

u
+ (1− t)

∇v

v

∣∣∣∣p = t

∣∣∣∣∇u

u

∣∣∣∣p + (1− t)
∣∣∣∣∇v

v

∣∣∣∣p , (3.2)

with t = up/(up + vp).
Now, we claim that Now, we claim that u = v a.e. on Ω. Indeed, consider the

auxiliary function

F (χ1, χ2) = |tχ1 + (1− t)χ2|p − t |χ1|p + (1− t) |χ2|p .

Since t 6= 0, critical points of F are solutions of the system

∂F (χ1, χ2)
∂χ1

= pt
(
|tχ1 + (1− t)χ2|p−2 (tχ1 − |χ1|p−2

χ1

)
= 0; (3.3)

∂F (χ1, χ2)
∂χ2

= p(t− 1)
(
|tχ1 + (1− t)χ2|p−2 (tχ1 − |χ2|p−2

χ2

)
= 0. (3.4)

Thus (3.2), (3.3) and (3.4) imply that (χ1 = ∇u
u , (χ2 = ∇v

v ) is a solution of the
above system. Therefore, ∣∣∣∣∇u

u

∣∣∣∣p−2 ∇u

u
=

∣∣∣∣∇v

v

∣∣∣∣p−2 ∇v

v
.

Hence
∇u

u
=
∇v

v
a.e. in Ω.

This implies easily that u = cv for some positive constant c. By normalization we
conclude that c = 1. The proof is completed. �

Remark 3.3. Various proofs of the uniqueness result were given in Direchlet p-
Laplacian case by using C1,α-regularity and L∞-estimation of the first eigenfunc-
tions and by applying either Picone’s identity [1]; or Diaz-Saá’s inequality [2, 10, 12],
and or an abstract inequality [15].

3.2. Isolation.

Proposition 3.4. For each λ ∈ R, µ1(λ) is the only eigenvalue associated with λ,
having an eigenfunction that does not change sign on the boundary ∂Ω.

Proof. Fix λ ∈ R and let u1(λ) be the principal eigenfunction associated with
(λ, µ1(λ)). Suppose that there exists an eigenfunction v corresponding to a pair
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(λ, µ) with v ≥ 0 on ∂Ω and v ∈ M. By the Maximum Principle, v > 0 on Ω. For
simplify of notation, set u = u1(λ). Let ε > 0 be small enough, and write

uε = u + ε, vε = v + ε, (3.5)

φ(uε, vε) =
up

ε − vp
ε

up−1
ε

. (3.6)

It is clear that φ(uε, vε) ∈ W 1,p(Ω) and it is an admissible test function in (1.1)–
(1.2). Thus we obtain∫

Ω

|∇u|p−2∇u∇φ(uε, vε)dx +
∫

Ω

up−1φ(uε, vε)dx

=
∫

∂Ω

(λρ(x) + µ1(λ))up−1φ(uε, vε)dσ

(3.7)

and∫
Ω

|∇v|p−2∇v∇φ(uε, vε)dx+
∫

Ω

vp−1φ(uε, vε)dx =
∫

∂Ω

(λρ(x)+µ))vp−1φ(uε, vε)dσ.

(3.8)
From (3.7) and (3.8), we deduce by calculations that∫

Ω

|∇u|p−2∇u∇φ(uε, vε) dx +
∫

Ω

|∇v|p−2∇v∇φ(uε, vε)dx +
∫

Ω

|v|p−2vφ(uε, vε) dx

=
∫

∂Ω

λρ(x)
(( u

uε

)p−1 −
( v

vε

)p−1
)
(up

ε − vp
ε )dσ

+ µ1(λ)
∫

∂Ω

up−1
[
uε −

( vε

uε

)p−1
vε

]
dσ + µ

∫
∂Ω

up−1
[
vε −

(uε

vε

)p−1
uε

]
dσ.

(3.9)
On the other hand, by a long calculation again, we obtain

∇φ(uε, vε) =
{
1 + (p− 1)

( vε

uε

)p}∇uε − p
( vε

uε

)p−1∇vε (3.10)

and∫
Ω

[
up−1φ(uε, vε) + vp−1φ(uε, vε)

]
dx =

∫
Ω

[( u

uε

)p−1−
( v

vε

)p−1](up
ε−vp

ε )dx. (3.11)

Therefore, (3.9), (3.10) and (3.11) yield∫
Ω

[{
1 + (p− 1)

( vε

uε

)p}|∇uε|p +
{
1 + (p− 1)

(uε

vε

)p}|∇vε|p
]
dx

+
∫

Ω

[
− p

( vε

uε

)p−1|∇vε|p−2∇uε∇vε + p
(uε

vε

)p−1|∇uε|p−2∇uε∇vε

]
dx

= Jε + Kε − Iε,

(3.12)

with

Iε =
∫

Ω

(( u

uε

)p−1 −
( v

vε

)p−1
)

(up
ε − vp

ε ) dx , (3.13)

Jε = λ

∫
∂Ω

ρ(x)
(( u

u + ε

)p−1 −
( v

v + ε

)p−1
)

(up
ε − vp

ε ) dσ , (3.14)

Kε = µ1(λ)
∫

∂Ω

up−1
[
uε −

( vε

uε

)p−1
vε

]
dσ + µ

∫
∂Ω

up−1
[
vε −

(uε

vε

)p−1
uε

]
dσ.

(3.15)
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It is clear that Iε ≥ 0. Now, thanks to the inequalities of Lindqvist [15], we can
distinguish tow cases according to p.

First case: p ≥ 2. From (3.12) we have

Jε + Kε ≥
1

2p−2 − 1

∫
Ω

(
1

(u + 1)p
+

1
(v + 1)p

)
|u∇v − v∇u|pdx ≥ 0. (3.16)

Second case: 1 < p < 2.

Jε + Kε ≥ c(p)
∫

Ω

uv(up + vp)
(v|∇u|+ u|∇v|+ 1)2−p |u∇v − v∇u|2dx ≥ 0, (3.17)

where the constant c(p) > 0 independent of u, v, λ and µ1(λ).
The Dominated Convergence Theorem implies

lim
ε→0+

Jε = lim
ε→0+

Kε = (µ1(λ)− µ)
∫

∂Ω

(up − vp)dσ = 0,

because ∫
∂Ω

updσ =
∫

∂Ω

vpdσ = 1. (3.18)

Now, letting ε → 0+ in (3.16) and (3.17), we arrive at u∇v = v∇u a.e. on Ω. Thus

∇
(u

v

)
= 0 a.e. on Ω.

Hence, there exists t > 0 such that u = tv a.e. on Ω. By continuity u = v a.e. in
Ω; and by the normalization (3.18) we deduce that t = 1 and u = v a.e. on ∂Ω.
This implies that u = v a.e. on Ω. Finally, we conclude that µ = µ1(λ). Which
completes the prof. �

Remark 3.5. Proposition 3.4 can also be shown by using Picone’s identity. A
similar result was given by [9] in the restrictive case λ = 0.

Corollary 3.6. For each λ ∈ R, if u is an eigenfunction associated with a pair
(λ, µ) and µ 6= µ1(λ), then u changes sign on the boundary ∂Ω. Moreover, we have
the estimate

min(|∂Ω−|, |∂Ω+|) ≥ c−N
p∗ (|λ|‖ρ‖∞,∂Ω + |µ|)−η, (3.19)

where

η =

{
N
p if 1 < p < N

2 if p > N ;

cp∗ is the best constant in the Sobolev trace embedding W 1,p(Ω) in Lp∗(∂Ω); and
|∂Ω±| denotes the (N − 1)-dimensional measure of ∂Ω±. Here p∗ = p(N−1)

N−p is the
critical Sobolev exponent.

Proof. Set u+ = max(u, 0) and u− = max(−u, 0). It follows from (1.4), where we
put v = u−, that∫

Ω

|∇u−|pdx +
∫

Ω

|u−|pdx =
∫

∂Ω

(λρ(x) + µ)|u−|pdσ.

Thus

‖u−‖1,p ≤ (|λ|‖ρ‖∞,∂Ω + |µ|)
∫

∂Ω−
|u−|pdσ

≤ (|λ|‖ρ‖∞,∂Ω + |µ|) |∂Ω−|p/N
( ∫

∂Ω

|u−|p
∗
)p/p∗

.
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By the Sobolev embedding W 1,p(∂Ω) ↪→ Lp∗(∂Ω), we deduce that

|∂Ω−| ≥ c−N
p∗ (|λ|‖ρ‖∞,∂Ω + |µ|)−η

.

For ∂Ω+ the same estimate follows by taking v = u+ in (1.4). Hence (3.19) follows.
�

Remark 3.7. (i) The right-hand side of (3.19) is positive because ρ 6≡ 0 and if
λ = 0 then µ shall be an eigenvalue of p-Laplacian related to trace embedding, so
µ− λ1 > 0, with λ1 is the first eigenvalue of (1.1)–(1.2) in the case (λ = 0).

(ii) As an easy consequence of Corollary 3.6, we get that the number of the nodal
components of each eigenfunction of (1.1)–(1.2) is finite.

Using Proposition 3.4 and Corollary 3.6, we can state the following important
result.

Theorem 3.8. For each λ ∈ R, µ1(λ) is isolated.

4. Variations of the weight

Let µ1(λ) = µ1(ρ) and u1(λ) = u1(ρ) (for indicating the dependance of the
weight ρ).

Theorem 4.1. For each λ ∈ R, if (ρk)k is a sequence of functions in L∞(∂Ω) that
converges to ρ and ρ 6≡ 0, then

lim
k→∞

µ1(ρk) = µ1(ρ) , (4.1)

lim
k→∞

‖u1(ρk)− u1(ρ)‖p
1,p = 0 . (4.2)

Proof. If λ = 0, the result is evident because µ1(ρk) = µ1(ρ), for all k ∈ N∗. If
λ 6= 0, then for v ∈M,

|λ
∫

∂Ω

(ρk − ρ)|v|pdσ| ≤ |λ|‖ρk − ρ‖∞,∂Ω.

Using the convergence of ρk to ρ in L∞(∂Ω), for all ε > 0, there exists kε ∈ N such
that for all k ≥ kε,

|λ
∫

∂Ω

(|(ρk − ρ)|v|pdσ| ≤ |λ| ε

|λ|
= ε.

This implies

λ

∫
∂Ω

ρ|v|pdσ ≤ ε + λ

∫
∂Ω

ρk|v|pdσ , (4.3)

λ

∫
∂Ω

ρk|v|pdσ ≤ ε + λ

∫
∂Ω

ρ|v|pdσ, (4.4)

for v ∈M, ε > 0 and k ≥ kε.
On the other hand, we have ρ 6≡ 0. We take kε large enough so that ρk 6≡ 0.

Thus

µ1(ρk) ≤ ‖v‖p
1,p − λ

∫
∂Ω

ρk|v|pdσ.

Combining (4.3) and (4.4), we obtain

µ1(ρk) ≤ ‖v‖p
1,p − λ

∫
∂Ω

ρ|v|pdσ + ε.
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Passing to the infimum over v ∈M, we find

µ1(ρk) ≤ µ1(ρ) + ε, µ1(ρ) ≤ µ1(ρk) + ε, ∀ε > 0, ∀k > kε.

Hence, we conclude the convergence (4.1).
For the strong convergence (4.2) we argue as follows. We have for k large enough,

ρk 6≡ 0 and

µk(ρk) = ‖u1(ρk)‖p
1,p − λ

∫
∂Ω

ρk(u1(ρk))pdσ. (4.5)

Thus
‖u1(ρk)‖p

1,p ≤ |µ1(ρk)|+ |λ|‖ρk‖∞,∂Ω.

From (4.1) and the convergence of ρk to ρ in L∞(∂Ω), we deduce that (u1(ρk))k is a
bounded sequence in W 1,p(Ω). Since W 1,p(Ω) is reflexive and compactly embedded
in Lp(∂Ω) we can extract a subsequence of (u1(ρk))k again labelled by k, such
that u1(ρk) ⇀ u (weakly) in W 1,p(Ω) and u1(ρk) → u (strongly) in Lp(∂Ω), as
k →∞. We can also suppose that u1(ρk) → u in Lp(Ω). Passing to a subsequence
if necessary, we can assume that u1(ρk) → u a.e. in Ω̄. Thus u ≥ 0 a.e. in Ω. We
will prove that u ≡ u1(ρ). To do this, using the Dominated Convergence Theorem
in ∂Ω, we deduce that ∫

∂Ω

ρk(u1(ρk))pdσ →
∫

∂Ω

ρupdσ,

as k → ∞. By (4.5), (4.1) and the lower weak semi-continuity of the norm we
obtain that

‖u‖p
1,p ≤ µ1(ρ) + λ

∫
∂Ω

ρupdσ. (4.6)

The normalization
∫

∂Ω
updσ = 1 is proved. Moreover, u ≥ 0 a.e. in Ω̄, because

u1(ρk) > 0 in Ω Thus u is an admissible function in the variational definition of
µ1(λ). So

µ1(λ) ≤ ‖u‖p
1,p − λ

∫
∂Ω

ρupdσ.

This and (4.6) yield

µ1(ρ) = ‖u‖p
1,p − λ

∫
∂Ω

ρupdσ. (4.7)

By the uniqueness of the principal eigenfunction associated to µ1(λ), we must have
u ≡ u1(ρ). Consequently the limit function u1(ρ) is independent of the choice of the
(sub)sequence. Hence, u1(ρk) converges to u1(ρ) at least in Lp(∂Ω) and in Lp(Ω).
To complete the proof of (4.2), it suffices to use the Clarckson’s inequalities related
to uniform convexity of W 1,p(Ω). For this we distinguish two cases.

First case: p ≥ 2. We have∫
Ω

∣∣∣∇u1(ρk)−∇u1(ρ)
2

∣∣∣pdx +
∫

Ω

∣∣∣∣∇u1(ρk) +∇u1(ρ)
2

∣∣∣∣p dx

≤ 1
2

∫
Ω

|∇u1(ρk)|pdx +
1
2

∫
Ω

|∇u1(ρ)|pdx

and

µ1(ρk)
∫

∂Ω

(u1(ρk) + u1(ρ)
2

)p

dσ
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≤
∫

Ω

∣∣∣∇u1(ρk) +∇u1(ρ)
2

∣∣∣pdx− λ

∫
∂Ω

ρk

(u1(ρk) + u1(ρ)
2

)p

dσ.

Moreover,∫
Ω

∣∣∣u1(ρk)− u1(ρ)
2

∣∣∣pdx ≤
∫

Ω

∣∣∣u1(ρk) + u1(ρ)
2

∣∣∣pdx +
1
2
‖u1(ρk)‖p

p +
1
2
‖u1(ρ)‖p

p.

Hence

‖u1(ρk)− u1(ρ)‖p
1,p

≤ −µ1(ρk)
∫

∂Ω

(u1(ρk) + u1(ρ)
2

)p

dσ − λ

∫
∂Ω

ρk

(u1(ρk) + u1(ρ)
2

)p

dσ

+
1
2

(
µ1(ρk)− λ

∫
∂Ω

ρk(x)u1(ρk)dσ
)

+
1
2

(
µ1(ρ)− λ

∫
∂Ω

ρup
1dσ

)
.

Then, by using the Dominated Convergence Theorem we deduce that

lim sup
k→+∞

‖u1(ρk)− u1(ρ)‖p
1,p = 0.

Second case: 1 < p < 2. In this case, we have{∫
Ω

∣∣∣∇u1(ρk)−∇u1(ρ)
2

∣∣∣pdx
} 1

p−1
+

{∫
Ω

∣∣∣∇u1(ρk) +∇u1(ρ)
2

∣∣∣pdx
} 1

p−1

≤
{1

2

∫
Ω

|∇u1(ρk)|pdx +
1
2

∫
Ω

|∇u1(ρ)|pdx
} 1

p−1

and

µ1(ρk)
∫

∂Ω

(u1(ρk) + u1(ρ)
2

)p

dσ

≤
∫

Ω

∣∣∣∇u1(ρk) +∇u1(ρ)
2

∣∣∣p − λ

∫
∂Ω

ρk

(u1(ρk) + u1(ρ)
2

)p

dσ.

Hence, by the definitions of µ1(ρk) and µ1(ρ); and the second Clarckson’s inequality
we obtain the convergence (4.2). �

Corollary 4.2. For any bounded domain Ω, the function λ → µ1(λ) is differen-
tiable on R and the function λ → u(λ) is continuous from R into W 1,p(Ω). More
precisely

µ′1(λ0) = −
∫

∂Ω

ρ(x)(u1(λ0))pdσ, ∀λ0 ∈ R.

Proof. Denote by µ1(λ, ρ) the principal eigenvalue associated with λ and the weight
ρ and by u1(λ, ρ) the principal eigenfunction corresponding. Suppose that λk → λ0

in R, then hk = λkρ → λ0ρ = h in L∞(∂Ω). From Theorem 4.1 we deduce that

µ1(λk) = µ1(1, hk) → µ1(1, h) = µ1(λ0),

u1(λk) = u1(1, hk) → u1(1, h) = u1(λ0) in W 1,p(Ω).

For the differentiability, it suffices to use the variational characterization of µ1(λ)
and of µ1(λ0), so that

(λ− λ0)
∫

∂Ω

ρ(x)(u1(λ))pdσ ≤ µ1(λ)− µ1(λ0) ≤ (λ0 − λ)
∫

∂Ω

(u1(λ0))pdσ,

for all λ, λ0 ∈ R. This completes the proof. �



EJDE-2008/78 BOUNDARY EIGENCURVE PROBLEMS 13

Acknowledgement. The first author is supported by grant number 22/12 from
the Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, KSA.

References

[1] W. Allegretto and Y. X. Huang: A Picone’s identity for the p-Laplacian and applications,
Nonlinear Analysis TMA, 32 (1998), 819–830.
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