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EXISTENCE THEORY FOR PERTURBED HYPERBOLIC
DIFFERENTIAL INCLUSIONS

ABDELKADER BELARBI, MOUFFAK BENCHOHRA

Abstract. In this paper, the existence of solutions and extremal solutions

for a perturbed hyperbolic differential inclusion is proved under the mixed
generalized Lipschitz and Carathéodory’s conditions.

1. Introduction

This paper concerns the existence of solutions and extremal solutions for a per-
turbed hyperbolic differential inclusion. First, we consider the following perturbed
hyperbolic differential inclusion

∂2u(x, y)
∂x∂y

∈ F (x, y, u(x, y)) +G(x, y, u(x, y)), (x, y) ∈ Ja × Jb (1.1)

u(x, 0) = f(x), u(0, y) = g(y), (1.2)

where Ja = [0, a], Jb = [0, b], F,G : Ja × Jb × R → P(R) are compact valued
multivalued maps, P(R) is the family of all nonempty subsets of R, f : Ja → R
and g : Jb → R are continuous functions. Next, we consider the perturbed nonlocal
hyperbolic problem

∂2u(x, y)
∂x∂y

∈ F (x, y, u(x, y)) +G(x, y, u(x, y)), (x, y) ∈ Ja × Jb (1.3)

u(x, 0) +Q(u) = f(x), x ∈ Ja (1.4)

u(0, y) +K(u) = g(y), y ∈ Jb (1.5)

where F,G and f, g are as in the problem (1.1)-(1.2) and Q,K : C(Ja×Jb,R) → R
are continuous functions.

The existence of solutions and the topological properties of the solutions set of
hyperbolic differential equations have received much attention during the last two
decades ; we refer for instance to the papers by Dawidowski and Kubiaczyk [11, 12],
De Blasi and Myjak [14] and the references cited therein. Lakshmikantham and
Pandit [20, 22] coupled the method of upper and lower solutions with the mono-
tone method to obtain existence of extremal solutions for hyperbolic differential
equations.
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Using a compactness type condition, involving the measure of noncompactness,
Papageorgiou gave in [23] existence results for hyperbolic differential inclusions
in Banach spaces. Other results with the same tools were given by Dawidowski
et al. [10]. Recently, the method upper and lower solutions was applied to the
particular problem (1.1)-(1.2) with G ≡ 0 by Benchohra and Ntouyas in [4]. The
same problem was studied on unbounded domain by the same authors in [5] by
using a fixed point theorem due to Ma which is an extension of Schaefer’s theorem
on locally convex topological spaces. By means of Martelli’s fixed point theorem
for condensing multivalued maps Benchohra [3] proved an existence theorem of
solutions to the above cited problem.

Several papers have been devoted to study the existence of solutions for partial
differential equations with nonlocal conditions. We refer for instance to the papers
of Byszewski [6, 7, 8]. The nonlocal conditions of this type can be applied in the
theory of elasticity with better effect that the initial or Darboux conditions.

In this paper, we shall prove the existence of solutions and extremal solutions
for the problems (1.1)-(1.2) and (1.3)-(1.5) under the mixed generalized Lipschitz
and Carathéodory’s conditions. Our approach will be based, for the existence of
solutions, on a fixed point theorem for the sum of a contraction multivalued map
and a completely continuous map and, for the extremal solutions, on the concept
of upper and lower solutions combined with a similar version of the above cited
fixed point theorem on ordered Banach spaces established very recently by Dhage.
These results extend some ones cited in the above literature devoted to the field.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper.
C(Ja × Jb,R) is the Banach space of all continuous functions from Ja × Jb into

R with the norm

‖u‖∞ = sup{|u(x, y)| : (x, y) ∈ Ja × Jb} ,
for each u ∈ C(Ja × Jb,R).
L1(Ja×Jb,R) denotes the Banach space of measurable functions u : Ja×Jb → R

which are Lebesgue integrable normed by

‖u‖L1 =
∫ a

0

∫ b

0

|u(x, y)|dydx

for each u ∈ L1(Ja × Jb,R). Let (X, | · |) be a normed space, Pcl(X) = {Y ∈
P(X) : Y is closed}, Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈
P(X) : Y is compact} and Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}. A
multivalued map G : X → P(X) is convex (closed) valued if G(x) is convex (closed)
for all x ∈ X. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in
X for all B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is called upper
semi-continuous (u.s.c.) on X if for each x0 ∈ X the set G(x0) is a nonempty
closed subset of X and if for each open set N of X containing G(x0), there exists
an open neighbourhood N0 of x0 such that G(N0) ⊆ N . G is said to be completely
continuous if G(B) is relatively compact for every B ∈ Pb(X). If the multivalued
map G is completely continuous with nonempty compact values, then G is u.s.c.
if and only if G has a closed graph (i.e. xn → x∗, yn → y∗, yn ∈ G(xn) imply
y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed
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point set of the multivalued operator G will be denoted by FixG. A multivalued
map G : Ja × Jb → Pcl(R) is said to be measurable if for every z ∈ R, the function
(x, y) 7→ d(z,G(x, y)) = inf{|z − u| : u ∈ G(x, y)} is measurable. For more details
on multivalued maps see the books of Aubin and Cellina [1], Aubin and Frankowska
[2], Deimling [13] and Hu and Papageorgiou [18].

Definition 2.1. A multivalued map F : Ja × Jb × R → P(R) is said to be
Carathéodory if

(i) (x, y) 7→ F (x, y, z) is measurable for each z ∈ R;
(ii) z 7→ F (x, y, z) is upper semi-continuous for almost each (x, y) ∈ Ja × Jb.

For each u ∈ C(Ja × Jb,R), define the set of selections of F by

SF,u = {v ∈ L1(Ja × Jb,R) : v(x, y) ∈ F (x, y, u(x, y)) a.e. (x, y) ∈ Ja × Jb}.

Let F : Ja× Jb×R → P(R) be a multivalued map with nonempty compact values.
Assign to F the multivalued operator

F : C(Ja × Jb,R) → P(L1(Ja × Jb,R))

by letting

F(u) = {w ∈ L1(Ja × Jb,R) : w(x, y) ∈ F (x, y, u(x, y)) for a.e. (x, y) ∈ Ja × Jb}.

The operator F is called the Niemytsky operator associated with F .
Let (X, d) be a metric space induced from the normed space (X, | · |). Consider

Hd : P(X)× P(X) → R+ ∪ {∞} given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pb,cl(X),Hd) is a
metric space and (Pcl(X),Hd) is a generalized metric space (see [19]).

Definition 2.2. A multivalued operator N : X → Pcl(X) is called
a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

We apply the following form of the fixed point theorem of Dhage [15] in the
sequel.

Theorem 2.3. Let B(0, r) and B[0, r] denote respectively the open and closed balls
in a Banach space E centered at origin and of radius r and let A : E → Pcl,cv,bd(E)
and B : B[0, r] → Pcp,cv(E) be two multivalued operators satisfying

(i) A is multi-valued contraction, and
(ii) B is completely continuous.

Then either
(a) the operator inclusion x ∈ Ax+Bx has a solution in B[0, r], or
(b) there exists an u ∈ E with ‖u‖ = r such that λu ∈ Au + Bu, for some

λ > 1.

The following lemma will be used in the sequel.



4 A. BELARBI, M. BENCHOHRA EJDE-2006/23

Lemma 2.4. [21]. Let X be a Banach space. Let F : Ja × Jb × X → Pcp,c(X)
be a Carathéodory multivalued map, and let Γ be a linear continuous mapping from
L1(Ja × Jb, X) into C(Ja × Jb, X), then the operator

Γ ◦ SF : C(Ja × Jb, X) → Pcp,c(C(Ja × Jb, X))

u 7→ (Γ ◦ SF )(u) := Γ(SF,u)

is a closed graph operator in C(Ja × Jb, X)× C(Ja × Jb, X).

3. Existence Result

In this section, we are concerned with the existence of solutions for the problem
(1.1)-(1.2).

Let us start by defining what we mean by a solution of (1.1)-(1.2).

Definition 3.1. A function u(·, ·) ∈ C(Ja×Jb,R) is said to be a solution of (1.1)-
(1.2) if there exist v1, v2 ∈ L1(Ja×Jb,R) such that v1(t, s) ∈ F (t, s, u(t, s)), v2(t, s) ∈
G(t, s, u(t, s)) a.e. on Ja × Jb, and

u(x, y) = f(x)+g(y)−f(0)+
∫ x

0

∫ y

0

(v1(t, s)+v2(t, s))dsdt for each (x, y) ∈ Ja × Jb.

The following hypotheses will be assumed hereafter.
(H1) The function (x, y) → F (x, y, z) is measurable, convex and integrably

bounded for each z ∈ R.
(H2) Hd(F (x, y, z), F (x, y, z)) ≤ l(x, y)|z − z| for almost each (x, y) ∈ Ja × Jb

and all z, z ∈ R where l ∈ L1(Ja × Jb,R) and d(0, F (x, y, 0)) ≤ l(x, y) for
almost each (x, y) ∈ Ja × Jb.

(H3) The multivalued map G(x, y, z) has compact and convex values for each
(x, y, z) ∈ Ja × Jb × R.

(H4) G is Carathéodory.
(H5) There exist a function q ∈ L1(Ja × Jb,R) with q(x, y) > 0 for a.e. (x, y) ∈

Ja × Jb and a continuous nondecreasing function ψ : R+ → (0,∞) such
that

‖G(x, y, z)‖P ≤ q(x, y)ψ(|z|) a.e. (x, y) ∈ Ja × Jb for all z ∈ R.

(H6) There exists a real number r > 0 such that

r >
‖f‖∞ + ‖g‖∞ + |f(0)|+ ‖l‖L1 + ψ(r)‖q‖L1

1− ‖l‖L1
.

Theorem 3.2. Suppose that hypotheses (H1)–(H6) are satisfied. If ‖l‖L1 < 1, then
(1.1)–(1.2) has at least one solution on Ja × Jb.

Proof. Transform problem (1.1)–(1.2) into a fixed point problem. Consider the
operator N : C(Ja × Jb,R) → P(C(Ja × Jb,R)) defined by

N(u) = {h ∈ C(Ja × Jb,R) : h(x, y) = f(x) + g(y)− f(0)

+
∫ x

0

∫ y

0

(v1(t, s) + v2(t, s))dsdt, v1 ∈ SF,u and v2 ∈ SG,u}.

Remark 3.3. Clearly, from Definition 3.1, the fixed points of N are solutions to
(1.1)–(1.2).
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Let X = C(Ja × Jb,R) and define an open ball B(0, r) in X entered at origin of
radius r, where the real number r satisfies the inequality in hypothesis (H6). Define
two multivalued maps A,B on B[0, r] by

A(u) = {h ∈ X : h(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0

v1(t, s)dsdt, v1 ∈ SF,u}

(3.1)
and

B(u) = {h ∈ X : h(x, y) =
∫ x

0

∫ y

0

v2(t, s)dsdt, v2 ∈ SG,u}. (3.2)

We shall show that the operators A and B satisfy all the conditions of Theorem
2.3. The proof will be given in several steps.
Step 1: First, we show that A(u) is a closed convex and bounded subset of X for
each u ∈ B[0, r]. This follows easily if we show that the values of the Niemytsky
operator associated are closed in L1(Ja×Jb,R). Let {wn} be a sequence in L1(Ja×
Jb,R) converging to a point w. Then wn → w in measure and so, there exists a
subset S of positive integers with {wn} converging a.e. to w as n→∞ through S.
Now, since (H1) holds, the values of SF,u are closed in L1(Ja × Jb,R). Thus, for
each u ∈ B[0, r], we have that A(u) is a non-empty and closed subset of X.

We prove that A(u) is a convex subset of X for each u ∈ B[0, r]. Let h1, h2 ∈
A(u). Then there exist v1, v2 ∈ SF,u such that for each (x, y) ∈ Ja × Jb we have

hi(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0

vi(t, s)dsdt, (i = 1, 2)

Let 0 ≤ d ≤ 1. Then, for each (x, y) ∈ Ja × Jb we have

(dh1 +(1−d)h2)(x, y) = f(x)+g(y)−f(0)+
∫ x

0

∫ y

0

(dv1(t, s)+(1−d)v2(t, s))dsdt.

Since SF,u is convex (because F has convex values), then

dh1 + (1− d)h2 ∈ A(u).

Step 2: We show that A is a multivalued contraction on B[0, r]. Let u, u ∈ B[0, r]
and h1 ∈ A(u). Then, there exists v1(x, y) ∈ F (x, y, u(x, y)) such that for each
(x, y) ∈ Ja × Jb,

h1(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0

v1(t, s)dsdt.

From (H2) it follows that

Hd(F (x, y, u(x, y)), F (x, y, u(x, y))) ≤ l(x, y)|u(x, y)− u(x, y)|.

Hence, there exists w ∈ F (x, y, u(x, y)) such that

|v1(x, y)− w| ≤ l(x, y)|u(x, y)− u(x, y)|.

Consider U : Ja × Jb → P(R) given by

U(x, y) = {w ∈ R : |v1(x, y)− w| ≤ l(x, y)|u(x, y)− u(x, y)|}.

Since the multivalued operator V (x, y) = U(x, y) ∩ F (x, y, u(x, y)) is measurable
(see Proposition III.4 in [9]), there exists a function v2(x, y) which is a measurable
selection for V . So, v2(x, y) ∈ F (x, y, u(x, y)) and for each (x, y) ∈ Ja × Jb

|v1(x, y)− v2(x, y)| ≤ l(x, y)|u(x, y)− u(x, y)|.
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Let us define for each (x, y) ∈ Ja × Jb

h2(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0

v2(t, s)dsdt.

We have

|h1(x, y)− h2(x, y)| ≤
∫ x

0

∫ y

0

|v1(t, s)− v2(t, s)|dsdt.

Thus
‖h1 − h2‖∞ ≤ ‖l‖L1‖u− u‖∞.

By an analogous relation, obtained by interchanging the roles of u and u, it follows
that

Hd(A(u), A(u)) ≤ ‖l‖L1‖u− u‖∞.
So, A is a multivalued contraction on X.
Step 3: Now, we show that the multivalued operator B is compact and upper semi-
continuous on B[0, r]. First, we show that B is compact on B[0, r]. Let u ∈ B[0, r]
be arbitrary. Then, for each h ∈ B(u), there exists v ∈ SG,u such that for each
(x, y) ∈ Ja × Jb we have

h(x, y) =
∫ x

0

∫ y

0

v(t, s)dsdt.

From (H5) we have

|h(x, y)| ≤
∫ a

0

∫ b

0

|v(t, s)|dsdt ≤
∫ a

0

∫ b

0

q(t, s)ψ(‖u‖∞)dsdt ≤ ‖q‖L1ψ(r).

Next, we show that B maps bounded sets into equicontinuous sets of X. Let
(x1, y1), (x2, y2) ∈ Ja × Jb, x1 < x2, y1 < y2 and u ∈ B[0, r]. For each h ∈ B(u),

|h(x2, y2)− h(x1, y2)| ≤
∫ x2

x1

∫ y2

y1

|v(t, s)|dsdt

≤
∫ x2

x1

∫ y2

y1

q(t, s)ψ(‖u‖∞)dsdt

≤
∫ x2

x1

∫ y2

y1

q(t, s)ψ(r)dsdt.

The right hand side tends to zero as (x2, y2) → (x1, y1). An application of Arzelá-
Ascoli Theorem yields that the operator B : B[0, r] → P(X) is compact.
Step 4: Next we prove that B has a closed graph. Let un → u∗, hn ∈ B(un) and
hn → h∗. We need to show that h∗ ∈ B(u∗). hn ∈ B(un) implies that there exists
vn ∈ SG,un such that for each (x, y) ∈ Ja × Jb,

hn(x, y) =
∫ x

0

∫ y

0

vn(t, s)dsdt.

We must show that there exists h∗ ∈ SG,u∗ such that for each (x, y) ∈ Ja × Jb,

h∗(x, y) =
∫ x

0

∫ y

0

v∗(t, s)dsdt.

Clearly we have
‖hn − h∗‖∞ → 0 as n→∞.
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Consider the continuous linear operator Γ : L1(Ja × Jb,R) → C(Ja × Jb,R) given
by

v 7→ (Γv)(x, y) =
∫ x

0

∫ y

0

v(t, s)dsdt.

From Lemma 2.4, it follows that Γ ◦ SG is a closed graph operator. Moreover, we
have

hn(x, y) ∈ Γ(SG,un
).

Since un → u∗, it follows from Lemma 2.4 that

h∗(x, y) =
∫ x

0

∫ y

0

v∗(t, s)dsdt

for some v∗ ∈ SG,u∗ .

Step 5: Now, we show that the second assertion of Theorem 2.3 is not true. Let
u ∈ X be a possible solution of λu ∈ A(u) + B(u) for some real number λ > 1
with ‖u‖∞ = r. Then there exist v1 ∈ SF,u and v2 ∈ SG,u such that for each
(x, y) ∈ Ja × Jb we have

u(x, y) = λ−1

[
f(x) + g(y)− f(0) +

∫ x

0

∫ y

0

(v1(t, s) + v2(t, s))dsdt
]
.

Then by (H2), (H5) we have

|u(x, y)| ≤ |f(x)|+ |g(y)|+ |f(0)|+
∫ a

0

∫ b

0

|v1(t, s)|dsdt+
∫ a

0

∫ b

0

|v2(t, s)|dsdt

≤ |f(x)|+ |g(y)|+ |f(0)|+
∫ a

0

∫ b

0

[l(t, s)|u(t, s)|+ l(t, s)]dsdt

+
∫ a

0

∫ b

0

q(t, s)ψ(|u(t, s)|)dsdt

≤ |f(x)|+ |g(y)|+ |f(0)|+
∫ a

0

∫ b

0

[l(t, s)‖u‖∞ + l(t, s)]dsdt

+
∫ a

0

∫ b

0

q(t, s)ψ(‖u‖∞)dsdt.

Taking the supremum over (x, y) we get

‖u‖∞ ≤ ‖f‖∞ + ‖g‖∞ + |f(0)|+
∫ a

0

∫ b

0

[l(t, s)‖u‖∞ + l(t, s)]dsdt

+
∫ a

0

∫ b

0

q(t, s)ψ(‖u‖∞)ds dt.

Substituting ‖u‖∞ = r in the above inequality yields

r ≤ ‖f‖∞ + ‖g‖∞ + |f(0)|+ ‖l‖L1 + ψ(r)‖q‖L1

1− ‖l‖L1

which contradicts (H6). As a result, the conclusion (ii) of Theorem 2.3 does not
hold. Hence, the conclusion (i) holds and consequently the problem (1.1)-(1.2) has
a solution u on Ja × Jb. This completes the proof. �
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4. Existence of Extremal Solutions

In this section, we shall prove the existence of maximal and minimal solutions
of the problem (1.1)–(1.2) under suitable monotonicity conditions on the multi-
functions involved in it. We equip the space X = C(Ja × Jb,R) with the order
relation ≤ defined by the cone K in X, that is,

K = {u ∈ X : u(x, y) ≥ 0,∀(x, y) ∈ Ja × Jb}.
It is known that the coneK is normal inX. The details of cones and their properties
may be found in Heikkila and Lakshmikantham [17]. Let a, b ∈ X be such that
a ≤ b. Then, by an order interval [a, b] we mean a set of points in X given by

[a, b] = {u ∈ X : a ≤ u ≤ b}.
Let D,Q ∈ Pcl(X). Then by D ≤ Q we mean a ≤ b for all a ∈ D and b ∈ Q. Thus
a ≤ D implies that a ≤ b for all b ∈ Q in particular, if D ≤ D, then, it follows that
D is a singleton set.

Definition 4.1. Let X be an ordered Banach space. A mapping T : X → Pcl(X)
is called isotone increasing if x, y ∈ X with x < y, then we have that T (x) ≤ T (y).
Similarly, T is called isotone decreasing if T (x) ≥ T (y) whenever x < y.

We use the following fixed point theorem in the proof of the main existence result
of this section.

Theorem 4.2 (Dhage[16]). Let [a, b] be an order interval in a Banach space and
let A,B : [a, b] → Pcl(X) be two multivalued operators satisfying

(a) A is multivalued contraction,
(b) B is completely continuous,
(c) A and B are isotone increasing, and
(d) A(x) +B(x) ⊂ [a, b], ∀x ∈ [a, b].

Further if the cone K in X is normal, then the operator inclusion x ∈ A(x)+B(x)
has a least fixed point x∗ and a greatest fixed point x∗ ∈ [a, b]. Moreover x∗ =
limn xn and x∗ = limn yn, where {xn} and {yn} are the sequences in [a, b] defined
by

xn+1 ∈ A(xn) +B(xn), x0 = a and yn+1 ∈ A(yn) +B(yn), y0 = b.

Now, we introduce the concept of lower and upper solutions of (1.1)-(1.2). It
will be the basic tool in the approach that follows.

Definition 4.3. A function u(·, ·) ∈ C(Ja × Jb,R) is said to be a lower so-
lution of (1.1)-(1.2) if there exist v1, v2 ∈ L1(Ja × Jb,R) such that v1(t, s) ∈
F (t, s, u(t, s)), v2(t, s) ∈ G(t, s, u(t, s)) a.e. on Ja × Jb, and

u(x, y) ≤ f(x) + g(y)− f(0) +
∫ x

0

∫ y

0

(v1(t, s) + v2(t, s))dsdt

for each (x, y) ∈ Ja × Jb.
A function ū(·, ·) ∈ C(Ja × Jb,R) is said to be an upper solution of (1.1)-(1.2)

if there exist v1, v2 ∈ L1(Ja × Jb,R) such that v1(t, s) ∈ F (t, s, u(t, s)), v2(t, s) ∈
G(t, s, u(t, s)) a.e. on Ja × Jb, and

ū(x, y) ≥ f(x) + g(y)− f(0) +
∫ x

0

∫ y

0

(v1(t, s) + v2(t, s))dsdt

for each (x, y) ∈ Ja × Jb.
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Definition 4.4. A solution uM of the problem (1.1)-(1.2) is said to be maximal if
for any other solution u to the problem (1.1)-(1.2) one has u(x, y) ≤ uM (x, y) for
all (x, y) ∈ Ja × Jb. Again a solution um of the problem (1.1)-(1.2) is said to be
minimal if um(x, y) ≤ u(x, y) for all (x, y) ∈ Ja × Jb, where u is any solution of the
problem (1.1)-(1.2) on Ja × Jb.

Definition 4.5. A multivalued function F (x, y, z) is called strictly monotone in-
creasing in z almost everywhere for (x, y) ∈ Ja × Jb if F (x, y, z) ≤ F (x, y, z̄) a.e.
(x, y) ∈ Ja × Jb for all z, z̄ ∈ R with z < z̄. Similarly F (x, y, z) is called strictly
monotone decreasing in z almost every where for (x, y) ∈ Ja × Jb if F (x, y, z) ≥
F (x, y, z̄) a.e. (x, y) ∈ Ja × Jb for all z, z̄ ∈ R with z < z̄.

We consider the following assumptions in the sequel.

(H7) The multivalued maps F (x, y, z) and G(x, y, z) are strictly monotone in-
creasing in z for almost each (x, y) ∈ Ja × Jb.

(H8) The problem (1.1)–(1.3) has a lower solution u and an upper solution ū
with u ≤ ū.

Theorem 4.6. Assume that the hypotheses (H1)-(H5), (H7)-(H8) hold. Then the
problem (1.1)–(1.2) has minimal and maximal solutions on Ja × Jb.

Proof. It can be shown, as in the proof of Theorem 3.2, that A and B define the
multi-valued operators A : [u, ū] → Pcl,cv,bd(X) and B : [u, ū] → Pcp,cv(X). It
can be similarly shown that A and B are respectively multi-valued contraction and
compact and upper semi-continuous on [u, ū]. We shall show that A and B are
isotone increasing on [u, ū]. Let u, v ∈ [u, ū] be such that u ≤ v, u 6= v. Then by
(H7), we have for each (x, y) ∈ Ja × Jb

A(u) = {h ∈ X : h(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0

v1(t, s)dsdt, v1 ∈ SF,u}

≤ {h ∈ X : h(x, y) = f(x) + g(y)− f(0) +
∫ x

0

∫ y

0

v1(t, s)dsdt, v1 ∈ SF,v}

= A(v).

Hence A(u) ≤ A(v). Similarly by (H7), we have for each (x, y) ∈ Ja × Jb

B(u) = {h ∈ X : h(x, y) =
∫ x

0

∫ y

0

v2(t, s)dsdt, v2 ∈ SG,u}

≤ {h ∈ X : h(x, y) =
∫ x

0

∫ y

0

v2(t, s)dsdt, v2 ∈ SG,v}

= B(v).

Hence B(u) ≤ B(v). Thus, A and B are isotone increasing on [u, ū].
Finally, let u ∈ [u, ū] be any element. Then by (H8),

u ≤ A(u) +B(u) ≤ A(u) +B(u) ≤ A(ū) +B(ū) ≤ ū,

which shows that A(u) + B(u) ∈ [u, ū] for all u ∈ [u, ū]. Thus, the multivalued
operators A and B satisfy all the conditions of Theorem 4.2 to yield that the
problem (1.1)–(1.2) has maximal and minimal solutions on Ja×Jb. This completes
the proof. �
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5. Nonlocal Hyperbolic problem

In this section, we indicate some generalizations of the problem (1.1)-(1.2). By
using the same methods as in Theorems 3.2 and 4.2 (with obvious modifications), we
can prove existence results for the problem (1.3)-(1.5) under the following additional
assumptions:

(H9) There exist two nonnegative constants d1 and d2 such that

|Q(u)−Q(u)| ≤ d1‖u− u‖∞ for all u, u ∈ C(Ja × Jb,R),

|K(u)−K(u)| ≤ d2‖u− u‖∞ for all u, u ∈ C(Ja × Jb,R).

(H10) There exists a real number r > 0 such that

r >
‖f‖∞ + ‖g‖∞ + |Q(0)|+ |K(0)|+ |f(0)|+ ‖l‖L1 + ψ(r)‖q‖L1

1− d1 − d2 − ‖l‖L1
.

(H11) The functions Q,K : C(Ja× Jb,R) → R are continuous and nonincreasing.
(H12) The problem (1.3)–(1.5) has a lower solution u and an upper solution ū

with u ≤ ū.

Theorem 5.1. Assume that hypotheses (H1)-(H5), (H9)-(H10) hold. If

‖l‖L1 + d1 + d2 < 1,

then the perturbed nonlocal problem (1.3)-(1.5) has at least one solution on Ja×Jb.

Proof. Consider the operator N̄ defined by

N̄(u) = {h ∈ X : h(x, y) = f(x) + g(y)−Q(u)−K(u)− f(0)

+
∫ x

0

∫ y

0

(v1(t, s) + v2(t, s))dsdt, v1 ∈ SF,u, v2 ∈ SG,u}.

We can show as in Theorem 3.2 that N̄ satisfies the conditions of Theorem 2.3.
The details of the proof are left to the reader. �

Theorem 5.2. Assume that hypotheses (H1)-(H5), (H7), (H11)-(H12) hold. Then
the perturbed nonlocal problem (1.3)-(1.5) has minimal and maximal solutions on
Ja × Jb.

The proof of the above theorem is left to the reader.
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inclusion with Carathéodory right hand side, Discuss. Math. Differ. Incl. 10 (1990), 69-75.

[11] M. Dawidowski and I. Kubiaczyk, An existence theorem for the generalized hyperbolic equa-

tion z′′
xy ∈ F (x, y, z) in Banach space, Ann. Soc. Math. Pol. Ser. I, Comment. Math., 30 (1)

(1990), 41-49.

[12] M. Dawidowski and I. Kubiaczyk, On bounded solutions of hyperbolic differential inclusion

in Banach spaces, Demonstr. Math. 25 (1-2) (1992), 153-159. 69-75.
[13] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.

[14] F. De Blasi and J. Myjak, On the structure of the set of solutions of the Darboux problem

for hyperbolic equations, Proc. Edinburgh Math. Soc. 29 (1986), 7-14.
[15] B. C. Dhage, Multivalued mappings and fixed points II, Nonlinear Functional Analysis &

Appl. (to appear).

[16] B. C. Dhage, A fixed point theorem for multivalued mappings on ordered Banach spaces with
applications, PanAmerican Math. J. 15 (2005), 15-34.

[17] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discon-
tinuous Differential Equations, Marcel Dekker Inc., New York, 1994.

[18] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, I, Theory, Kluwer Academic

Publishers, Dordrecht, 1997.
[19] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Academic Publishers,

Dordrecht, The Netherlands, 1991.

[20] V. Lakshmikantham and S. G. Pandit, The Method of upper, lower solutions and hyperbolic
partial differential equations, J. Math. Anal. Appl., 105 (1985), 466-477.

[21] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of

ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13
(1965), 781-786.

[22] S. G. Pandit, Monotone methods for systems of nonlinear hyperbolic problems in two inde-

pendent variables, Nonlinear Anal., 30 (1997), 235-272.
[23] N. S. Papageorgiou, Existence of solutions for hyperbolic differential inclusions in Banach

spaces, Arch. Math. (Brno) 28 (1992), 205-213.

Abdelkader Belarbi
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