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IMPULSIVE NEUTRAL FUNCTIONAL DIFFERENTIAL
INCLUSIONS WITH VARIABLE TIMES

MOUFFAK BENCHOHRA & ABDELGHANI OUAHAB

Abstract. In this paper, we study the existence of solutions for first and

second order impulsive neutral functional differential inclusions with variable

times. Our main tool is a fixed point theorem due to Martelli for condensing
multivalued maps.

1. Introduction

This paper concerns the existence of solutions for initial-value problems for first
and second order neutral functional differential inclusions with impulsive effects at
variable times. In Section 3, we consider the first order initial-value problem (IVP
for short)

d

dt
[y(t)− g(t, yt)] ∈ F (t, yt), a. e. t ∈ J = [0, T ], t 6= τk(y(t)), k = 1, . . . ,m,

(1.1)

y(t+) = Ik(y(t)), t = τk(y(t)), k = 1, . . . ,m, (1.2)

y(t) = φ(t), t ∈ [−r, 0], (1.3)

where F : J×D → 2Rn

is a compact convex valued multivalued map, g : J×D → Rn
is given function, D = {ψ : [−r, 0] → Rn;ψ is continuous everywhere except for a
finite number of points t̄ at which ψ(t̄) and ψ(t̄+) exist and ψ(t̄−) = ψ(t̄)}, φ ∈ D,
0 < r < ∞, τk : Rn → R, Ik : Rn → Rn, k = 1, 2, . . . ,m are given functions
satisfying some assumptions that will be specified later.

For any function y defined on [−r, T ] and any t ∈ J we denote by yt the element
of D defined by

yt(θ) = y(t+ θ), θ ∈ [−r, 0].
Here yt(·) represents the history of the state from time t−r, up to the present time
t. In Section 4, we consider the second order IVP
d

dt
[y′(t)− g(t, yt)] ∈ F (t, yt), a. e. t ∈ J = [0, T ], t 6= τk(y(t)), k = 1, . . . ,m,

(1.4)

y(t+) = Ik(y(t)), t = τk(y(t)), k = 1, . . . ,m, (1.5)
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y′(t+) = Ik(y(t)), t = τk(y(t)), k = 1, . . . ,m, (1.6)

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η, (1.7)

where g, F, Ik, and φ are as in the problem (1.1)–(1.3), Ik ∈ C(Rn,Rn) and η ∈ Rn.
The theory of impulsive differential equations have become important in some

mathematical models of real processes and phenomena studied in physics, chemical
technology, population dynamics, biotechnology and economics. There has been a
significant development in impulse theory in recent years, especially in the area of
impulsive differential equations and inclusions with fixed moments; see the mono-
graphs of Bainov and Simeonov [3], Lakshmikantham et al [18], and Samoilenko
and Perestyuk [24], the papers of Benchohra et al [4]-[7] and the references therein.
The theory of impulsive differential equations with variable time is relatively less
developed due to the difficulties created by the state-dependent impulses. Recently,
some interesting extensions to impulsive differential equations with variable times
have been done by Bajo and Liz [2], Frigon and O’Regan [10, 11, 12], Kaul et al
[15], Kaul and Liu [16], [17], Lakshmikantham et al [19], [20], Liu and Ballinger [22]
and the references cited therein.

The main theorems of this paper extend the problem (1.1)-(1.3) considered by
Benchohra et al [4, 5, 6] when the impulse times are constant. Our approach is
based on the Martelli fixed point theorem [23].

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper. Let (a, b) be an open
interval. ACi((a, b),Rn) is the space of i-times differentiable functions y : (a, b) →
Rn, whose ith derivative, y(i), is absolutely continuous.

Let (X, ‖ · ‖) be a Banach space. A multi-valued map G : X → 2X has convex
(closed) values if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded
sets if G(B) is bounded in X for each bounded set B of X, i.e. supx∈B{sup{‖y‖ :
y ∈ G(x)}} < ∞. G is called upper semi-continuous (u.s.c.) on X if for each
x0 ∈ X the set G(x0) is a nonempty, closed subset of X, and if for each open
set N of X containing G(x0), there exists an open neighborhood M of x0 such
that G(M) ⊆ N . G is said to be completely continuous if G(B) is relatively
compact for every bounded subset B ⊆ X. If the multi-valued G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has
a closed graph (i.e. xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). An
upper semicontinuous map G : X → 2X is said to be condensing if for any subset
B ⊆ X with α(B) 6= 0, we have α(G(B)) < α(B), where α denotes the Kuratowski
measure of noncompacteness. For properties of the Kuratowski measure, we refer
to the book of Banas and Goebel [1]. We remark that a completely semicontinuous
multivalued map is the easiest example of a condensing map. G has a fixed point
if there is x ∈ X such that x ∈ G(x). In the following, CC(Rn) denotes the set of
all nonempty compact, convex subsets of Rn.

Definition 2.1. A multi-valued map F : J×D → 2Rn

is said to be L1-Carathéodory
if

(i) t 7→ F (t, u) is measurable for each y ∈ D;
(ii) u 7→ F (t, u) is upper semi-continuous for almost all t ∈ J ;
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(iii) For each q > 0, there exists φq ∈ L1(J,R+) such that

‖F (t, u)‖ = sup{|v| : v ∈ F (t, y)} ≤ φq(t)

for all ‖u‖D ≤ q and for almost all t ∈ J .

For more details on multi-valued maps we refer the reader to the books of Deim-
ling [8], Gorniewicz [13], Hu and Papageorgiou [14] and Tolstonogov [25].

For a function y defined on [−r, T ] we define the set

SF,y = {v ∈ L1(J,Rn) : v(t) ∈ F (t, yt) for a.e. t ∈ J},
which is known as the set of selection functions.

The following lemmas are crucial in the proof of our main theorem.

Lemma 2.2 ([21]). Let I be a compact real interval and X be a Banach space. Let
F be a multi-valued map satisfying the Carathéodory conditions with the set of L1-
selections SF nonempty, and let Γ be a linear continuous mapping from L1(I,X)
to C(I,X). Then the operator

Γ ◦ SF : C(I,X) → CC(C(I,X)), y 7→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(I,X)× C(I,X).

Lemma 2.3 ([23]). Let N : X → CC(X) be an upper semicontinuous and con-
densing map. If the set

M := {y ∈ X : y ∈ λN(y) for some 0 < λ < 1}
is bounded, then N has a fixed point.

To define the solutions of problems (1.1)-(1.3) and (1.4)-(1.7), we shall consider
the space

PC =
{
y : [0, T ] → Rn : there exist 0 = t0 < t1 < . . . < tm < tm+1 = T

such that tk = τk(y(tk)), y(t−k ) and y(t+k ) exist with y(t−k ) = y(tk),

k = 1, . . . ,m, and y ∈ C([tk, tk+1],Rn) k = 0, . . . ,m
}
.

Set Ω := {y : [−r, T ] → Rn : y ∈ D ∩ PC}. In what follows, we will assume that F
is an L1-Carathéodory function.

3. First Order Impulsive NFDIs

Let us start by defining what we mean by a solution of problem (1.1)–(1.3).

Definition 3.1. A function y ∈ Ω∩∪mk=0AC((tk, tk+1),Rn) is said to be a solution
of (1.1)–(1.3) if there exists v(t) ∈ F (t, yt) a.e. t ∈ [0, T ] such that d

dt [y(t) −
g(t, yt)] = v(t) a.e. on J, t 6= τk(y(t)), k = 1, . . . ,m, y(t+) = Ik(y(t)), t = τk(y(t)),
k = 1, . . . ,m, y(t) = φ(t), t ∈ [−r, 0].

We are now in a position to state and prove our existence result for the problem
(1.1)-(1.3). For the study of this problem we first list the following hypotheses:

(H1) The functions τk ∈ C1(Rn,R) for k = 1, . . . ,m. Moreover,

0 < τ1(x) < . . . < τm(x) < τm+1(x) = T for all x ∈ Rn.

(H2) There exist constants ck, such that |Ik(x)| ≤ ck, k = 1, . . . ,m for each
x ∈ Rn.
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(H3) The function g is completely continuous and there exist constants 0 ≤ d1 <
1, d2 ≥ 0 such that

|g(t, u)| ≤ d1‖u‖+ d2, t ∈ [0, T ], u ∈ D .

(H4) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞), and
p ∈ L1([0, T ],R+) such that

‖F (t, u)‖ ≤ p(t)ψ(‖u‖) a.e. t ∈ [0, b], and each u ∈ D
with

∫∞
1

dγ
ψ(γ) = ∞

(H5) For all (t, x) ∈ [0, T ] × Rn and for all yt ∈ D we have 〈τ ′k(x), v(t)〉 6= 1 for
k = 1, . . . ,m, for all v ∈ SF,y, where 〈·, ·〉 denotes the scalar product in Rn.

(H6) g is a nonnegative function.
(H7) τk is a non-increasing function and Ik(x) ≤ x for all x ∈ Rn, k = 1, . . . ,m.
(H8) For all x ∈ Rn, τk(x) < τk+1(Ik(x)) for k = 1, . . . ,m.

Theorem 3.2. Assume that hypotheses (H1)-(H8) hold. Then the initial-value
problem (1.1)–(1.3) has at least one solution on [−r, T ].

The proof of this theorem will be given in several steps.
Step 1: Consider the problem

d

dt
[y(t)− g(t, yt)] ∈ F (t, yt), a.e. t ∈ [0, T ], (3.1)

y(t) = φ(t), t ∈ [−r, 0]. (3.2)

Transform the problem into a fixed point problem. Consider the operator N :
C([−r, T ],Rn) → 2C([−r,T ],Rn) defined as N (y) = {h ∈ C([−r, T ],Rn)} where for
v ∈ SF,y,

h(t) =

{
φ(t), if t ∈ [−r, 0)
φ(0)− g(0, φ(0)) + g(t, yt) +

∫ t
0
v(s)ds, if t ∈ [0, T ].

Remark 3.3. We can easily show that the fixed points of N are solutions to
(3.1)–(3.2).

We shall show that the operator N is completely continuous. Using (H3) it
suffices to show that the operator N1 : C([−r, T ],Rn) → C([−r, T ],Rn) defined as
N1(y) = {h ∈ C([−r, T ],Rn)}, where

h(t) =

{
φ(t), if t ∈ [−r, 0);
φ(0) +

∫ t
0
v(s)ds, if t ∈ [0, T ],

is completely continuous. The proof will be given in several Claims.
Claim 1: N1(y) is convex for each y ∈ C([−r, T ],Rn). Indeed, if v1, v2 belong to
N1(y), then there exist v1, v2 ∈ SF,y such that for each t ∈ J , we have

hi(t) = φ(0) +
∫ t

0

vi(s)ds, i = 1, 2.

Let 0 ≤ d ≤ 1. Then for each t ∈ J we have

(dh1 + (1− d)h2(t) = φ(0) +
∫ t

0

[dv1(s) + (1− d)v2(s)]ds

Since SF,y is convex (because F has convex values) then

dh1 + (1− d)h2 ∈ N1(y).
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Claim 2: N1 maps bounded sets into bounded sets in C([−r, T ],Rn). Indeed, it is
sufficient to show that for any q > 0 there exists a positive constant ` such that for
each y ∈ Bq = {y ∈ C([−r, T ],Rn) : ‖y‖∞ ≤ q} we have ‖N1(y)‖ ≤ `. Let y ∈ Bq
and h ∈ N1(y) then there exists v ∈ SF,y such that for each t ∈ J we have

h(t) = φ(0) +
∫ t

0

v(s)ds.

Thus,

|h(t)| ≤ |φ(0)|+
∫ t

0

|v(s)|ds ≤ ‖φ‖∞ + ‖hq‖L1 := `.

Claim 3: N1 maps bounded sets into equicontinuous sets of C([−r, T ],Rn). Let
u1, u2 ∈ J , u1 < u2 and Bq be a bounded set of C(J,RN ) as in Claim 2. Let y ∈ Bq
and h ∈ N1(y). Then there exists v ∈ SF,y such that for each t ∈ J , we have

h(t) = φ(0) +
∫ t

0

v(s)ds

Then

|N1(y(u2))−N1(y(u1))| ≤
∫ u2

u1

hq(s)ds.

As u2 → u1 the right-hand side of the above inequality tends to zero.
As a consequence of Claims 2 and 3 and the Arzela-Ascoli theorem we can

conclude that N : C(J,RN ) → 2C(J,RN ) is a completely continuous multi-valued
operator, and therefore, a condensing map.
Claim 4: N1 has a closed graph. Let yn → y∗, hn ∈ N1(yn), and hn → h∗. We
shall prove that h∗ ∈ N(y∗). hn ∈ N1(yn) means that there exists vn ∈ SF,yn

such
that for each t ∈ J ,

hn(t) = φ(0) +
∫ t

0

vn(s)ds.

We must prove that there exists h∗ ∈ SF,y∗ such that for each t ∈ J ,

h∗(t) = φ(0) +
∫ t

0

v∗(s)ds.

Clearly, ∥∥(
hn − φ(0)

)
−

(
h∗ − φ(0)

)∥∥
∞ → 0, as n→∞.

Consider the linear continuous operator Γ : L1(J,Rn) → C(J,Rn),

v 7→ (Γv)(t) =
∫ t

0

v(s)ds.

¿From Lemma 2.2, it follows that Γ ◦SF is a closed graph operator. Since
(
hn(t)−

φ(0)
)
∈ Γ(SF,yn), it follows from Lemma 2.2 that for some v∗ ∈ SF,v∗ ,

h∗(t) = φ(0) +
∫ t

0

v∗(s)ds .

Claim 5: The following set is bounded,

E(N ) := {y ∈ C([−r, T ],Rn) : y ∈ λN (y), for some 0 < λ < 1} .
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Let y ∈ E(N ). Then there exists v ∈ SF,y such that y ∈ λN (y), for some 0 < λ < 1.
Thus, for each t ∈ [0, T ],

y(t) = λ
(
φ(0)− g(0, φ) + g(t, yt) +

∫ t

0

v(s) ds
)
.

This implies, by (H2)–(H4), that for each t ∈ J we have

|y(t)| ≤ ‖φ‖+ d1‖φ‖+ d1‖yt‖+ 2d2 +
∫ t

0

p(s)ψ(‖ys‖)ds.

We consider the function

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ T.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by the previous inequality we
have for t ∈ J

µ(t) ≤ ‖φ‖+ d1‖φ‖+ d1µ(t) + 2d2 +
∫ t

0

p(s)ψ(µ(s))ds.

Thus

µ(t) ≤ 1
1− d1

[
‖φ‖+ d1‖φ‖+ 2d2 +

∫ t

0

p(s)ψ(µ(s))ds
]
, t ∈ J.

If t∗ ∈ [−r, 0] then µ(t) = ‖φ‖ and the previous inequality holds.
Let us take the right-hand side of the above inequality to be v(t). Then

c = v(0) =
1

1− d1
(‖φ‖+ d1‖φ‖+ 2d2),

µ(t) ≤ v(t), t ∈ J,

v′(t) =
1

1− d1
p(t)ψ(µ(t)), t ∈ J.

Using the nondecreasing character of ψ, we obtain

v′(t) ≤ 1
1− d1

p(t)ψ(v(t)).

This implies that for each t ∈ J ,∫ v(t)

v(0)

dγ

ψ(γ)
≤ 1

1− d1

∫ T

0

p(s)ds <
∫ ∞

v(0)

dγ

ψ(γ)
.

This inequality implies that there exists a constant K such that v(t) ≤ K, t ∈ J ,
and hence µ(t) ≤ K, t ∈ J . Since for every t ∈ [0, T ], ‖yt‖ ≤ µ(t), we have

‖y‖∞ ≤ K ′ = max{‖φ‖,K},
where K ′ depends only T, d1, d2, and on the functions p, φ and ψ. This shows that
E(N ) is bounded.

Set X := C([−r, T ],Rn). As a consequence of Lemma 2.3 we deduce that N has
a fixed point which is a solution of (3.1)–(3.2). Denote this solution by y1. Define
the function

rk,1(t) = τk(y1(t))− t for t ≥ 0.
Hypothesis (H1) implies that rk,1(0) 6= 0 for k = 1, . . . ,m. If rk,1(t) 6= 0 on [0, T ]
for k = 1, . . . ,m; i.e.,

t 6= τk(y1(t)) on [0, T ] for k = 1, . . . ,m,
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then y1 is a solution of the problem (1.1)-(1.3).
It remains to consider the case when r1,1(t) = 0 for some t ∈ [0, T ]. Now since

r1,1(0) 6= 0 and r1,1 is continuous, there exists t1 > 0 such that

r1,1(t1) = 0, and r1,1(t) 6= 0 for all t ∈ [0, t1).

Thus by (H1) we have rk,1(t) 6= 0 for all t ∈ [0, t1), and k = 1, . . . ,m.
Step 2: Consider now the problem

d

dt
[y(t)− g(t, yt)] ∈ F (t, yt), a.e. t ∈ [t1, T ], (3.3)

y(t+1 ) = I1(y1(t1)). (3.4)

Transform this problem into a fixed point problem. Consider the operator N2 :
C([t1, T ],Rn) → 2C([t1,T ],Rn) defined as

N2(y) =
{
h ∈ C([t1, T ],Rn) : h(t) = I1(y1(t1))− g(t1, yt1) + g(t, yt) +

∫ t

t1

v(s)ds
}
,

where v ∈ SF,y. As in Step 1 we can show that N2 is completely continuous, and
that the following set is bounded,

E(N2) := {y ∈ C([t1, T ],Rn) : y ∈ λN2(y), for some 0 < λ < 1} .
Set X := C([t1, T ],Rn). As a consequence of Martelli’s theorem, we deduce that N2

has a fixed point y which is a solution to problem (3.3)–(3.4). Denote this solution
by y2. Define

rk,2(t) = τk(y2(t))− t for t ≥ t1.

If rk,2(t) 6= 0 on (t1, T ] for all k = 1, . . . ,m, then

y(t) =

{
y1(t), if t ∈ [0, t1],
y2(t), if t ∈ (t1, T ],

is a solution of the problem (1.1)–(1.3). It remains to consider the case when
r2,2(t) = 0, for some t ∈ (t1, T ]. By (H8), we have

r2,2(t+1 ) = τ2(y2(t+1 ))− t1

= τ2(I1(y1(t1)))− t1

> τ1(y1(t1))− t1

= r1,1(t1) = 0.

Since r2,2 is continuous, there exists t2 > t1 such that r2,2(t2) = 0 and r2,2(t) 6= 0
for all t ∈ (t1, t2). It is clear by (H1) that

rk,2(t) 6= 0 for all t ∈ (t1, t2), k = 2, . . . ,m.

Suppose now that there is s̄ ∈ (t1, t2] such that r1,2(s̄) = 0. Consider the function
L1(t) = τ1(y2(t)− g(t, yt))− t. ¿From (H6)-(H8) it follows that

L1(s̄) = τ1(y2(s̄)− g(s̄, ys̄))− s̄

≥ τ1(y2(s̄))− s̄

= r1,2(s̄) = 0.

Thus the function L1 attains a nonnegative maximum at some point s1 ∈ (t1, T ].
Since

d

dt
[y2(t)− g(t, y2t)] ∈ F (t, y2t), a.e. t ∈ (t1, T ),
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then there exists v(·) ∈ L1((t1, T )) with v(t) ∈ F (t, y2t), a.e. t ∈ (t1, T ) such that

d

dt
[y2(t)− g(t, y2t)] = v(t),

then

L′1(s1) = τ ′1(y2(s1)− g(s1, y2s1))
d

dt
[y2(s1)− g(s1, ys1)]− 1 = 0.

Therefore,
〈τ ′1(y2(s1)− g(s1, y2s1)), v(s1)〉 = 1,

which is a contradiction by (H4).
Step 3: We continue this process and take into account that ym := y

∣∣∣
[tm,T ]

is a

solution to the problem

d

dt
[y(t)− g(t, yt)] ∈ F (t, yt), a.e. t ∈ (tm, T ), (3.5)

y(t+m) = Im(ym−1(tm)). (3.6)

The solution y of the problem (1.1)-(1.3) is then defined by

y(t) =


y1(t), if t ∈ [−r, t1],
y2(t), if t ∈ (t1, t2],
. . .

ym(t), if t ∈ (tm, T ].

4. Second Order Impulsive NFDIs

In this section, we study the initial-value problem (1.4)–(1.7).

Definition 4.1. A function y ∈ Ω∩∪mk=0AC((tk, tk+1),Rn) is said to be a solution
of (1.4)–(1.7) if there exists v(t) ∈ F (t, yt) a.e. t ∈ [0, T ] such that d

dt [y
′(t) −

g(t, yt)] = v(t) a.e. on J, t 6= τk(y(t)), k = 1, . . . ,m, y(t+) = Ik(y(t)), t = τk(y(t)),
k = 1, . . . ,m, y′(t+) = Ik(y(t)), t = τk(y(t)) k = 1, . . . ,m, y(t) = φ(t), t ∈ [−r, 0]
and y′(0) = η.

For the next theorem we need the following assumptions:
(A1) There exist positive constants dk such that |Ik(x)| ≤ dk, k = 1, . . . ,m for

each x ∈ Rn
(A2) There exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and

p ∈ L1([0, T ],R+) such that ‖F (t, u)‖ ≤ p(t)ψ(‖u‖) a.e. t ∈ [0, T ] and each
u ∈ D with ∫ ∞

1

dγ

γ + ψ(γ)
= ∞,

(A3) For all (t, s̄, x) ∈ [0, T ]× [0, T ]×Rn and all yt ∈ D we have, for all v ∈ SF,y,

〈τ ′k(x), Ik(y(s̄))− g(s̄, ys̄) + g(t, yt) +
∫ t

s̄

v(s)ds〉 6= 1 for k = 1, . . . ,m .

(A4) For all x ∈ Rn, τk(Ik(x)) ≤ τk(x) < τk+1(Ik(x)) for k = 1, . . . ,m.

Theorem 4.2. Assume that (H1)-(H3) and (A1)-(A4) are satisfied. Then the IVP
(1.4)–(1.7) has at least one solution.
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The proof of this theorem will be given in several steps.
Step 1: Consider the problem

d

dt
[y′(t)− g(t, yt)] ∈ F (t, yt), a.e. t ∈ [0, T ], (4.1)

y(t) = φ(t), t ∈ [−r, 0], y′(0) = η . (4.2)

Transform the problem into a fixed point problem. Consider the operator N1 :
C([−r, T ],Rn) → 2C([−r,T ],Rn) defined as N1(y) = {h ∈ C([−r, T ],Rn)} where

h(t) =

{
φ(t), if t ∈ [−r, 0];
φ(0) + [η − g(0, φ(0))]t+

∫ t
0
g(s, ys)ds+

∫ t
0
(t− s)v(s)ds if t ∈ [0, T ].

As in Theorem 3.2, we can show that N1 is completely continuous. Now we prove
only that the following set is bounded,

E(N1) := {y ∈ C([−r, T ],Rn) : y ∈ λN1(y), for some 0 < λ < 1} .

Let y ∈ E(N1). Then there exists v ∈ SF,y such that y ∈ λN1(y) for some
0 < λ < 1. Thus for each t ∈ [0, T ] we have

y(t) = λφ(0) + λ[η − g(0, φ(0))]t+ λ

∫ t

0

g(s, ys)ds+ λ

∫ t

0

(t− s)v(s)ds.

This implies, by (H2), (H3), (A1), and (A2), that for each t ∈ [0, T ] we have

|y(t)| ≤ ‖φ‖+ T (|η|+ ‖φ‖d1 + d2) +
∫ t

0

d1‖ys‖ds+ Td2 +
∫ t

0

(T − s)p(s)ψ(‖ys‖)ds

≤ ‖φ‖+ T (|η|+ ‖φ‖d1 + 2d2) +
∫ t

0

M(s)‖ys‖ds+
∫ t

0

M(s)ψ(‖ys‖)ds,

where M(t) = max{d1, (T − t)p(t)}. Consider the function

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ T.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by the previous inequality,
for t ∈ [0, T ], we have

µ(t) ≤ ‖φ‖+ T (|η|+ ‖φ‖d1 + 2d2) +
∫ t

0

M(s)µ(s)ds+
∫ t

0

M(s)ψ(µ(s))ds.

Let us denote the right-hand side of the above inequality to be v(t). Then

v(0) = ‖φ‖+ T (|η|+ ‖φ‖d1 + 2d2),

v′(t) = M(t)µ(t) +M(t)ψ(µ(t)), t ∈ [0, T ].

Using the nondecreasing character of ψ we obtain, for a.e. t ∈ [0, T ],

v′(t) ≤M(t)v(t) +M(t)ψ(v(t)) = M(t)[v(t) + ψ(v(t))].

This implies that, for each t ∈ [0, T ],∫ v(t)

v(0)

dγ

γ + ψ(γ)
≤

∫ T

0

M(s)ds <
∫ ∞

v(0)

dγ

γ + ψ(γ)
.

This inequality implies that there exists a constant b∗ such that v(t) ≤ b∗, t ∈ [0, T ],
and hence µ(t) ≤ b∗, t ∈ [0, T ]. Since for every t ∈ [0, T ], ‖yt‖ ≤ µ(t), we have

‖y‖∞ ≤ max{‖φ‖, b∗},
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where b∗ depends only T and on the functions p and ψ. This shows that E(N1) is
bounded.

Set X := C([−r, T ],Rn). As a consequence of Martelli’s theorem, we deduce
that N1 has a fixed point y which is a solution to (4.1)–(4.2). Denote this solution
by y1. Define the function

rk,1(t) = τk(y1(t))− t for t ≥ 0.

Hypothesis (H1) implies that rk,1(0) 6= 0 for k = 1, . . . ,m. If rk,1(t) 6= 0 on [0, T ]
for k = 1, . . . ,m; i.e.,

t 6= τk(y1(t)) on [0, T ] and for k = 1, . . . ,m .

Then y1 is a solution of the problem (1.1)-(1.3).
It remains to consider the case when r1,1(t) = 0 for some t ∈ [0, T ]. Now since

r1,1(0) 6= 0 and r1,1 is continuous, there exists t1 > 0 such that

r1,1(t1) = 0, and r1,1(t) 6= 0 for all t ∈ [0, t1).

Thus, by (H1) we have rk,1(t) 6= 0 for all t ∈ [0, t1) and k = 1, . . . ,m.
Step 2: Consider now the problem

d

dt
[y′(t)− g(t, yt)] ∈ F (t, yt), a.e. t ∈ [t1, T ], (4.3)

y(t+1 ) = I1(y1(t1)), (4.4)

y′(t+1 ) = I1(y1(t1)). (4.5)

Transform the problem into a fixed point problem. Consider the operator N2 :
C([t1, T ],Rn) → 2C([t1,T ],Rn) defined as N2(y) = {h ∈ C([t1, T ],Rn)} where

h(t) = I1(y1(t1))+(t−t1)I1(y1(t1))−(t−t1)g(t1, yt1)+
∫ t

t1

g(s, ys)ds+
∫ t

t1

(t−s)v(s)ds,

with v ∈ SF,y. As in Step 1 we can show that N2 is completely continuous, and
that the following set is bounded,

E(N2) := {y ∈ C([t1, T ],Rn) : y ∈ λN2(y), for some 0 < λ < 1}.

Set X := C([t1, T ],Rn). As a consequence of Martelli’s theorem, we deduce that N2

has a fixed point y which is a solution to problem (4.3)–(4.5). Denote this solution
by y2. Define

rk,2(t) = τk(y2(t))− t for t ≥ t1.

If rk,2(t) 6= 0 on (t1, T ] for all k = 1, . . . ,m, then

y(t) =

{
y1(t), if t ∈ [0, t1],
y2(t), if t ∈ (t1, T ],

is a solution of the problem (1.4)–(1.7). It remains to consider the case when
r2,2(t) = 0, for some t ∈ (t1, T ]. By (A4) we have

r2,2(t+1 ) = τ2(y2(t+1 ))− t1

= τ2(I1(y1(t1))− t1

> τ1(y1(t1))− t1

= r1,1(t1) = 0.
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Since r2,2 is continuous, there exists t2 > t1 such that r2,2(t2) = 0, and r2,2(t) 6= 0
for all t ∈ (t1, t2). It is clear by (H1) that

rk,2(t) 6= 0 for all t ∈ (t1, t2), k = 2, . . . ,m.

Suppose now that there is s̄ ∈ (t1, t2] such that r1,2(s̄) = 0. From (A4), it follows
that

r1,2(t+1 ) = τ1(y2(t+1 ))− t1

= τ1(I1(y1(t1)))− t1

≤ τ1(y1(t1))− t1

= r1,1(t1) = 0.

Thus, the function r1,2 attains a nonnegative maximum at some point s1 ∈ (t1, T ].
Since

d

dt
[y′2(t)− g(t, y2t)] ∈ F (t, y2t), a.e. t ∈ (t1, T ),

there exist v(·) ∈ L1((t1, T )) with v(t) ∈ F (t, y2t), a.e. t ∈ (t1, T ) such that

y′2(t) = I1(y(t1))− g(t1, yt1) + g(t, yt) +
∫ t

t1

v(s)ds .

Then

r′1,2(s1) = τ ′1(y2(s1))
(
I1(y(t1))− g(t1, yt1) + g(s1, ys1) +

∫ s1

t1

v(s)ds
)
− 1 = 0.

Therefore,

〈τ ′1(y2(s1)), I1(y(t1))− g(t1, yt1) + g(s1, ys1) +
∫ s1

t1

v(s)ds〉 = 1,

which is a contradiction by (A3).
Step 3: We continue this process by taking into account that ym := y

∣∣
[tm,T ]

is a
solution to the problem

d

dt
[y′(t)− g(t, yt)] ∈ F (t, yt), a.e. t ∈ (tm, T ), (4.6)

y(t+m) = Im(ym−1(tm)), (4.7)

y′(t+m) = Im(ym−1(tm)). (4.8)

The solution y of the problem (1.4)-(1.7) is then defined by

y(t) =


y1(t), if t ∈ [−r, t1],
y2(t), if t ∈ (t1, t2],
. . .

ym(t), if t ∈ (tm, T ] .
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