AN EMBEDDING NORM AND THE LINDQVIST TRIGONOMETRIC FUNCTIONS

CHRISTER BENNEWITZ & YOSHIMI SAITO

Abstract. We shall calculate the operator norm \(\|T\|_p \) of the Hardy operator
\[Tf = \int_0^x f, \]
where \(1 \leq p \leq \infty \). This operator is related to the Sobolev embedding operator from \(W^{1,p}(0,1)/C \) into \(W^p(0,1)/C \). For \(1 < p < \infty \), the extremal, whose norm gives the operator norm \(\|T\|_p \), is expressed in terms of the function \(\sin_p \) which is a generalization of the usual sine function and was introduced by Lindqvist [6].

1. Introduction

Evans, Harris and Saitō [3] give the following result: Let \(W^{1,p}(0,1) \) be the complex first order Sobolev space given by
\[W^{1,p}(0,1) = \{ f \mid \int_0^1 (|f|^p + |f'|^p) < \infty \}, \]
where \(1 < p < \infty \). Then
\[\sup \frac{\|f\|_{p,s}}{\|f\|_p} = \frac{\|T\|_p}{2}, \tag{1.1} \]
where the supremum is over all non-zero functions in \(W^{1,p}(0,1) \), \(\|\cdot\|_p \) is the norm of \(L^p(0,1) \), \(\|\cdot\|_{p,s} \) is given by
\[\|f\|_{p,s} = \inf_{C \in C} \|f - C\|_p, \]
and \(\|T\|_p \) is the operator norm of the Hardy operator
\[T : L^p(0,1) \ni f \mapsto Tf(x) = \int_0^x f \in L^p(0,1). \]
The left-hand side of (1.1) is the norm of the embedding from the factor space \(W^{1,p}(0,1)/C \) into the factor space \(L^p(0,1)/C \). Since the Poincaré inequality holds on \((0,1) \), the norm \(\|f\|_p, f \in W^{1,p}(0,1) \), is one of the equivalent norms of the space \(W^{1,p}(0,1)/C \). For more details on the embedding operator we refer to Evans and Harris [4], [5], in addition to [3].

In this note we calculate the norm \(\|T\|_p = p^{1/q} q^{1/p} \sin(\pi/p)/\pi \), \(1 < p < \infty \), where \(1/p + 1/q = 1 \), and \(\|T\|_1 = \|T\|_\infty = 1 \). Our main arguments depend on classical and elementary calculus of variations. We will also calculate all extremals,
i.e., functions \(f \) for which \(\|Tf\|_p = \|f\|_p \). In particular, if \(1 < p < \infty \) these are expressed in terms of ‘\(\sin_p \)’ and ‘\(\cos_p \)’ functions which has been introduced in Lindqvist [6]. These are natural generalizations of the usual trigonometric functions when the Euclidean norm in \(\mathbb{R}^2 \) is replaced by a \(p \)-norm.

After finishing our work, we found two recent works, Edmunds and Lang [2] and Drabek and Manásevich [1], which, among others, produced quite a similar results in real \(L^p \) spaces on intervals using the results on the \(p \)-Laplacian.

In Section 2 we shall give a short account on \(\sin_p \) and \(\cos_p \) functions. In Section 3 we shall first deal with the cases that \(p = 1 \) and \(p = \infty \). Then we shall study the case that \(1 < p < \infty \). After showing that we have only to find the nonnegative extremals (Lemmas 3 and 4), we shall show that the extremal is expressed in terms of the \(\sin_p \) function and the norm \(\|T\|_p \) is computed using some properties of the \(\sin_p \) and \(\cos_p \) functions (Theorem 3.1). We shall discuss the operator

\[
T : L^p(0, 1) \ni f \mapsto Tf(x) = \int_0^x f \in L^p(0, 1).
\]

in Section 4.

2. \(\sin_p \), \(\cos_p \) AND \(\tan_p \) FUNCTIONS

Suppose \(1 < p < \infty \) and consider the function \(x \mapsto \int_0^x \frac{dt}{(1 - t^p)^{1/p}}, 0 \leq x \leq 1 \). This is strictly increasing, and for \(p = 2 \) we obtain \(\arcsin x \). By analogy we denote the inverse for general \(p \) by \(\sin_p x \). It is defined on the interval \([0, \pi_p/2]\) where \(\pi_p = 2 \int_0^1 \frac{dt}{(1 - t^p)^{1/p}} \), it is strictly increasing on this interval, \(\sin_p 0 = 0 \) and \(\sin_p(\pi_p/2) = 1 \).

We may extend the definition to the interval \([0, \pi_p]\) by setting \(\sin_p x = \sin_p(\pi_p - x) \) for \(\pi_p/2 \leq x \leq \pi_p \), and to \([-\pi_p, \pi_p]\) by extending it as an odd function. Finally, we may define it on all of \(\mathbb{R} \) by extending it as a periodic function of period \(2\pi_p \).

Next we define \(\cos_p x = \frac{d}{dx} \sin_p x \), which is an even, \(2\pi_p \)-periodic function, odd around \(\pi_p/2 \). In \([0, \pi_p/2]\), setting \(y = \sin_p x \), we have

\[
\cos_p x = \frac{dy}{dx} \sin_p x = (1 - y^p)^{1/p} = (1 - (\sin_p x)^p)^{1/p},
\]

so that \(\cos_p \) is strictly decreasing on this interval, \(\cos_p 0 = 1 \) and \(\cos_p(\pi_p/2) = 0 \).

Furthermore

\[
|\cos_p x|^p + |\sin_p x|^p = 1,
\]

first in \([0, \pi_p/2]\), but then by symmetry and periodicity in all of \(\mathbb{R} \). One may also introduce an analogue of the tangent function as \(\tan_p x = \sin_p x / \cos_p x \). We then obtain

\[
\frac{d}{dx} \cos_p x = -|\tan_p x|^p \sin_p x.
\]

We also get

\[
\frac{d}{dx} \tan_p x = 1/|\cos_p x|^p = 1 + |\tan_p x|^p,
\]

so that the inverse of the restriction of \(\tan_p x \) to the interval \((-\pi_p/2, \pi_p/2) \) has derivative \(1/(1 + |y|^p) \), \(y \in \mathbb{R} \). The constant \(\pi_p \) is easily calculated. In fact, by a change of variable \(t = s^{1/p} \) we obtain

\[
\pi_p = \frac{2}{p} \int_0^1 (1 - s)^{-1/p}s^{1/p-1} \, ds = \frac{2}{p} B(1 - 1/p, 1/p) = 2 \frac{\pi/p}{\sin(\pi/p)},
\]

(2.1)

where \(B \) is the classical beta function. If \(q \) is the conjugate exponent to \(p \), so that \(1/p + 1/q = 1 \), this means in particular that \(q \pi_p = p \pi_q \).

The cases \(p = 1 \) and \(p = \infty \) are somewhat degenerate, especially for \(p = 1 \). For \(p = \infty \) one gets \(\pi_\infty = 2 \), and \(\sin_p \) becomes a triangular wave, with \(\sin_p x = x \) on \([-1, 1]\), and \(\cos_p \) the corresponding square wave. For \(p = 1 \) one gets \(\pi_1 = \infty \), and \(\sin_p x \) is the odd extension of \(1 - e^{-x} \), \(x \geq 0 \), whereas \(\cos_p x = e^{-|x|} \).
3. An operator norm

Consider the linear operator \(Tf(x) = \int_{0}^{x} f \) on \(L^p(0,1) \), \(1 \leq p \leq \infty \). We shall determine the norm \(\|T\|_p \) and all extremals, i.e., all functions \(f \in L^p(0,1) \) for which \(\|Tf\|_p = \|T\|_p \|f\|_p \). In particular, we shall show that if \(q \) is the conjugate exponent to \(p \), then \(\|T\|_p = \|T\|_q \). This may be proved by duality if \(1 < p < \infty \), but will follow from our explicit calculations below.

Theorem 3.1. For \(1 < p < \infty \), \(\|T\|_p = 2p^{1/q}q^{1/p}/(p\pi_p) = p^{1/q}q^{1/p} \sin(\pi/p)/\pi \), where \(q \) is the dual exponent to \(p \). The corresponding extremals are all multiples of \(\cos_p(x/2) \), where \(\pi_p \) is given by (2.1). Furthermore, \(\|T\|_1 = \|T\|_\infty = 1 \), and the extremals for \(p = \infty \) are all constants, whereas no extremals exist in \(L^1(0,1) \) for the case \(p = 1 \). If one extends \(T \) to the space of finite Borel measures on \([0,1] \), however, the extremals are all multiples of the Dirac measure at 0.

In particular \(\|T\|_p = \|T\|_q \) since \(p\pi_p = q\pi_q \). The statement of the theorem indicates that it will be advantageous, for \(p = 1 \), to extend \(T \) to operate on finite Borel measures on \([0,1] \), normed by total variation, thus considering \(L^1(0,1) \) as the subset of absolutely continuous Borel measures on \([0,1] \). We will do this in the sequel without further comment. The proof of the theorem is almost immediate in the cases \(p = 1 \) and \(p = \infty \).

Lemma 3.2. For \(p = 1 \) extremals exist, they are precisely the non-zero multiples of the Dirac measure at 0, and \(\|T\|_1 = 1 \).

Proof. If \(\mu \) is a finite Borel measure on \([0,1] \) and we define \(T\mu(x) = \int_{[0,x]} d\mu \), we obtain
\[
\|T\mu\|_1 = \int_{0}^{1} \left| \int_{[0,x]} d\mu \right| dx \leq \int_{0}^{1} \int_{[0,x]} |d\mu| dx = \int_{[0,1]} (1-t)|d\mu(t)| \leq \int_{[0,1]} |d\mu| = \|\mu\|_1, \quad (3.1)
\]
where the middle equality follows from Fubini’s theorem. Thus \(\|T\|_1 \leq 1 \). However, we obtain equality throughout in (3.1) precisely if \(\int_{[0,1]} t|d\mu(t)| = 0 \), i.e., the support of \(\mu \) consists of the point 0. Thus, if \(\mu \) is a multiple of the Dirac measure at 0. \(\square \)

The proof in the case \(p = \infty \) is even simpler.

Lemma 3.3. For \(p = \infty \) extremals exist, they are precisely the functions which are a.e. constant, and \(\|T\|_\infty = 1 \).

Proof. If \(f \in L^\infty(0,1) \) we obtain
\[
\|Tf\|_\infty = \sup_{0 \leq x \leq 1} \left| \int_{0}^{x} f \right| \leq \int_{0}^{1} |f| \leq \|f\|_\infty,
\]
and we have equality throughout if and only if \(f \) is a.e. a multiple of \(\|f\|_\infty \) (see also the proof of Lemma 3.4). \(\square \)

The case when \(1 < p < \infty \) is less trivial, and the first step in the proof is to show that we may restrict ourselves to positive functions when looking for extremals.

Lemma 3.4. Any extremal for \(1 \leq p \leq \infty \) is a multiple of a non-negative extremal. Therefore, the norm \(\|T\|_p \) when \(T \) is defined on the complex \(L^p \) space is the same as the one when \(T \) is defined on the real \(L^p \) space.
\textbf{Proof.} We already know this if \(p = 1 \) or \(p = \infty \), so we now assume that \(1 < p < \infty \). Suppose \(f \) is an extremal and put \(g = |f| \). Since \(\|f\|_p = \|g\|_p \) and \(|f^0| f \leq f^0 g \) it follows that if \(f \) is an extremal, then so is \(g \). Furthermore, it follows that \(\|Tf\|_p = \|Tg\|_p \). Now \(|f^0| f \leq f^0 g \) for all \(x \in [0,1] \), so in order that \(\|Tf\|_p = \|Tg\|_p \) we must have equality throughout \([0,1]\). In particular, we must have
\[
\int_0^1 f = \int_0^1 g.
\]
i.e., we must have equality in the triangle inequality. This proves the lemma, since it requires that \(f \) and \(g \) are a.e. proportional. We remind the reader why this is so.

If we choose \(\theta \in \mathbb{R} \) so that \(e^{i\theta} f^0 \) is positive, and we have equality in the triangle inequality \(|f^0| f \leq f^0 |f| \), then we have \(\int_0^1 |e^{i\theta} f| = \int_0^1 |f| \) while at the same time \(\text{Re}(e^{i\theta} f) = |e^{i\theta} f| = |f| \). Thus \(|f| = e^{i\theta} f \) a.e.

The next step in the proof of Theorem 3.1 is to show the existence of extremals.

\textbf{Lemma 3.5.} If \(1 < p < \infty \) there exists a function \(f \in L^p(0,1) \) with non-zero norm such that \(\|Tf\|_p = \|T\|_p \|f\|_p \).

\textbf{Proof.} Let \(f_1, f_2, \ldots \) be a sequence of unit vectors in \(L^p(0,1) \) such that
\[
\|Tf_n\|_p \to \|T\|_p \quad \text{as} \quad n \to \infty.
\]
We may assume that \(f_n \to f \in L^p(0,1) \) weakly in \(L^p(0,1) \). For each fixed \(x \in [0,1] \) the characteristic function of \([0,x]\) is in \(L^q(0,1) \), \(q = p/(p-1) \), so we obtain
\[
F_n(x) = \int_0^x f_n \to \int_0^x f = F(x) \quad \text{as} \quad n \to \infty.
\]
Since \(|F_n(x)| \leq \int_0^1 |f_n| \leq \|f_n\|_p = 1 \) by Hölder’s inequality, we obtain by dominated convergence that \(\|F\|_p = \lim \|F_n\|_p = \|F\|_p \), and since clearly \(\|T\|_p > 0 \) we can not have \(F = 0 \), so that \(\|f\|_p > 0 \). Since \(\|T\|_p = \|F\|_p \leq \|T\|_p \|f\|_p \) it actually follows that \(\|f\|_p = 1 \). The lemma is proved.

We are now ready to prove Theorem 3.1. We will do this by applying standard methods of the calculus of variations.

\textbf{Proof of Theorem 3.1.} We need only consider the case \(1 < p < \infty \). Suppose \(f \geq 0 \) is an extremal with non-zero norm and put \(F(x) = Tf(x) = f^0 \) \(f \geq 0 \). Then setting \(\lambda = \|F\|_p^p / \|F\|_p^p \) we have \(\|T\|_p = \lambda^{1/p} \). If \(\varphi \in C^1(0,1) \) with \(\varphi(0) = 0 \), then \(\|F + \varepsilon \varphi\|_p / \|F + \varepsilon \varphi\|_p^p \) has a maximum for \(\varepsilon = 0 \). Differentiating we get, for \(\varepsilon = 0 \), that
\[
\int_0^1 F^{p-1} \varphi - \lambda \int_0^1 (F')^{p-1} \varphi' = 0,
\]
so integrating by parts we obtain
\[
\int_0^1 (\lambda(F')^{p-1} - \int_x^1 F^{p-1}) \varphi' = 0
\]
for all \(\varphi \in C^1(0,1) \) with \(\varphi(0) = 0 \), so that, by du Bois Reymond’s lemma, \(\lambda(F')^{p-1} - \int_x^1 F^{p-1} \) is constant. It follows that \((F')^{p-1} \) is continuously differentiable, and differentiating we obtain
\[
F^{p-1} + \lambda((F')^{p-1})' = 0.
\]
Thus, integrating by parts in (3.2) we obtain \((F'(1))^{p-1} \psi(1) = 0\), so that \(F'(1) = f(1) = 0\). Multiplying (3.3) by \(F'\) and integrating we obtain

\[F^p + \lambda(p - 1)(F')^p = C, \tag{3.4} \]

where \(C > 0\) is a constant and we should note that

\[(p - 1)p^{-1} \frac{d}{dx} \left((F'(p-1)p/(p-1)) \right) = ((F')^{p-1})F'. \]

Here, after multiplying \(F\) by an appropriate constant, we may assume that \(C = 1\) in (3.4). Although (3.4) is then satisfied in any interval where \(F = 1\), this will not satisfy (3.2). In any point where \(F \neq 1\) we then obtain

\[\frac{F'}{(1 - F^p)^{1/p}} = a, \]

where \(a = (\lambda(p - 1))^{-1/p}\). Integrating again we obtain \(F(x) = \sin_p(ax)\), since \(F(0) = 0\). Thus \(f(x) = F'(x) = a \cos_p(ax)\). From \(f(1) = 0\) it follows that \(a\) is a zero of \(\cos_p\), and since we have \(f \geq 0\), \(a\) is the first positive zero of \(\cos_p\). Thus \(a = \pi p/2\).

We also have \(\lambda = a^{-p}/(p - 1)\) so that \(\|T\|_p = (p - 1)^{-1/p}/a = 2(p - 1)^{-1/p}/\pi p\). Now, if \(q\) is the conjugate exponent to \(p\) we have \(p(p - 1)^{-1/p} = p^{1/q}q^{1/p}\) and we are done, in view of the formula (2.1).

\[\square \]

4. Generalizations

One may of course also consider the operator

\[T : L^p(0, 1) \ni f \mapsto Tf(x) = \int_0^x f \in L^q(0, 1), \]

where now \(p\) and \(q\) are unrelated exponents in \([1, \infty]\). Even in this case it is possible to calculate the norm \(\|T\|_{p,q}\). We introduce the constant \(\pi_{p,q} = 2 \int_0^1 \frac{dt}{(1 - t^p)^{1/p}}\), which is finite unless \(p = 1\), \(q < \infty\), and then the function \(\sin_{p,q}\), first on the interval \([0, \pi_{p,q}/2]\) as the inverse of the strictly increasing function

\[[0, 1) \ni x \mapsto \int_0^x \frac{dt}{(1 - t^p)^{1/p}}, \]

and then suitably extended to an odd function, which is \(2\pi_{p,q}\)-periodic and even around \(\pi_{p,q}/2\) if \(\pi_{p,q}\) is finite. We next define \(\cos_{p,q} x = \frac{d}{dx} \sin_{p,q} x\) and may the easily deduce that

\[|\cos_{p,q} x|^p + |\sin_{p,q} x|^q = 1, \]

except if \(p = \infty\), \(q < \infty\). Drabek and Manásevich [1] also introduced \(\sin_{p,q}\) and \(\cos_{p,q}\) functions. They are quite similar to ours but not the same.

Proposition 4.1. For \(p, q \in (1, \infty)\) we have \(\pi_{p,q} = \frac{2}{q} B(1/p', 1/q)\), where \(p'\) is the dual exponent of \(p\) and \(B\) is the classical beta function. Furthermore,

- \(\pi_{p,\infty} = 2\), \(1 \leq p \leq \infty\),
- \(\pi_{\infty,q} = 2\), \(1 \leq q \leq \infty\),
- \(\pi_{p,1} = 2p'\), \(1 \leq p \leq \infty\),
- \(\pi_{1,q} = \infty\), \(1 \leq q < \infty\).

We may now carry out the analysis of the operator \(T\) in much the same way as in Section 3, with the following conclusion.
Theorem 4.2. For \(p, q \in (1, \infty) \) we have
\[
\|T\|_{p,q} = \left(p' + q \right)^{1/p'} \left(q' \right)^{1/q'} B(1/p', 1/q),
\]
where \(p' \) is the dual exponent of \(p \) and \(B \) is the classical beta function. Extremals are all non-zero multiples of \(\cos p, q(\pi p,q x/2) \). Furthermore,
- \(\|T\|_{p,\infty} = 1, \ 1 \leq p \leq \infty \). Extremals are all constants \(\neq 0 \). In the case \(p = 1 \) any non-zero multiple of a non-zero positive measure is an extremal.
- \(\|T\|_{\infty,q} = (1 + q)^{-1/q}, \ 1 \leq q < \infty \). Extremals are all constants \(\neq 0 \).
- \(\|T\|_{p,1} = (1 + p')^{-1/p'}, \ 1 < p \leq \infty \). Extremals are all non-zero multiples of \((1 - x)^{1/(p-1)} \).
- \(\|T\|_{1,q} = 1, \ 1 \leq q < \infty \). Extremals are all non-zero multiples of the Dirac measure at the origin.

It will be seen that as a function of \((1/p, 1/q)\) the norm \(\|T\|_{p,q} \) is continuous in the unit square \(0 \leq 1/p \leq 1, \ 0 \leq 1/q \leq 1 \). Furthermore, it is clear that \(\|T\|_{p,q} = \|T\|_{q',p'} \) for all \(p, q \in [1, \infty] \), a fact that could presumably also be proved by duality.

References

Christer Bennewitz
Department of Mathematics, Lund University,
Box 118, 221 00 Sweden.
E-mail address: christer.bennewitz@math.lu.se

Yoshimi Saitô
Dept. of Mathematics, University of Alabama at Birmingham,
Birmingham, AL 35294, USA.
E-mail address: saito@math.uab.edu