Sufficient conditions for functions to form Riesz bases in L_2 and applications to nonlinear boundary-value problems

Peter E. Zhidkov

Abstract

We find sufficient conditions for systems of functions to be Riesz bases in $L_2(0,1)$. Then we improve a theorem presented in [13] by showing that a “standard” system of solutions of a nonlinear boundary-value problem, normalized to 1, is a Riesz basis in $L_2(0,1)$. The proofs in this article use Bari’s theorem.

1 Introduction

Early results in the study of basis properties of eigenfunctions of nonlinear ordinary differential operators can be found in the monograph by Makhmudov [5]. Because of its difficulty and the small number of publications on this question, basis properties has been established only for very simple nonlinear ordinary differential equations. Among the results in this direction, we have the following.

In [7, 8], Zhidkov presents an analysis of the equation

$$-
u'' + f(u^2)u = \lambda u, \quad u = u(x), \quad x \in (0,1),$$

$$u(0) = u(1) = 0, \quad \int_0^1 u^2(x) \, dx = 1,$$

where λ is a spectral parameter, $f(s)$ is a smooth nondecreasing function for $s \geq 0$, and all quantities are real. In these two publications, it is proved that the eigenfunctions $\{u_n\}$ $(n = 0, 1, 2, \ldots)$ of this problem have precisely n zeros in $(0,1)$. Furthermore, each eigenfunction is unique up to the coefficient ± 1. The main result states that the sequence of eigenfunctions $\{u_n\}$ $(n = 0, 1, 2, \ldots)$ is a Bari basis in $L_2 = L_2(0,1)$, i.e., it is a basis and there exists an orthonormal basis $\{e_n\}$ $(n = 0, 1, 2, \ldots)$ in L_2 for which $\sum_{n=0}^{\infty} \|u_n - e_n\|^2_{L_2} < \infty$. Note that in [7] there are some errors which have been corrected in [9].

In [10, 11], a modified version of the above nonlinear eigenvalue problem is studied and similar basis properties for their eigenfunctions are obtained. In
[12], an analog to the Fourier transform associated with an eigenvalue problem for a nonlinear ordinary differential operator on a half-line is considered.

The aim in the present publication is to improve the result in [13], where the following nonlinear problem is considered:

\[u'' = f(u^2)u, \quad u = u(x), \quad x \in (0, 1), \]

\[u(0) = u(1) = 0. \]

(1.1)

(1.2)

Here there is no spectral parameter, and all variables are real. For the rest of this article, we will assume that

(F) The function \(f(u^2)u \) is a continuously differentiable for \(u \in \mathbb{R}, \ f(0) \geq 0, \) and \(f(+\infty) = -\infty. \)

It is well known now (and partially proved in [13]) that under assumption (F): For each integer \(n \geq 0 \) problem (1.1)–(1.2) has a solution \(u_n \) which possesses precisely \(n \) zeros in \((0, 1) \) and that generally speaking this solution is not unique.

Definition A sequence \(\{u_n\} \ (n = 0, 1, 2, \ldots) \) of solutions to (1.1)–(1.2) is called standard if the solution \(u_n \) has precisely \(n \) zeros in \((0, 1) \).

The main result in [13] states that there exists \(s_0 < 0 \) such that for \(s < s_0 \) any standard sequence of solutions \(\{u_n\} \) is a basis in \(H^s(0, 1) \). In addition, the sequence \(\{u_n/\|u_n\|_{H^s(0, 1)}\} \) is a Riesz basis in \(H^s(0, 1) \). Here \(H^s(0, 1) \) is the usual Sobolev space with negative index \(s \). In the present paper, we improve this result by showing the above properties of a standard system \(\{u_n\} \) in \(L^2 \) (see Theorem 1.3 below), by first obtaining a general result on bases in \(L^2 \) (see Theorem 1.1 below). We believe that this result is of a separate interest.

Notation

By \(c, C, C_1, C_2, C', C'', \ldots \) we denote positive constants. By \(L^2(a, b) \) we denote the standard Lebesgue space of square integrable functions on the interval \((a, b) \).

In this space we introduce the standard inner product, and norm:

\[(g, h)_{L^2(a,b)} = \int_a^b g(x)h(x)dx, \quad \|g\|_{L^2(a,b)} = (g, g)^{1/2}_{L^2(a,b)}. \]

For short notation we will use \((\cdot, \cdot)\) and \(\|\cdot\|\) respectively.

Let \(l_2 \) be the space of square summable sequences of real numbers. For a Banach space \(X \) with a norm \(\|\cdot\|_X \), let \(\mathcal{L}(X; X) \) be the linear space of linear bounded operators acting from \(X \) into \(X \), equipped with the norm

\[\|A\|_{\mathcal{L}(X; X)} = \sup_{x \in X: \|x\|_X = 1} \|Ax\|_X. \]

We also set \(\|\cdot\| = \|\cdot\|_{\mathcal{L}(L^2)} \) for short notation.

Now, for convenience of readers, we define some well-known terms.
Definition A system $\{e_n\} \subset L^2(a,b)$ is called a basis in $L^2(a,b)$ if for any $g \in L^2(a,b)$ there exists a unique sequence $\{a_n\}$ of real numbers such that $g = \sum_{n=0}^{\infty} a_n e_n$ in $L^2(a,b)$.

There are several definitions of Riesz bases. In accordance with the classical paper by N. K. Bari [1], where this concept was introduced for the first time, we use the following definition.

Definition A basis $\{e_n\}$ in $L^2(a,b)$ is called a Riesz basis in this space when the series $\sum_{n=0}^{\infty} a_n e_n$, with real coefficients a_n, converges in $L^2(a,b)$ if and only if $\sum_{n=0}^{\infty} a_n^2 < \infty$.

Remark It is proved in [1] (see also [8]) that if $\{e_n\}$ is a Riesz basis in $L^2(a,b)$ in the sense of this definition, then there exist constants $0 < c < C$ such that $c \sum_{n=0}^{\infty} a_n^2 \leq \|\sum_{n=0}^{\infty} a_n e_n\|_{L^2(a,b)}^2 \leq C \sum_{n=0}^{\infty} a_n^2$ for all $a = (a_0, a_1, a_2, \ldots) \in l^2$. These estimates have been often used to define Riesz bases.

Definition A system of functions $\{g_n\}$ in $L^2(a,b)$ is called ω-linearly independent in $L^2(a,b)$ when $\sum_{n=0}^{\infty} a_n g_n = 0$, with a_n are real numbers, holds in $L^2(a,b)$ if and only if $0 = a_0 = a_1 = a_2 = \ldots$.

Definition Two systems of functions $\{h_n\}$ and $\{e_n\}$ in $L^2(a,b)$ are called quadratically close in $L^2(a,b)$, if $\sum_{n=0}^{\infty} \|h_n - e_n\|_{L^2(a,b)}^2 < \infty$.

Results

Theorem 1.1 Let $\{h_n\}$ be a system of real-valued, three-times continuously differentiable functions. Assume that for each integer $n \geq 0$ the following holds:

(a) $h_n(x + \frac{1}{n+1}) = -h_n(x)$ and $h_n\left(\frac{1}{2(n+1)} + x\right) = h_n\left(\frac{1}{2(n+1)} - x\right)$ for all $x \in \mathbb{R}$

(b) $h_n'(x) > 0$, $h_n''(x) \leq 0$, and $h_n'''(x) \leq 0$ for all $x \in (0, \frac{1}{2(n+1)})$

(c) There exist $0 < c < C$ such that $c < h_n\left(\frac{1}{2(n+1)}\right) < C$ for all n.

Then, the system $\{h_n\}$ is a Riesz basis in L^2.

Remark Clearly, it follows from Theorem 1.1 that if a system of functions $\{h_n\}$ satisfies all the conditions of this theorem, except maybe (c), then it is a basis in L^2.

The next result follows from Theorem 1.1 by taking $h_n(x) = h((n + 1)x)$.

Theorem 1.2 Let $h(x)$ be a real-valued three-times continuously differentiable function satisfying:
(a) \(h(1 + x) = -h(x) \) and \(h(1/2 + x) = h(1/2 - x) \) for all \(x \in \mathbb{R} \)
(b) \(h'(x) > 0, \ h''(x) \leq 0 \) and \(h'''(x) \leq 0 \) for all \(x \in (0, 1/2) \)

Then, the sequence of functions \(h_n(x) = h((n + 1)x) \), where \(n = 0, 1, 2, \ldots \), is a Riesz basis in \(L_2 \).

The following statement also follows from Theorem 1.1, when applied to problem (1.1)–(1.2).

Theorem 1.3 Let assumption (F) be valid and \(f(u^2) + 2u^2f'(u^2) \leq 0 \) for all sufficiently large \(u \). Let \(\{u_n\} \) be an arbitrary standard sequence of solutions of (1.1)–(1.2). Then, the sequence \(\{\|u_n\|^{-1}u_n\} \) is a Riesz basis in \(L_2 \).

To prove this theorem in Section 3, we exploit the following theorem.

Theorem 1.4 (Bari’s Theorem) Let \(\{e_n\} \) be a Riesz basis in \(L_2(a,b) \) and let a system \(\{h_n\} \subset L_2(a,b) \) be \(\omega \)-linearly independent and quadratically close to \(\{e_n\} \) in \(L_2(a,b) \). Then, the system \(\{h_n\} \) is a Riesz basis in \(L_2(a,b) \).

This theorem, in a weaker form, was proved by N. K. Bari in [1]. In its current form it is proved, for example, in [4] and in [8].

We conclude the introduction by pointing out that the concept of a Riesz basis appeared for the first time in the middle of last century in the papers of N. K. Bari, as a result of developments in the general theory of orthogonal series and bases in infinite-dimensional spaces. Currently, this concept has important applications in areas such as wavelet analysis. Readers may consult [2, 6] for theoretical aspects of this field and [3] for applied aspects.

2 Proof of Theorem 1.1

Let \(e_n(x) = \sqrt{2} \sin \pi(n + 1)x, \ n = 0, 1, 2, \ldots \), so that \(\{e_n\} \) is an orthonormal basis in \(L_2 \).

Lemma 2.1 Let \(g \) satisfy condition (a) of Theorem 1.1 with \(n \geq 0 \) and let \(g \) be positive in \((0, \frac{1}{n+1}) \). Then in the expansion

\[
g(\cdot) = \sum_{m=0}^{\infty} c_m e_m(\cdot),
\]

understanding in the sense of \(L_2 \), one has \(c_0 = \ldots = c_{n-1} = 0 \) and \(c_n > 0 \).

Proof We follow the arguments in the proof of a similar statement in [13]. We have the above expansion in \(L_2(0, \frac{1}{n+1}) \) with \(c_m = 0 \) if \(m \neq (n + 1)(l + 1) - 1 \) for all integers \(l \geq 0 \) (this occurs because the functions \(\{e_{(n+1)(m+1)-1}\}_m \) form an orthogonal basis in \(L_2(0, \frac{1}{n+1}) \)). Therefore, \(c_0 = \ldots = c_{n-1} = 0 \). We observe that each \(e_{(n+1)(m+1)-1} \) becomes zero at the points \(\frac{1}{n+1}, \frac{2}{n+1}, \ldots, 1 \).
Furthermore, due to condition (a) of Theorem 1.1 the function g is odd with respect to these points and each function $e_{(n+1)(m+1)-1}(x)$ is odd. Thus this expansion also holds in each space $L_2\left(\frac{1}{n+1}, \frac{2}{n+1}\right), L_2\left(\frac{2}{n+1}, \frac{3}{n+1}\right), \ldots, L_2\left(\frac{n}{n+1}, 1\right)$. Finally, $e_n > 0$ because $e_n(x)$ and $g(x)$ are of the same sign everywhere. □

Due to Lemma 2.1, we have the following sequence of expansions:

$$h_n(\cdot) = \sum_{m=0}^{\infty} a_n^m e_m(\cdot) \quad \text{in } L_2,$$

with $a_0^n = \ldots = a_{n-1}^n = 0$ and $a_n^n > 0$, for $n = 0, 1, 2, \ldots$.

Lemma 2.2 Under the assumptions of Theorem 1.1, the coefficients in (2.1) satisfy

$$(a_n^n)^{-1} |a_n^{(n+1)(m+1)-1}| \leq \frac{\pi}{2}(m + 1)^{-2}$$

for all n and m. In addition, $a_n^n (n+1)(m+1)-1 = 0$ if $m = 2l + 1$ for $l = 0, 1, 2, \ldots$.

Proof The second claim of this lemma is obvious because $e_{(n+1)(2l+2)-1}(x)$ is odd with respect to the middles of the intervals $\left(0, \frac{1}{n+1}\right), \left(\frac{1}{n+1}, \frac{2}{n+1}\right), \ldots, \left(\frac{n}{n+1}, 1\right)$ and the function $h_n(x)$ is even so that $a_n^n (n+1)(2l+2)-1 = (e_{(n+1)(2l+2)-1}, h_n) = 0$.

Let us prove the first claim. Due to the properties of the functions h_n and $e_{(n+1)(m+1)-1}$, with $m = 2l$, we have

$$(a_n^n)^{-1} |a_n^{(n+1)(m+1)-1}| = \left|\int_0^1 h_n(x) \sin \pi(n + 1) (m + 1) dx\right| \left|\int_0^1 h_n(x) \sin \pi(n + 1) dx\right|
= \left|\int_0^{1/2(n+1)} h_n(x) \sin \pi(n + 1)(m + 1) dx\right| \left|\int_0^{1/2(n+1)} h_n(x) \sin \pi(n + 1) dx\right|
= (m + 1)^{-1} \left|\int_0^{1/2(n+1)} h_n'(x) \cos \pi(n + 1)(m + 1) dx\right| \left|\int_0^{1/2(n+1)} h_n'(x) \cos \pi(n + 1) dx\right|
= (m + 1)^{-1} \left|\int_0^{1} h_n'(x) \frac{\pi s}{2(n+1)} \cos \frac{\pi m(s+1)}{2} ds\right| \left|\int_0^{1} h_n'(x) \frac{\pi s}{2(n+1)} \cos \frac{\pi s}{2} ds\right|.
$$

Due to the conditions of Theorem 1.1, $h_n'(\frac{\pi s}{2(n+1)})$ is a positive non-increasing concave function on $(0, 1)$. Therefore,

$$\int_0^{1} h_n'(x) \frac{\pi s}{2(n+1)} \cos \frac{\pi s}{2} ds \geq h_n'(0) \int_0^{1} (1 - s) \cos \frac{\pi s}{2} ds = \frac{4}{\pi^2} h_n'(0).$$

Using the same properties of h_n', one can easily see on its graph that

$$\left|\int_0^{1} h_n'(x) \frac{\pi (m+1) s}{2(n+1)} \cos \frac{\pi (m+1)s}{2} ds\right| \leq h_n'(0) \int_0^{1/(m+1)} \cos \frac{\pi (m+1)s}{2} ds \leq \frac{2\pi}{\pi(m+1)} h_n'(0).$$
Furthermore, by Lemma 2, integers prove this theorem, it suffices to prove that the system has a bounded inverse of similar statements in \([8, 11, 13]\). □

Let \(b_m = (a_n^{-1})^{-1} e^{m+1}_m\), and let \(\text{Id}\) be the unit operator in \(L_2\). For positive integers \(m\), let \(B_m\) be the operator mapping \(e_n\) into \(b_m^{n+1} e_n^{(m+1)-1}\), \(B_m \in \mathcal{L}(L_2; L_2)\). Also let \(B = \sum_{m=1}^{\infty} B_m\). Then for each \(m\),

\[
\|B_m\| \leq \sup_n |b_m^{n+1} e_n^{(m+1)-1}| = b_m.
\]

Furthermore, by Lemma 2,

\[
\sum_{m=1}^{\infty} b_m \leq \frac{\pi}{2} \sum_{l=1}^{\infty} (2l + 1)^{-2} \leq \frac{\pi}{2} \int_{1/2}^{\infty} (2x + 1)^{-2} dx = \pi/8;
\]

hence, \(B \in \mathcal{L}(L_2; L_2)\) and \(\|B\| \leq \pi/8 < 1\). Therefore, the operator \(A = \text{Id} + B\) has a bounded inverse \(A^{-1} = \text{Id} + \sum_{n=1}^{\infty} (-1)^n B^n\). Note also that \(A e_n = \bar{h}_n\). Hence, as proved in \([4]\), \(\{\bar{h}_n\}\) is a Riesz basis in \(L_2(0, 1)\). For the convenience of the reader, we present a short proof of this statement.

Take an arbitrary \(v \in L_2\) and let \(u = A^{-1} v = \sum_{n=0}^{\infty} c_n e_n \in L_2\) where \(c_n\) are real coefficients. Then, \(\sum_{n=0}^{\infty} c_n^2 < \infty\) because \(\{e_n\}\) is an orthonormal basis in \(L_2\). Since the series \(\sum_{n=0}^{\infty} c_n e_n\) converges in \(L_2\), we have \(u = A^{-1} v = \sum_{n=0}^{\infty} c_n e_n\). Therefore, in view of Lemma 2.3, the system \(\{\bar{h}_n\}\) is a basis in \(L_2\), and if \(\sum_{n=0}^{\infty} c_n^2 < \infty\), then the series \(\sum_{n=0}^{\infty} c_n \bar{h}_n\) converges in \(L_2\). Conversely, let a series \(u = \sum_{n=0}^{\infty} c_n \bar{h}_n\) converge in \(L_2\). Then \(A^{-1} u = \sum_{n=0}^{\infty} c_n e_n\) in \(L_2\); hence \(\sum_{n=0}^{\infty} c_n^2 < \infty\). Thus, \(\{\bar{h}_n\}\) is a Riesz basis in \(L_2\), and the proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.3

As was proved in \([13]\), any solution \(u_n\) of problem (1.1)–(1.2), that possesses precisely \(n\) zeros in \((0, 1)\), satisfies condition (a) of Theorem 1.1. In addition,
\(u_n\) is strictly monotone \(u'_n(x) \neq 0\) in the interval \((0, \frac{1}{2(n+1)})\). Let \(\mathfrak{u} > 0\) be an arbitrary number such that \(f(u^2) < 0\) and \(f(u^2) + 2u^2 f'(u^2) \leq 0\) for all \(u \geq \mathfrak{u}\). Let \(\{u_n\}\) be an arbitrary standard system of solutions of problem (1.1)-(1.2).

We assume that \(u_n(x) > 0\) for each \(n\) which is possible without loss of generality due to the invariance of (1.1) when \(u(x)\) is replaced by \(-u(x)\). Due to the standard comparison theorem \(\max_{u \in [0, u_n(1/(n+1))]} |f(u^2)| \rightarrow +\infty\) as \(n \rightarrow \infty\); hence \(u_n(\frac{1}{2(n+1)}) \rightarrow +\infty\) as \(n \rightarrow \infty\). For \(n\) sufficiently large, we denote by \(x_n \in (0, \frac{1}{2(n+1)})\) the point for which \(u_n(x_n) = \mathfrak{u}\). Then

\[
u_n\left(\frac{1}{2(n+1)}\right) - \mathfrak{u} = \int_{x_n}^{1/(2(n+1))} u'_n(x)dx = u'_n(\tilde{x}_n)\left(\frac{1}{2(n+1)} - x_n\right)
\]

for some \(\tilde{x}_n \in (x_n, \frac{1}{2(n+1)})\). Since \(u'_n(x_n) \geq u'_n(\tilde{x}_n)\) (because \(f(u^2) < 0\) for \(u > \mathfrak{u}\) and, therefore, \(u_n'(x) < 0\) for \(x \in (x_n, \frac{1}{2(n+1)})\)), we derive

\[
u'_n(x_n) \geq \frac{3}{2} \nu_n\left(\frac{1}{2(n+1)}\right)(n+1)
\]

for all sufficiently large \(n\). Since in view of (1.1), \(\sup_{x} \max_{u \in [0, x_n]} |u_n''(x)| \leq C'\), we have \(\min_{x \in [0, x_n]} |u_n''(x)| \geq \nu_n\left(\frac{1}{2(n+1)}\right)(n+1)\) for all sufficiently large \(n\). Therefore,

\[
0 < x_n \leq (n+1)^{-1}\left[\nu_n\left(\frac{1}{2(n+1)}\right)\right]^{-1}
\]

for all sufficiently large \(n\).

Using \(u_n\) and \(n\) large, we now want to construct a function \(h_n\) that satisfies the conditions of Theorem 1.1. Introduce the linear function \(l_n(x) = \frac{\mathfrak{u}}{x_n} x\) which is equal to 0 at \(x = 0\) and to \(\mathfrak{u} = u_n(x_n)\) at \(x = x_n\). Multiply (1.1), with \(u = u_n\), by \(2u'_n(x)\) and integrate the result from 0 to \(x\). Then

\[
\left\{[u'_n(x)]^2 + F(u_n^2(x))\right\}' = 0, \quad x \in \mathbb{R},
\]

where \(F(s) = -\int_0^s f(t)dt\). Due to condition (F), \(F(u^2) \rightarrow +\infty\) as \(u \rightarrow \infty\), therefore, without loss of generality, we can assume that \(\mathfrak{u} > 0\) and is large enough so that \(\|\mathfrak{u} f(2u^2)\| > |u f(u^2)|\) and \(F(\mathfrak{u}^2) > F(u^2)\) for all \(u \in [0, \mathfrak{u}]\). Then from (3.2), it follows that

\[
u'_n(x_n) < u'_n(x), \quad x \in [0, x_n),
\]

for all sufficiently large \(n\). By (3.3), we have

\[
\mathfrak{u} = \int_{0}^{x_n} u'_n(x)dx > x_n u'_n(x_n);
\]

therefore,

\[
u'_n(x_n) < \mathfrak{u} = l'_n(x_n)
\]
for all sufficiently large \(n \).

Take a sufficiently small \(\Delta \in (0, \frac{2\pi}{F}) \) and define a continuous function \(\omega_1(x) \) equal to \(u''_n(x) \) for \(x \in [x_n, \frac{1}{2(n+1)}] \), such that \(u''_n(x) \leq \omega_1(x) \leq 0 \) for \(x \in [x_n - \Delta, x_n] \) and \(\omega_1(x) = 0 \) for \(x \in [0, x_n - \Delta] \). We define \(g_1(x) \) to be equal to \(u_n(x) \) for \(x \in [x_n, \frac{1}{2(n+1)}] \), and for \(x \in [0, x_n) \) to be given by the rules:

\[
\begin{align*}
g''_1(x) &= u''_n(x_n) - \int_x^{x_n} \omega_1(t)dt, \\
g'_1(x) &= u'_n(x_n) - \int_x^{x_n} g''_1(t)dt, \\
g_1(x) &= u_n(x_n) - \int_x^{x_n} g'_1(t)dt.
\end{align*}
\]

Then \(g_1(x) \) is three times continuously differentiable in \([0, \frac{1}{2(n+1)}] \) and satisfies condition (b) of Theorem 1.1. It is easy to see that if \(\Delta > 0 \) is sufficiently small, then \(g_1(x_n - \Delta) \) and \(g'_1(x_n - \Delta) \) are arbitrary close to \(u_n(x_n) \) and \(u'_n(x_n) \), respectively, and \(g''_1(x) \) is arbitrary close to \(u''_n(x_n) \) for all \(x \in [0, x_n - \Delta] \). Now, due to our choice of \(\pi > 0 \), for \(\Delta > 0 \) and sufficiently small, \(g_1(0) \) is arbitrary close to

\[
u_n(x_n) - x_n u'_n(x_n) + \frac{x^2}{2} u''_n(x_n).
\]

This expression is negative because

\[0 = u_n(0) = u_n(x_n) - x_n u'_n(x_n) + \int_0^{x_n} dx \int_x^{x_n} u''_n(t)dt\]

where the last term in the right-hand side of this equality is larger than the last term in (3.6), due to our choice of \(\pi \) and (1.1). We have defined a function \(g_1(x) \) satisfying \(g_1(0) < 0 \).

Take now a sufficiently small \(\Delta \in (0, \frac{\pi}{F}) \) and a continuous function \(\omega_2(x) \leq 0 \) which is equal to \(u''_n(x) \) for \(x \in [x_n, \frac{1}{2(n+1)}] \), and to 0 for \(x \in [0, x_n - \Delta] \), such that

\[
\int_{x_n - \Delta}^{x_n} \omega_2(x)dx = u''_n(x_n).
\]

Then, defining the function \(g_2(x) \) just as \(g_1(x) \) in (3.5) with the substitution of \(\omega_2 \) in place of \(\omega_1 \) and of \(g_2 \) in place of \(g_1 \), we get that if \(\Delta > 0 \) is sufficiently small, then \(g_2(x_n - \Delta) \) and \(g'_2(x_n - \Delta) \) are arbitrary close, respectively, to \(u_n(x_n) \) and \(u'_n(x_n) \), and \(g''_2(x) = 0 \) for \(0 \leq x \leq x_n - \Delta \). Therefore, due to (3.4), \(g_2(0) > 0 \) if \(\Delta > 0 \) is sufficiently small, for all sufficiently large \(n \). We have defined a function \(g_2(x) \) satisfying \(g_2(0) > 0 \).

Now, consider the family of functions \(g_\lambda(x) = \lambda g_1(x) + (1 - \lambda) g_2(x) \) where \(\lambda \in [0, 1] \). Clearly, there exists a unique \(\lambda_0 \in (0, 1) \) such that \(g_{\lambda_0}(0) = 0 \). Extend \(g_{\lambda_0}(x) \) continuously on the entire real line by the rules:

\[
g_{\lambda_0}(\frac{1}{n+1} + x) = -g_{\lambda_0}(x), \quad g_{\lambda_0}(\frac{1}{2(n+1)} + x) = g_{\lambda_0}(\frac{1}{2(n+1)} - x)
\]
and denote the obtained function by $h_n(x)$. This function satisfies conditions (a) and (b) of Theorem 1.1. In addition, by Theorem 1.1(b), $h''_n(x_n) \leq h''_n(x) \leq 0$ for all $x \in [0,x_n)$.

So far, we have constructed h_n for n sufficiently large. For small values of n, we use arbitrary functions h_n satisfying the conditions of Theorem 1.1. Therefore the sequence $\{h_n\}$ ($n = 0,1,2,\ldots$) satisfies the conditions (a) and (b) of Theorem 1.1.

Let $\alpha_n = h_n(\frac{1}{2(n+1)})^{-1}$. Then, by Theorem 1.1, the system $\{\alpha_n h_n\}$ is a Riesz basis in L_2. Furthermore, by Lemma 2.3, the system $\{\alpha_n u_n\}$ is ω-linearly independent in L_2. Also, due to (1.1) and by construction, there exists $C_1 > 0$ such that

$$|u''_n(x)| = \max_{u \in [0,\pi]} |uf(u^2)| \leq C_1$$

and

$$\max_{x \in [0,x_n]} |h''_n(x)| = |h''_n(x_n)| = |u''_n(x_n)| = |uf(u^2)| \leq C_1$$

for all n sufficiently large. Hence,

$$|u'_n(x) - h'_n(x)| \leq C_2 x_n$$

for all n sufficiently large and all $x \in [0,x_n]$. Hence, due to (3.1),

$$\|\alpha_n u_n - \alpha_n h_n\|^2 \leq C_3 x_n^4 \leq C_4 (n + 1)^{-4}$$

for all n sufficiently large. Therefore, the systems $\{\alpha_n u_n\}$ and $\{\alpha_n h_n\}$ are quadratically close in L_2. In view of Bari’s Theorem, the proof of Theorem 1.3 is complete.

Acknowledgment. The author is thankful to Mrs. G. G. Sandukovskaya for editing the original manuscript.

References

Peter E. Zhidkov
Bogoliubov Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research,
141980 Dubna (Moscow region), Russia
e-mail: zhidkov@thsun1.jinr.ru