Two nonlinear days in Urbino 2017,
Electronic Journal of Differential Equations, Conference 25 (2018), pp. 221-233.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

GROUND STATE SOLUTIONS FOR BESSEL FRACTIONAL EQUATIONS WITH IRREGULAR NONLINEARITIES

SIMONE SECCHI

Dedicated to Anna Aloe

$$
\begin{aligned}
& \text { AbStract. We consider the semilinear fractional equation } \\
& \qquad(I-\Delta)^{s} u=a(x)|u|^{p-2} u \text { in } \mathbb{R}^{N}, \\
& \text { where } N \geq 3,0<s<1,2<p<2 N /(N-2 s) \text { and } a \text { is a bounded weight } \\
& \text { function. Without assuming that } a \text { has an asymptotic profile at infinity, we } \\
& \text { prove the existence of a ground state solution. }
\end{aligned}
$$

1. Introduction

To pursue further the study that we began in [19, 20], we consider in this paper the equation

$$
\begin{equation*}
(I-\Delta)^{s} u=a(x)|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $a \in L^{\infty}\left(\mathbb{R}^{N}\right), N>2,0<s<1$ and $2<p<2_{s}^{\star}=2 N /(N-2 s)$.
When $s=1$, 1.1 formally reduces to the semilinear elliptic equation

$$
-\Delta u+u=a(x)|u|^{p-2} u
$$

which has been widely studied over the years. This equation can be seen as a particular case of the stationary Nonlinear Schrödinger Equation

$$
\begin{equation*}
-\Delta u+V(x) u=a(x)|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

When both V and a are constants, we refer to the seminal papers [5, 6] and to the references therein. Since the non-compact group of translations acts on \mathbb{R}^{N}, when V and a are general functions the analysis becomes subtler, and solutions exist according to some properties of these potentials. For instance, when both V and a are radially symmetric, $\sqrt{1.2}$ is invariant under rotations, and it becomes legitimate to look for radially symmetric solutions: see [12].

Without any a priori symmetry assumption, the lack of compactness in 1.2 must be overcome with a careful analysis, and the behavior of V and a at infinity plays a crucial rôle. The first attempt to solve (1.2) in the case $\lim _{|x| \rightarrow+\infty} V(x)=$ $+\infty$ and a is a constant appeared in [16]. With similar techniques, it is possible to solve 1.2 under the assumption $\lim \sup _{|x| \rightarrow+\infty} a(x) \leq 0$. So many papers

[^0]dealing with 1.2 (or with even more general equations) appeared in the literature afterwards that we refrain from any attempt to give a complete overview.

If $0<s<1$, our equation becomes non-local, since the fractional power $(I-\Delta)^{s}$ of the positive operator $I-\Delta$ in $L^{2}\left(\mathbb{R}^{N}\right)$ is no longer a differential operator. It is strictly related to the more popular fractional laplacian $(-\Delta)^{s}$, but it behaves worse under scaling. We offer a very quick review of this operator.

For $s>0$ we introduce the Bessel function space

$$
L^{s, 2}\left(\mathbb{R}^{N}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{N}\right): f=G_{s} \star g \text { for some } g \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
$$

where the Bessel convolution kernel is defined by

$$
G_{s}(x)=\frac{1}{(4 \pi)^{s / 2} \Gamma(s / 2)} \int_{0}^{\infty} \exp \left(-\frac{\pi}{t}|x|^{2}\right) \exp \left(-\frac{t}{4 \pi}\right) t^{\frac{s-N}{2}-1} d t .
$$

The Bessel space is endowed with the norm $\|f\|=\|g\|_{2}$ if $f=G_{s} \star g$. The operator $(I-\Delta)^{-s} u=G_{2 s} \star u$ is usually called Bessel operator of order s.

In Fourier variables the same operator reads

$$
G_{s}=\mathcal{F}^{-1} \circ\left(\left(1+|\xi|^{2}\right)^{-s / 2} \circ \mathcal{F}\right)
$$

so that

$$
\|f\|=\left\|(I-\Delta)^{s / 2} f\right\|_{2}
$$

For more detailed information, see [2, 22] and the references therein.
In [13] the pointwise formula

$$
(I-\Delta)^{s} u(x)=c_{N, s} \mathrm{P} . \mathrm{V} \cdot \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{\frac{N+2 s}{2}}} K_{\frac{N+2 s}{2}}(|x-y|) d y+u(x)
$$

was derived for functions $u \in C_{c}^{2}\left(\mathbb{R}^{N}\right)$. Here $c_{N, s}$ is a positive constant depending only on N and s, P.V. denotes the principal value of the singular integral, and K_{ν} is the modified Bessel function of the second kind with order ν (see [13, Remark 7.3] for more details). However a closed formula for K_{ν} is not known.

We summarize the main properties of Bessel spaces. For the proofs we refer to [14, Theorem 3.1], [22, Chapter V, Section 3].
Theorem 1.1. (1) $L^{s, 2}\left(\mathbb{R}^{N}\right)=W^{s, 2}\left(\mathbb{R}^{N}\right)=H^{s}\left(\mathbb{R}^{N}\right)$, where the sign of equality must be understood in the sense of an isomorphism.
(2) If $s \geq 0$ and $2 \leq q \leq 2_{s}^{*}=2 N /(N-2 s)$, then $L^{s, 2}\left(\mathbb{R}^{N}\right)$ is continuously embedded into $L^{q}\left(\mathbb{R}^{N}\right)$; if $2 \leq q<2_{s}^{*}$ then the embedding is locally compact.
(3) Assume that $0 \leq s \leq 2$ and $s>N / 2$. If $s-N / 2>1$ and $0<\mu \leq$ $s-N / 2-1$, then $L^{s, 2}\left(\mathbb{R}^{N}\right)$ is continuously embedded into $C^{1, \mu}\left(\mathbb{R}^{N}\right)$. If $s-N / 2<1$ and $0<\mu \leq s-N / 2$, then $L^{s, 2}\left(\mathbb{R}^{N}\right)$ is continuously embedded into $C^{0, \mu}\left(\mathbb{R}^{N}\right)$.

Remark 1.2. According to Theorem 1.1, the Bessel space $L^{s, 2}\left(\mathbb{R}^{N}\right)$ is topologically undistinguishable from the Sobolev fractional space $H^{s}\left(\mathbb{R}^{N}\right)$. Since our equation involves the Bessel norm, we will not exploit this characterization.

Going back to 1.1 , it must be said that in the case $s \in(0,1)$ less is known than in the local case $s=1$. Equation (1.1) arises from the more general Schrödinger-Klein-Gordon equation

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=(I-\Delta)^{s} \psi-\psi-f(x, \psi)
$$

describing the the behaviour of bosons, spin-0 particles in relativistic fields. We refer to [15, 19, 20, 21] for very recent results about the existence of variational solutions. When $s=1 / 2$, the operator $(I-\Delta)^{1 / 2}=\sqrt{I-\Delta}$ is also called pseudorelativistic or semirelativistic, and it is very important in the study of several physical phenomena. The interested reader can refer to $[8,9]$ and to the references therein for more information.

Remark 1.3. The identity operator I is often replaced by a multiple $m^{2} I$, for some real number $m \neq 0$. The operator reads then $\left(-\Delta+m^{2}\right)^{s}$, but for our purposes this generality does not give any advantage.

A common feature in the current literature is that the existence of solutions to (1.1) is related to the behavior of the potential function a at infinity. This is a very useful tool for applying concentration-compactness methods or for working in weighted Lebesgue spaces. In the present paper, following [1], we investigate (1.1) under much weaker assumptions on a, see Section 2. The first existence results for semilinear elliptic equations with irregular potentials appeared, as far as we know, in [7].

2. Variational setting

We introduce some tools that will be used systematically in the rest of this article.

Definition 2.1. \quad For any $y \in \mathbb{R}^{N}$, we define the translation operator τ_{y} acting on a (suitably regular) function f as $\tau_{y} f: x \mapsto f(x-y)$.

- In a normed space X, we denote by $B(x, r)$ the ball centered at $x \in X$ with radius $r>0$, and by $\bar{B}(x, r)$ its closure. The boundary of $B(0,1)$ will be denoted by $S(X)$.
- For any $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$, we define

$$
\mathscr{P}=\bar{B}\left(0,|a|_{\infty}\right) \subset L^{\infty}\left(\mathbb{R}^{N}\right)
$$

Looking at $L^{\infty}\left(\mathbb{R}^{N}\right)$ as the dual space of $L^{1}\left(\mathbb{R}^{N}\right)$, the set \mathscr{P} will be endowed with the weak* topology. It is well-known that \mathscr{P} becomes a compact metrizable space, see [17, Theorems 3.15 and 3.16].

- For any $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$, we define the subset $\mathscr{A}=\left\{\tau_{y} a: y \in \mathbb{R}^{N}\right\}$ of \mathscr{P}, endowed with the relative topology. Finally, we introduce $\mathscr{B}=\overline{\mathscr{A}} \backslash \mathscr{A}$.
- For any $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$, we define

$$
\begin{equation*}
\bar{a}=\sup \{\operatorname{ess} \sup u: u \in \mathscr{B}\} . \tag{2.1}
\end{equation*}
$$

If $\mathscr{B}=\emptyset$, we agree that $\bar{a}=-\infty$.
The following is the main assumption of this article.
(A1) The function $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$ is such that $a^{+}=\max \{a, 0\}$ is not identically zero, and either (i) $\bar{a} \leq 0$ or (ii) $\bar{a} \leq a$.
Weak solutions to 1.1 are critical points of the functional $I_{a}: L^{s, 2}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}^{N}$ defined by

$$
I_{a}(u)=\frac{1}{2}\|u\|_{L^{s, 2}}^{2}-\frac{1}{p} \int_{\mathbb{R}^{N}} a|u|^{p} .
$$

Definition 2.2. A solution $u \in L^{s, 2}\left(\mathbb{R}^{N}\right)$ is called a ground-state solution to (1.1) if I_{a} attains at u the infimum over the set of all solutions to 1.1), namely

$$
\left.I_{a}(u)=\min \left\{I_{a}(v): v \in L^{s, 2}\left(\mathbb{R}^{N}\right) \text { solves } 1.1\right)\right\}
$$

We now state the main result of our paper.
Theorem 2.3. Equation (1.1) has (at least) a positive ground state provided that $2<p<2_{s}^{\star}$ and $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$ satisfies (A1).

3. Construction of a Nehari manifold

We introduce the Nehari set of I_{a} as

$$
\mathscr{N}_{a}=\left\{u \in L^{s, 2}\left(\mathbb{R}^{N}\right): u \neq 0, D I_{a}(u)[u]=0\right\}
$$

Definition 3.1. $c_{a}=\inf _{u \in \mathscr{N}_{a}} I_{a}(u)$. We agree that $c_{a}=+\infty$ if $\mathscr{N}_{a}=\emptyset$.
To proceed further, we need a "dual" characterization of the essential supremum.
Lemma 3.2. Let $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$. It results that

$$
\begin{equation*}
\operatorname{ess} \sup a=\sup \left\{\int_{\mathbb{R}^{N}} a \varphi: \varphi \in L^{1}\left(\mathbb{R}^{N}\right), \varphi \geq 0, \int_{\mathbb{R}^{N}} \varphi=1\right\} . \tag{3.1}
\end{equation*}
$$

Proof. Whenever $\varphi \in L^{1}\left(\mathbb{R}^{N}\right), \varphi \geq 0, \int_{\mathbb{R}^{N}} \varphi=1$, we compute

$$
\int_{\mathbb{R}^{N}} a \varphi \leq \operatorname{ess} \sup a \int_{\mathbb{R}^{N}} \varphi=\operatorname{ess} \sup a
$$

Hence

$$
\begin{equation*}
\operatorname{ess} \sup a \geq \sup \left\{\int_{\mathbb{R}^{N}} a \varphi: \varphi \in L^{1}\left(\mathbb{R}^{N}\right), \varphi \geq 0, \int_{\mathbb{R}^{N}} \varphi=1\right\} \tag{3.2}
\end{equation*}
$$

On the other hand, if we set

$$
\sup \left\{\int_{\mathbb{R}^{N}} a \varphi: \varphi \in L^{1}\left(\mathbb{R}^{N}\right), \varphi \geq 0, \int_{\mathbb{R}^{N}} \varphi=1\right\}=b
$$

and we assume that ess $\sup a>b$, then for some $\delta>0$ we can say that the set $\Omega=\left\{x \in \mathbb{R}^{N}: a(x) \geq b+\delta\right\}$ has positive measure. Let us define $\varphi=\chi_{\Omega} / \mathcal{L}^{N}(\Omega)$, so that

$$
\int_{\mathbb{R}^{N}} a \varphi=\frac{1}{\mathcal{L}^{N}(\Omega)} \int_{\Omega} a \geq b+\delta
$$

contrary to 3.2 . This completes the proof.
Recall from assumption (A1) that $a^{+} \neq 0$ as an element of $L^{\infty}\left(\mathbb{R}^{N}\right)$. Therefore Lemma 3.2 yields a function $\varphi \in S\left(L^{1}\left(\mathbb{R}^{N}\right)\right)$ such that $\varphi \geq 0$ and $\int_{\mathbb{R}^{N}} a \varphi>0$. By a standard mollification argument, we can assume without loss of generality that $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$.

Since $L^{s, 2}\left(\mathbb{R}^{N}\right)$ is continuously embedded into $L^{p}\left(\mathbb{R}^{N}\right)$ for every $2<p<2_{s}^{\star}$, we can set

$$
S_{p}=\sup \left\{\frac{|u|_{p}}{\|u\|_{L^{s, 2}}}: u \in L^{s, 2}\left(\mathbb{R}^{N}\right), u \neq 0\right\} \in(0,+\infty)
$$

We write

$$
\mathscr{B}_{a}^{+}=\left\{u \in L^{s, 2}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} a|u|^{p}>0\right\}
$$

and

$$
\mathscr{S}_{a}^{+}=\mathscr{B}_{a}^{+} \cap S\left(L^{s, 2}\left(\mathbb{R}^{N}\right)\right) .
$$

Lemma 3.3. The set \mathscr{B}_{a}^{+}is non-empty and open in $L^{s, 2}\left(\mathbb{R}^{N}\right)$.
Proof. We already know that $\varphi \in \mathscr{B}_{a}^{+}$. Furthermore, the map $u \mapsto \int_{\mathbb{R}^{N}} a|u|^{p}$ is continuous from $L^{s, 2}\left(\mathbb{R}^{N}\right)$ to \mathbb{R}, since $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$ and $2<p<2^{\star}$. This immediately implies that \mathscr{B}_{a}^{+}is an open subset of $L^{s, 2}\left(\mathbb{R}^{N}\right)$.
Lemma 3.4. There exists a homeomorphism $\mathscr{S}_{a}^{+} \rightarrow \mathscr{N}_{a}$ whose inverse map is $u \mapsto u /\|u\|_{L^{s, 2}}$.
Proof. For any $u \in L^{s, 2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ we consider the fibering map

$$
h(t)=I_{a}(t u), \quad(t \geq 0)
$$

It follows easily that h has a positive critical point if, and only if, $u \in \mathscr{B}_{a}^{+}$. It is a Calculus exercise to check that, in this case, the critical point of h is the unique non-degenerate global maximum $\bar{t}(u)>0$ of h. By direct computation, $t u \in \mathscr{N}_{a}$ if, and only if, $t=\bar{t}(u)$. Explicitly,

$$
\bar{t}(u)=\frac{\|u\|_{L^{s, 2}}^{2}}{\int_{\mathbb{R}^{N}} a|u|^{p}} .
$$

This shows that the map $u \mapsto \bar{t}(u)$ is continuous from \mathscr{B}_{a}^{+}to $(0,+\infty)$. The rest of the proof follows easily.
Lemma 3.5. The set \mathscr{N}_{a} is closed in $L^{s, 2}\left(\mathbb{R}^{N}\right)$.
Proof. If $u \in \mathscr{N}_{a}$, then

$$
\|u\|_{L^{s, 2}}^{2}=\int_{\mathbb{R}^{N}} a|u|^{p} \leq \int_{\mathbb{R}^{N}} a^{+}|u|^{p} \leq S_{p}\left|a^{+}\right|_{\infty}\|u\|_{L^{s, 2}}^{p}
$$

It follows that

$$
\begin{equation*}
\inf _{u \in \mathscr{N}_{a}}\|u\|_{L^{s, 2}} \geq \frac{1}{S_{p}\left|a^{+}\right|_{\infty}^{1 /(p-2)}} \tag{3.3}
\end{equation*}
$$

As a consequence, 0 is not a cluster point of \mathscr{N}_{a}, which turns out to be closed.
It is now standard to invoke the Implicit Function Theorem to prove that \mathscr{N}_{a} is a C^{2}-submanifold of $L^{s, 2}\left(\mathbb{R}^{N}\right)$ and that 3.3 implies

$$
\inf _{u \in \mathscr{N}_{a}} I_{a}(u) \geq\left(\frac{1}{2}-\frac{1}{p}\right) \frac{1}{S_{p}^{2}\left|a^{+}\right|_{\infty}^{2 /(p-2)}}
$$

More importantly, \mathscr{N}_{a} is a natural constraint for I_{a}, i.e. every critical point of the restriction \bar{I}_{a} of I_{a} to \mathscr{N}_{a} is a nontrivial critical point of I_{a}. The following result was proved in [15, Proposition 3.2], and allows us to consider only positive ground states.

Proposition 3.6. Any weak solution to (1.1) is strictly positive.
Proposition 3.7. Let \bar{I}_{a} be the restriction of the functional I_{a} to the manifold \mathscr{N}_{a}. Every Palais-Smale sequence at level c for \bar{I}_{a} is also a Palais-Smale sequence at level c for I_{a}.

Proof. Assume that $\left\{u_{n}\right\}_{n} \subset \mathscr{N}_{a}$ is a Palais-Smale sequence at level c for \bar{I}_{a}, namely

$$
\lim _{n \rightarrow+\infty} \bar{I}_{a}\left(u_{n}\right)=c
$$

and

$$
\lim _{n \rightarrow+\infty} D \bar{I}_{a}\left(u_{n}\right)=0
$$

in the norm topology. It suffices to show that the sequence $\left\{\nabla I_{a}\left(u_{n}\right)\right\}_{n}$ converges to zero in $L^{s, 2}\left(\mathbb{R}^{N}\right)$. Let us abbreviate $\psi(u)=D I_{a}(u)[u]$, so that $\mathscr{N}_{a}=\psi^{-1}(\{0\}) \backslash\{0\}$. From the fact that $u_{n} \in \mathscr{N}_{a}$, we deduce that $I_{a}\left(u_{n}\right)=(1 / 2-1 / p)\left\|u_{n}\right\|_{L^{s, 2}}^{2}$, and hence the sequence $\left\{u_{n}\right\}_{n}$ is bounded. This implies that

$$
\begin{equation*}
\sup _{n} \frac{\left\|\nabla \psi\left(u_{n}\right)\right\|_{L^{s, 2}}}{\left\|u_{n}\right\|_{L^{s, 2}}}<+\infty \tag{3.4}
\end{equation*}
$$

Explicitly, we have that, for every $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\langle\nabla \psi\left(u_{n}\right) \mid u_{n}\right\rangle=(2-p)\left\|u_{n}\right\|_{L^{s, 2}}^{2}<0 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \bar{I}_{a}\left(u_{n}\right)=\nabla I_{a}\left(u_{n}\right)-\frac{\left\langle\nabla I_{a}\left(u_{n}\right) \mid \nabla \psi\left(u_{n}\right)\right\rangle}{\left\|\nabla \psi\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}} \nabla \psi\left(u_{n}\right) \tag{3.6}
\end{equation*}
$$

Observe that $\nabla I_{a}\left(u_{n}\right) \perp u_{n}$ because $u_{n} \in \mathscr{N}_{a}$. If we consider the quantity

$$
\left\|\nabla \psi\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}-\left(\frac{\left\langle\nabla I_{a}\left(u_{n}\right) \mid \nabla \psi\left(u_{n}\right)\right\rangle}{\left\|\nabla I_{a}\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}}\right)^{2}
$$

we immediately see that it equals the square of the norm of the projection of the vector $\nabla \psi\left(u_{n}\right)$ onto the subspace of $L^{s, 2}\left(\mathbb{R}^{N}\right)$ orthogonal to the unit vector $\nabla I_{a}\left(u_{n}\right) /\left\|\nabla I_{a}\left(u_{n}\right)\right\|$. Since this subspace contains in particular the vector $u_{n} /\left\|u_{n}\right\|_{L^{s, 2}}$, it follows from the Pythagorean Theorem that

$$
\begin{equation*}
\left\|\nabla \psi\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}-\left(\frac{\left\langle\nabla I_{a}\left(u_{n}\right) \mid \nabla \psi\left(u_{n}\right)\right\rangle}{\left\|\nabla I_{a}\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}}\right)^{2} \geq\left(\frac{\left\langle\nabla \psi\left(u_{n}\right) \mid u_{n}\right\rangle}{\left\|u_{n}\right\|_{L^{s, 2}}}\right)^{2} \tag{3.7}
\end{equation*}
$$

This yields, recalling (3.6), 3.5 and (3.4,

$$
\begin{aligned}
& \left\|\nabla \bar{I}_{a}\left(u_{n}\right)\right\|_{L^{s, 2}}\left\|\nabla I_{a}\left(u_{n}\right)\right\|_{L^{s, 2}} \\
& \geq\left\langle\nabla \bar{I}_{a}\left(u_{n}\right) \mid \nabla I_{a}\left(u_{n}\right)\right\rangle \\
& =\frac{\left\|\nabla I_{a}\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}}{\left\|\nabla \psi\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}}\left(\left\|\nabla \psi\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}-\left(\frac{\left\langle\nabla I_{a}\left(u_{n}\right) \mid \nabla \psi\left(u_{n}\right)\right\rangle}{\left\|\nabla I_{a}\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}}\right)^{2}\right)^{2} \\
& \geq \frac{\left\|\nabla I_{a}\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}}{\left\|\nabla \psi\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}}\left(\frac{\left\langle\nabla \psi\left(u_{n}\right) \mid u_{n}\right\rangle}{\left\|u_{n}\right\|_{L^{s, 2}}}\right)^{2} \\
& =\frac{\left\|\nabla I_{a}\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}}{\left\|\nabla \psi\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}}(2-p)^{2}\left\|u_{n}\right\|_{L^{s, 2}}^{2} \\
& \geq C\left\|\nabla I_{a}\left(u_{n}\right)\right\|_{L^{s, 2}}^{2}
\end{aligned}
$$

This argument proves that $\lim _{n \rightarrow+\infty}\left\|\nabla I_{a}\left(u_{n}\right)\right\|_{L^{s, 2}}=0$, and we complete the proof.

4. Splitting and vanishing sequences

The analysis of Palais-Smale sequences can be harder than in the more familiar case of a potential function a that has a precise asymptotic behavior at infinity. For this reason, we recall a language taken from [1].

Definition 4.1. A map $F: X \rightarrow Y$ between two Banach spaces splits in the BL sense (BL stands for Brezis and Lieb.) if for any sequence $\left\{u_{n}\right\}_{n} \subset X$ such that $u_{n} \rightharpoonup u$ in X there results

$$
F\left(u_{n}-u\right)=F\left(u_{n}\right)-F(u)+o(1)
$$

in the norm topology of Y.
Lemma 4.2. Suppose that $\left\{u_{n}\right\}_{n} \subset L^{s, 2}\left(\mathbb{R}^{N}\right)$ and $\left\{y_{n}\right\}_{n} \subset \mathbb{R}^{N}$ are such that $\tau_{-y_{n}} u_{n} \rightharpoonup u_{0}$ in $L^{s, 2}\left(\mathbb{R}^{N}\right)$. Then

$$
I_{\tau_{-y_{n}} a}\left(\tau_{-y_{n}} u_{n}\right)-I_{\tau_{-y_{n}} a}\left(\tau_{-y_{n}} u_{n}-u_{0}\right)-I_{\tau_{-y_{n}} a}\left(u_{0}\right)=o(1)
$$

and

$$
D I_{\tau_{-y_{n}} a}\left(\tau_{-y_{n}} u_{n}\right)-D I_{\tau_{-y_{n}} a}\left(\tau_{-y_{n}} u_{n}-u_{0}\right)-D I_{\tau_{-y_{n}} a}\left(u_{0}\right)=o(1)
$$

Proof. Since both $F(u)=p^{-1}|u|^{p}$ and $F^{\prime}(u)=|u|^{p-2} u$ split from $L^{s, 2}\left(\mathbb{R}^{N}\right)$ into $L^{1}\left(\mathbb{R}^{N}\right)$, see [19, Lemma 4.4], we can write

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left|\left(\tau_{-y_{n}} a\right)\left(F\left(\tau_{-y_{n}} u_{n}\right)-F\left(\tau_{-y_{n}} u_{n}-u_{0}\right)-F\left(u_{0}\right)\right)\right| \\
& \leq|a|_{\infty} \int_{\mathbb{R}^{N}}\left|F\left(\tau_{-y_{n}} u_{n}\right)-F\left(\tau_{-y_{n}} u_{n}-u_{0}\right)-F\left(u_{0}\right)\right|=o(1)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left|\left(\tau_{-y_{n}} a\right)\left(F^{\prime}\left(\tau_{-y_{n}} u_{n}\right)-F^{\prime}\left(\tau_{-y_{n}} u_{n}-u_{0}\right)-F^{\prime}\left(u_{0}\right)\right)\right|^{p /(p-1)} \\
& \leq|a|_{\infty}^{p /(p-1)} \int_{\mathbb{R}^{N}}\left|F^{\prime}\left(\tau_{-y_{n}} u_{n}\right)-F^{\prime}\left(\tau_{-y_{n}} u_{n}-u_{0}\right)-F^{\prime}\left(u_{0}\right)\right|^{p /(p-1)}
\end{aligned}
$$

Recalling that the squared norm splits in the BL sense, the proof is complete.
Definition 4.3. A sequence $\left\{u_{n}\right\}_{n} \subset L^{s, 2}\left(\mathbb{R}^{N}\right)$ vanishes if $\tau_{x_{n}} u_{n} \rightharpoonup 0$ in $L^{s, 2}\left(\mathbb{R}^{N}\right)$ for any sequence $\left\{x_{n}\right\}_{n}$ of points in \mathbb{R}^{N}.
Remark 4.4. Any vanishing sequence is necessarily bounded in $L^{s, 2}\left(\mathbb{R}^{N}\right)$, and by the Rellich-Kondratchev theorem (see [11, Corollary 7.2]) $\tau_{x_{n}} u_{n} \rightarrow 0$ strongly in $L_{\text {loc }}^{2}\left(\mathbb{R}^{N}\right)$ for every sequence $\left\{x_{n}\right\}_{n} \subset \mathbb{R}^{N}$. This yields that, for every $R>0$,

$$
\lim _{n \rightarrow+\infty} \sup \left\{\int_{B(x, R)}\left|u_{n}\right|^{2}: x \in \mathbb{R}^{N}\right\}=0
$$

By the fractional version of Lions' vanishing lemma [18, Proposition II.4], we deduce that $u_{n} \rightarrow 0$ strongly in $L^{q}\left(\mathbb{R}^{N}\right)$ for every $2<q<2_{s}^{\star}$.
Definition 4.5. If $\left\{u_{n}\right\}_{n}$ is a sequence from $L^{s, 2}\left(\mathbb{R}^{N}\right)$, we say that $\left\{D I_{a}\left(u_{n}\right)\right\}_{n}{ }^{*_{-}}$ vanishes if $D I_{\tau_{x_{n}} a}\left(u_{n}\right){\nu^{\star} 0}$ in the weak ${ }^{*}$ topology for every sequence $\left\{x_{n}\right\}_{n} \subset \mathbb{R}^{N}$.
Remark 4.6. It follows from the definition of the gradient and from the definition of the weak* topology that $\left\{D I_{a}\left(u_{n}\right)\right\}_{n}{ }^{*}$-vanishes if, and only if, $\left\{\nabla I_{a}\left(u_{n}\right)\right\}_{n}$ vanishes in $L^{s, 2}\left(\mathbb{R}^{N}\right)$ in the sense of Definition 4.3.

Lemma 4.7. Suppose that $\left\{u_{n}\right\}_{n} \subset L^{s, 2}\left(\mathbb{R}^{N}\right),\left\{y_{n}\right\}_{n} \subset \mathbb{R}^{N}$ and $a^{*} \in L^{\infty}\left(\mathbb{R}^{N}\right)$ are such that $\left\{D I_{a}\left(u_{n}\right)\right\}_{n}{ }^{*}$-vanishes, $\tau_{-y_{n}} u_{n} \rightharpoonup u_{0}$ weakly in $L^{s, 2}\left(\mathbb{R}^{N}\right)$ and $\tau_{-y_{n}} a \rightharpoonup^{*}$ a^{*} weakly*. If $v_{n}=u_{n}-\tau_{y_{n}} u_{0}$, then

$$
\begin{gather*}
\lim _{n \rightarrow+\infty}\left(I_{a}\left(u_{n}\right)-I_{a}\left(v_{n}\right)\right)=I_{a^{*}}\left(u_{0}\right) \tag{4.1}\\
\lim _{n \rightarrow+\infty}\left(\left\|u_{n}\right\|_{L^{s, 2}}^{2}-\left\|v_{n}\right\|_{L^{s, 2}}^{2}\right)=\left\|u_{0}\right\|_{L^{s, 2}}^{2} \tag{4.2}\\
D I_{a^{*}}\left(u_{0}\right)=0 . \tag{4.3}
\end{gather*}
$$

Furthermore, also $\left\{D I_{a}\left(v_{n}\right)\right\}_{n}{ }^{*}$-vanishes.

Proof. From the assumption $\tau_{-y_{n}} a \rightharpoonup^{*} a^{*}$ we deduce that $I_{a^{*}}\left(u_{0}\right)=I_{\tau_{-y_{n}}}\left(u_{0}\right)+$ $o(1)$. Combining with Lemma 4.2 we get 4.1. Equation 4.2 follows from the splitting properties of the squared norm. We prove now 4.3).

Fix any $v \in L^{s, 2}\left(\mathbb{R}^{N}\right)$. We have that $\lim _{n \rightarrow+\infty} F^{\prime}\left(\tau_{-y_{n}} u_{n}\right) v=F^{\prime}\left(u_{0}\right) v$ in $L^{1}\left(\mathbb{R}^{N}\right)$ due to the fact that $\tau_{-y_{n}} u_{n} \rightarrow u_{0}$ strongly in $L_{\text {loc }}^{p}\left(\mathbb{R}^{N}\right)$ (see again [11]). Therefore

$$
\begin{aligned}
D I_{a^{*}}\left(u_{0}\right)[v] & =\left\langle u_{0} \mid v\right\rangle-\int_{\mathbb{R}^{N}} \tau_{-y_{n}} a F^{\prime}\left(u_{0}\right) v+o(1) \\
& =\left\langle\tau_{-y_{n}} u_{n} \mid v\right\rangle-\int_{\mathbb{R}^{N}} \tau_{-y_{n}} a F^{\prime}\left(\tau_{-y_{n}} u_{n}\right) v+o(1) \\
& =D I_{\tau_{-y_{n}} a}\left(\tau_{-y_{n}} u_{n}\right)[v]+o(1)=o(1),
\end{aligned}
$$

where we have used the assumption that $\left\{D I_{a}\left(u_{n}\right)\right\}_{n}{ }^{*}$-vanishes. This completes the proof of 4.3).

To conclude the proof, we suppose that $\left\{x_{n}\right\}_{n}$ is a sequence of points from \mathbb{R}^{N} and that $v \in L^{s, 2}\left(\mathbb{R}^{N}\right)$. We distinguish two cases.
(i) Up to a subsequence, $\lim _{n \rightarrow+\infty}\left|x_{n}+y_{n}\right|=+\infty$. This implies that $\tau_{-x_{n}-y_{n}} v \rightharpoonup$ 0 weakly in $L^{s, 2}\left(\mathbb{R}^{N}\right)$, and thus $F^{\prime}\left(u_{0}\right) \tau_{-x_{n}-y_{n}} v \rightarrow 0$ strongly in $L^{1}\left(\mathbb{R}^{N}\right)$. This yields

$$
\begin{equation*}
D I_{\tau_{-y_{n}} a}\left(u_{0}\right)\left[\tau_{-x_{n}-y_{n}} v\right]=o(1) \tag{4.4}
\end{equation*}
$$

Equation 4.4, Lemma 4.2 and the fact that $\left\{D I_{a}\left(v_{n}\right)\right\}_{n}{ }^{*}$-vanishes, we obtain

$$
\begin{aligned}
D I_{\tau_{x_{n}} a}\left(\tau_{x_{n}} v_{n}\right)[v] & =D I_{-y_{n} a}\left(\tau_{-y_{n}} v_{n}\right)\left[\tau_{-x_{n}-y_{n}} v\right] \\
& =D I_{\tau_{-y_{n}} a}\left(\tau_{-y_{n}} u_{n}\right)\left[\tau_{-x_{n}-y_{n}} v\right]-D I_{\tau_{-y_{n}} a}\left(u_{0}\right)\left[\tau_{-x_{n}-y_{n}} v\right]+o(1) \\
& =D I_{\tau_{-y_{n}} a}\left(\tau_{-y_{n}} u_{n}\right)\left[\tau_{-x_{n}-y_{n}} v\right]+o(1) \\
& =D I_{\tau_{x_{n}} a}\left(\tau_{x_{n}} u_{n}\right)[v]+o(1) \\
& =o(1) .
\end{aligned}
$$

Since the limit is independent of the subsequence, this shows that $\left\{D I_{a}\left(v_{n}\right)\right\}_{n}$ *-vanishes in this case.
(ii) Up to a subsequence, $\lim _{n \rightarrow+\infty}\left(x_{n}+y_{n}\right)=-\xi \in \mathbb{R}^{N}$. In this case,

$$
\begin{aligned}
D I_{\tau_{x_{n}} a}\left(\tau_{x_{n}} v_{n}\right)[v] & =D I_{\tau_{-y_{n}} a}\left(\tau_{-y_{n}} v_{n}\right)\left[\tau_{\xi} v\right]+o(1) \\
& =D I_{\tau_{-y_{n}} a}\left(\tau_{-y_{n}} u_{n}\right)\left[\tau_{\xi}\right]-D I_{\tau_{-y_{n}} a}\left(u_{0}\right)\left[\tau_{\xi} v\right]+o(1) \\
& =-D I_{\tau_{-y_{n}} a}\left(u_{0}\right)\left[\tau_{\xi} v\right]+o(1) \\
& =-D I_{a^{*}}\left(u_{0}\right)\left[\tau_{\xi} v\right]+o(1) \\
& =o(1)
\end{aligned}
$$

and we conclude as before.
Proposition 4.8. Let $\left\{u_{n}\right\}_{n}$ be a Palais-Smale sequence for I_{a} at level $c \in \mathbb{R}$. One of the following alternatives must hold:
(a) $\lim _{n \rightarrow+\infty} u_{n}=0$ strongly in $L^{s, 2}\left(\mathbb{R}^{N}\right)$;
(b) after passing to a subsequence, there exist a positive integer k, k sequences $\left\{y_{n}^{i}\right\}_{n} \subset \mathbb{R}^{N}, k$ functions $a^{i} \in L^{\infty}\left(\mathbb{R}^{N}\right)$, and k functions $u^{i} \in L^{s, 2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ for $i=1, \ldots, k$ such that $D I_{a^{i}}\left(u^{i}\right)=0$ for every $i=1, \ldots, k$ and such that
the following hold:

$$
\begin{gather*}
\lim _{n \rightarrow+\infty}\left\|u_{n}-\sum_{i=1}^{k} \tau_{y_{n}^{i}} u^{i}\right\|_{L^{p}}=0 \tag{4.5}\\
c \geq \sum_{i=1}^{k} I_{a^{i}}\left(u^{i}\right) \tag{4.6}\\
\lim _{n \rightarrow+\infty} \tau_{-y_{n}^{i}} a=a^{i} \quad \text { in the weak }{ }^{*} \text { topology, } \tag{4.7}\\
\lim _{n \rightarrow+\infty}\left|y_{n}^{i}-y_{n}^{j}\right|=+\infty \quad \text { if } i \neq j . \tag{4.8}
\end{gather*}
$$

Proof. It follows from the assumptions that the sequence $\left\{u_{n}\right\}_{n}$ is bounded in $L^{s, 2}\left(\mathbb{R}^{N}\right)$ and $\left\{D I_{a}\left(u_{n}\right)\right\}_{n}{ }^{*}$-vanishes. We distinguish two cases.

If $\left\{u_{n}\right\}_{n}$ vanishes, then by Remark $4.4\left\{u_{n}\right\}_{n}$ converges strongly to zero in $L^{p}\left(\mathbb{R}^{N}\right)$. Recalling that $D I_{a}\left(u_{n}\right)\left[u_{n}\right]=o(1)$, we conclude that $\left\{u_{n}\right\}_{n}$ converges to zero strongly in $L^{s, 2}\left(\mathbb{R}^{N}\right)$.

If, on the contrary, $\left\{u_{n}\right\}_{n}$ does not vanish, then there exist a function $u^{1} \in$ $L^{s, 2}\left(\mathbb{R}^{N}\right)$ and a sequence $\left\{y_{n}^{1}\right\}_{n} \subset \mathbb{R}^{N}$ such that, after passing to a subsequence, and writing $u_{n}^{1}=u_{n}$, we have $\tau_{-y_{n}^{1}} u_{n}^{1} \rightharpoonup u^{1}$ weakly. Recalling that \mathscr{P} is compact, we may also assume that $\left\{\tau_{-y_{n}^{1}} a\right\}_{n}$ weakly* converges to $a^{1} \in L^{\infty}\left(\mathbb{R}^{N}\right)$. We then define $u_{n}^{2}=u_{n}^{1}-\tau_{y_{n}^{1}} u^{1}$, so that $\tau_{-y_{n}^{1}} u_{n}^{2} \rightharpoonup 0$ weakly.

Lemma 4.7 ensures that

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} I_{a}\left(u_{n}^{1}\right)-I_{a}\left(u_{n}^{2}\right)=I_{a^{1}}\left(u^{1}\right) \\
\lim _{n \rightarrow+\infty}\left\|u_{n}^{1}\right\|_{L^{s, 2}}^{2}-\left\|u_{n}^{2}\right\|_{L^{s, 2}}^{2}=0 \\
D I_{a^{1}}\left(u^{1}\right)=0
\end{gathered}
$$

and $\left\{D I_{a}\left(u_{n}^{2}\right)\right\}_{n}{ }^{*}$-vanishes. If $\left\{u_{n}^{2}\right\}_{n}$ vanishes, then it converges to zero in $L^{p}\left(\mathbb{R}^{N}\right)$ and thus also $\left\{u_{n}^{1}-\tau_{y_{n}^{1}} u^{1}\right\}_{n}$ converges to zero in $L^{p}\left(\mathbb{R}^{N}\right)$. Otherwise there exist $a^{2} \in L^{\infty}\left(\mathbb{R}^{N}\right), u^{2} \in L^{s, 2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ and a sequence $\left\{y_{n}^{2}\right\}_{n} \subset \mathbb{R}^{N}$ such that, up to a subsequence, $\lim _{n \rightarrow+\infty} \tau_{-y_{n}^{2}} a=a^{2}$ weakly* and $\lim _{n \rightarrow+\infty} \tau_{-y_{n}^{2}} u_{n}^{2}=u^{2}$ weakly. Necessarily, $\lim _{n \rightarrow+\infty}\left|y_{n}^{1}-y_{n}^{2}\right|=0$, since $\lim _{n \rightarrow+\infty} \tau_{-y_{n}^{1}} u_{n}^{2}=0$ weakly.

Iterating this construction, we obtain sequences $\left\{y_{n}^{1}\right\}_{n} \subset \mathbb{R}^{N}$, functions $a^{i} \in$ $L^{\infty}\left(\mathbb{R}^{N}\right)$ and functions $u^{i} \in L^{s, 2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ for $i=1,2,3, \ldots$. Since each u^{i} is a non-trivial critical point of $I_{a^{i}}$, we have that $\left(a^{i}\right)^{+} \neq 0$. On the other hand, $\left|\left(a^{i}\right)^{+}\right|_{\infty} \leq|a|_{\infty}$. Hence $u^{i} \in \mathscr{N}_{a^{i}}$ for every i and by (3.3) there exists a constant $C>0$, independent of i, such that $\left\|u^{i}\right\|_{L^{s, 2}} \geq C$. For every j we also have

$$
0 \leq\left\|u_{n}^{j+1}\right\|_{L^{s, 2}}^{2}=\left\|u_{n}\right\|_{L^{s, 2}}^{2}-\sum_{i=1}^{j}\left\|u^{i}\right\|_{L^{s, 2}}^{2}+o(1)
$$

which implies that the iteration must stop after finitely many steps. Therefore there exists a positive integer k such that $\left\{u_{n}^{k+1}\right\}_{n}$ vanishes, $\left\{u_{n}^{k+1}\right\}_{n}$ converges to zero strongly in $L^{p}\left(\mathbb{R}^{N}\right)$ and (4.5) holds true. Similarly,

$$
-\int_{\mathbb{R}^{N}} a\left|u_{n}^{k+1}\right|^{p} \leq I_{a}\left(u_{n}^{k+1}\right)=I_{a}\left(u_{n}\right)-\sum_{i=1}^{k} I_{a^{i}}\left(u^{i}\right)+o(1)
$$

and also (4.6) follows from $c=\lim _{n \rightarrow+\infty} I_{a}\left(u_{n}\right)$. The proof is complete.

5. Existence of a ground state

The proof of the following comparison lemma is probably known, but we reproduce here for the reader's convenience.

Lemma 5.1. Suppose that $a_{1}, a_{2} \in L^{\infty}\left(\mathbb{R}^{N}\right)$. If $a_{1} \geq a_{2}$, then $c_{a_{1}} \leq c_{a_{2}}$. If, in addition, $a_{1} \neq a_{2}$ and $I_{a_{2}}$ possesses a ground state, then $c_{a_{1}}<c_{a_{2}}$.

Proof. Without loss of generality, we assume that $a_{2}^{+}=\max \left\{a_{2}, 0\right\}$ is not identically equal to zero, otherwise there is nothing to prove. If $u \in \mathscr{N}_{a_{2}}$, then

$$
\int_{\mathbb{R}^{N}} a_{1}|u|^{p} \geq \int_{\mathbb{R}^{N}} a_{2}|u|^{p}>0
$$

We can therefore define

$$
\begin{equation*}
t=\left(\frac{\int_{\mathbb{R}^{N}} a_{2}|u|^{p}}{\int_{\mathbb{R}^{N}} a_{1}|u|^{p}}\right)^{1 /(p-2)} \leq 1 \tag{5.1}
\end{equation*}
$$

Then we have

$$
D I_{a_{1}}(t u)[t u]=t^{2}\left(\|u\|_{L^{s, 2}}^{2}-t^{p-2} \int_{\mathbb{R}^{N}} a_{1}|u|^{p}\right)=t^{2} D I_{a_{2}}(u)[u]=0
$$

and hence $t u \in \mathscr{N}_{a_{1}}$. Since

$$
\begin{aligned}
I_{a_{2}}(u) & =\frac{1}{2}\|u\|_{L^{s, 2}}^{2}-\frac{1}{p} \int_{\mathbb{R}^{N}} a_{2}|u|^{p}=\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|_{L^{s, 2}}^{2} \\
& \geq\left(\frac{1}{2}-\frac{1}{p}\right)\|t u\|_{L^{s, 2}}^{2}=J_{a_{1}}(u) \geq c_{a_{1}}
\end{aligned}
$$

we conclude that $c_{a_{2}}=\inf _{u \in \mathscr{N}_{a_{2}}} I_{a_{2}}(u) \geq c_{a_{1}}$. Furthermore, if $a_{1} \neq a_{2}$ (as elements of $L^{\infty}\left(\mathbb{R}^{N}\right)$) and u is a ground state of $I_{a_{2}}$, then $|u|>0$. In 5.1 we then have $t<1$, and it follows that $c_{a_{2}}=I_{a_{2}}(u)>I_{a_{1}}(t u) \geq c_{a_{1}}$.

Recall the definition 2.1) of \bar{a}. Then we have the following result.
Proposition 5.2. It results

$$
c_{a}<c_{\bar{a}}
$$

Proof. We first consider (i) of assumption (A1). Since $\bar{a} \leq 0$, we have $c_{\bar{a}}=\infty$. But $c_{a} \in \mathbb{R}$ because $a^{+} \neq 0$, and there is nothing more to prove. We can assume that $\bar{a}>0$ in the rest of the proof. If (ii) of assumption (A1) holds, recalling that $\bar{a}>-\infty$ entails $\mathscr{B} \neq \emptyset$ we can conclude that $a \neq \bar{a}$. Now Lemma 5.1 implies that $c_{a}<c_{\bar{a}}$, since $I_{\bar{a}}$ has a ground state by the arguments of [3, Theorem 1.1].

We are now ready to prove our main existence result.
Proof of Theorem 2.3. We have $\mathscr{N}_{a} \neq \emptyset$ and $c_{a}<\infty$ because $a^{+} \neq 0$. From 3.3) we get $c_{a}>0$. An application of Ekeland's Principle yields in a standard way a mimnimizing sequence $\left\{u_{n}\right\}_{n} \subset \mathscr{N}_{a}$ for the functional \bar{I}_{a} defined as the restriction of I_{a} to \mathscr{N}_{a}. This sequence is also a (PS)-sequence for \bar{I}_{a} at the level c_{a}. By Proposition $3.7\left\{u_{n}\right\}_{n}$ is a (PS)-sequence for I_{a} at the level c_{a}. The strong convergence of $\left\{u_{n}\right\}_{n}$ to zero is easily ruled out, since $I_{a}\left(u_{n}\right) \rightarrow c_{a}>0$. Proposition
4.8 yields then a number $k \in \mathbb{N}$, functions $a^{i} \in \overline{\mathscr{A}}$ and non-trivial critical points u^{i} of $I_{a^{i}}$ such that

$$
c_{a} \geq \sum_{i=1}^{k} I_{a^{i}}\left(u^{i}\right)
$$

From the knowledge that each u^{i} is a non-trivial critical point of $I_{a^{i}}$ we deduce $\left(a^{i}\right)^{+} \neq 0$ for every $i=1, \ldots, k$. Again by (3.3) we get $I_{a^{i}}\left(u^{i}\right)>0$ for every $i=1, \ldots, k$.

Suppose that for some index i there results $a^{i} \in \mathscr{B}$. Then $a^{i} \leq \bar{a}$, and Lemma 5.1 together with Proposition 5.2 yield $I_{a^{i}}\left(u^{i}\right) \geq c_{a^{i}} \geq c_{\bar{a}}>c_{a}$. This is a contrdiction. Therefore each a^{i} is a translation of a, and $I_{a^{i}}\left(u^{i}\right) \geq c_{a}$ for every $i=1, \ldots, k$. This forces $k=1$, and a translation of u^{1} is a ground state of I_{a}.

6. An example

Assumption (A1) can be rephrased in a more familiar way for continuous bounded potentials.

Proposition 6.1. For any $a \in L^{\infty}\left(\mathbb{R}^{N}\right)$, define

$$
\hat{a}=\lim _{R \rightarrow+\infty} \operatorname{ess}_{x \in \mathbb{R}^{N} \backslash B(0, R)} a(x) .
$$

If (A1) holds with \bar{a} replaced by \hat{a}, then (A1) holds with \bar{a}.
Proof. If $\mathscr{B}=\emptyset$, then $\bar{a}=-\infty$ and (A1) holds. We may assume that $\mathscr{B} \neq \emptyset$, so that a cannot be constant. Let us prove that

$$
\begin{equation*}
\bar{a} \leq \hat{a} . \tag{6.1}
\end{equation*}
$$

Pick $b \in \mathscr{B}$. There is a sequence $\left\{x_{n}\right\}_{n} \subset \mathbb{R}^{N}$ such that $\tau_{x_{n}} a \rightharpoonup^{\star} b$. Translations are continuous in the weak ${ }^{\star}$ topology of $L^{\infty}\left(\mathbb{R}^{N}\right)$, since they are continuous in $L^{1}\left(\mathbb{R}^{N}\right)$. For the sake of contradiction, suppose that $\left\{x_{n}\right\}_{n}$ contains a bounded subsequence. Up to a further subsequence, there must exist a point $\xi \in \mathbb{R}^{N}$ such that $x_{n} \rightarrow \xi$ and $\tau_{x_{n}} a \rightharpoonup^{\star} \tau_{\xi} a$. Since \mathscr{P} is metrizable, $\tau_{\xi} a=b \notin \mathscr{A}$, a contradiction. Therefore $\lim _{n \rightarrow+\infty}\left|x_{n}\right|=+\infty$.

Let $\varepsilon>0$ be given, and apply Lemma 3.2 there exists $\varphi \in L^{1}\left(\mathbb{R}^{N}\right)$ with $\varphi \geq 0$ and $\|\varphi\|_{L^{1}}=1$ such that

$$
\int_{\mathbb{R}^{N}} b \varphi \geq \operatorname{ess} \sup b-\frac{\varepsilon}{2} .
$$

Choose $\tilde{\psi} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $\tilde{\psi} \geq 0$ and

$$
\|\varphi-\tilde{\psi}\|_{L^{1}} \leq \frac{\varepsilon}{4\|b\|_{L^{\infty}}}
$$

Now $\psi=\tilde{\psi} /\|\tilde{\psi}\|_{L^{1}} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ satisfies

$$
\|\varphi-\psi\|_{L^{1}} \leq \frac{\varepsilon}{2\|b\|_{L^{\infty}}}
$$

$\psi \geq 0$ and $\|\psi\|_{L^{1}}=1$. This implies

$$
\int_{\mathbb{R}^{N}} b \psi=\int_{\mathbb{R}^{N}} b \varphi-\int_{\mathbb{R}^{N}} b(\varphi-\psi) \geq \int_{\mathbb{R}^{N}} b \varphi-\|b\|_{L^{\infty}}\|\psi-\varphi\|_{L^{1}} \geq \operatorname{ess} \sup b-\varepsilon
$$

Suppose that $\operatorname{supp} \psi \subset B(0, R)$: then

$$
\begin{aligned}
\operatorname{ess} \sup b-\varepsilon & \leq \int_{\mathbb{R}^{N}} b \psi=\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{N}}\left(\tau_{x_{n}} a\right) \psi \\
& \leq \lim _{n \rightarrow+\infty} \operatorname{ess~sup}_{x \in B\left(-x_{n}, R\right)} a(x) \int_{\mathbb{R}^{N}} \psi \\
& \leq \lim _{n \rightarrow+\infty} \operatorname{ess}_{x \in \mathbb{R}^{N} \backslash B\left(0,\left|x_{n}\right|-R\right)} a(x)=\hat{a} .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we conclude that ess $\sup b \leq \hat{a}$. If (i) of assumption (A1) holds, then 6.1 yields $\bar{a} \leq \hat{a} \leq 0$. If (ii) holds, then 6.1 yields $\bar{a} \leq \hat{a} \leq a$, and the proof is complete.

The following corollary is an immediate consequence of Theorem 2.3.
Corollary 6.2. If a is a bounded continuous function such that either

$$
\limsup _{|x| \rightarrow+\infty} a(x) \leq 0
$$

or

$$
\lim \sup a(x) \leq a \text {, }
$$

$$
|x| \rightarrow+\infty
$$

then equation (1.1) has (at least) a positive ground state as soon as $2<p<2_{s}^{\star}$.
Acknowledgements. The author is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The manuscript was realized within the auspices of the INdAM - GNAMPA Projects Problemi non lineari alle derivate parziali (Prot_U-UFMBAZ-2018-000384).

References

[1] N. Ackermann, J. Chagoya; Ground states for irregular and indefinite superlinear Schrödinger equations, J. Differential Equations, 261 (2016), 5180-5201.
[2] D. R. Adams, L. I. Hedberg; Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1996.
[3] V. Ambrosio; Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, Journal of Mathematical Physics, 57, 051502 (2016).
[4] A. Bahri, P.-L. Lions; On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), no. 3, 365-413.
[5] H. Berestycki, P.-L. Lions; Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal., 82 (1983), no. 4, 313-345.
[6] H. Berestycki, P.-L. Lions; Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rational Mech. Anal., 82 (1983), no. 4, 313-345.
[7] G. Cerami, R. Molle; On some Schrödinger equations with non regular potential at infinity, Discrete Contin. Dyn. Syst., 28 (2) (2010), 827-844.
[8] S. Cingolani, S. Secchi; Ground states for the pseudo-relativistic Hartree equation with external potential. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 145 (1), 73-90.
[9] S. Cingolani, S. Secchi; Intertwining solutions for magnetic relativistic Hartree type equations, Nonlinearity, 31 (5), 2294.
[10] M. Clapp, T. Weth; Multiple solutions of nonlinear scalar field equations, Comm. Partial Differential Equations, 29 (2004), 1533-1554.
[11] E. Di Nezza, G. Palatucci, E. Valdinoci; Hitchhiker's guide to fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.
[12] W. Y. Ding, W.-M. Ni; On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.
[13] M. M. Fall, V. Felli; Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), no. 12, 5827-5867.
[14] P. Felmer, A. Quaas, J. Tan; Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.
[15] P. Felmer, I. Vergara; Scalar field equation with non-local diffusion, Nonlinear Differ. Eq. Appl., 22 (2015), 1411-1428.
[16] P. H. Rabinowitz; On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
[17] W. Rudin; Functional analysis, second edition, McGraw-Hill Inc., New York, 1991.
[18] S. Secchi; Ground state solutions for nonlinear fractional Schrödinger equations in \mathbb{R}^{N}, Journal of Mathematical Physics, 54031501 (2013).
[19] S. Secchi; Concave-convex nonlinearities for some nonlinear fractional equations involving the Bessel operator, Complex Variables and Elliptic Equations, 62 (2017), 654-669.
[20] S. Secchi; On some nonlinear fractional equations involving the Bessel operator, J. Dynam. Differential Equations, 29 (2017), no. 3, 1173-1193.
[21] S. Secchi; On a generalized pseudorelativistic Schrödinger equation with supercritical growth, arXiv:1708.03479.
[22] E. M. Stein; Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J. 1970.

Simone Secchi
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Italy

E-mail address: simone.secchi@unimib.it

[^0]: 2010 Mathematics Subject Classification. 35KJ60, 35Q55, 35S05.
 Key words and phrases. Bessel fractional operator, fractional Laplacian.
 (C)2018 Texas State University.

 Published September 15, 2018.

