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Dedicated to Anna Aloe

Abstract. In recent years a growing attention has been devoted to ∆λ-

Laplacians, linear second-order degenerate elliptic PDO’s contained in the gen-
eral class introduced by Franchi and Lanconelli in some papers dated 1983–84

[12, 13, 14]. Here we present a survey on several results appeared in litera-

ture in the previous decades, mainly regarding: (i) Geometric and functional
analysis frameworks for the ∆λ’s; (ii) regularity and pointwise estimates for

the solutions to ∆λu = 0; (iii) Liouville theorems for entire solutions; (iv) Po-
hozaev identities for semilinear equations involving ∆λ-Laplacians; (v) Hardy

inequalities; (vi) global attractors for the parabolic and damped hyperbolic

counterparts of the ∆λ’s.
We also show several typical examples of ∆λ-Laplacians, stressing that their

class contains, as very particular examples, the celebrated Baouendi-Grushin

operators as well as the Lα,β and Pα,β operators respectively introduced by
Thuy and Tri in 2002 [36] and by Thuy and Tri in 2012 [37].

1. Introduction

1.1. ∆λ-operators. In RN , whose point will be denoted by x = (x1, . . . , xN ), let
us consider a n-tuple λ := (λ1, . . . , λN ) of real functions

λj : RN → R, j = 1, . . . , N,

such that λ1 = 1 and λj(x) = λj(x1, . . . , xj−1) for j ≥ 2. Define the linear second
order partial differential operators ∆λ as follows:

∆λ :=
N∑
j=1

λj∂xj (λj∂xj ) =
N∑
j=1

λ2
j∂

2
xj . (1.1)

1.2. If the λj ’s are non-identically zero polynomial functions then ∆λ is hypoel-
liptic, i.e., every distributional solution u to the equation

∆λu = f
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in an open set Ω ⊆ RN , is actually of class C∞ in Ω if f is C∞ in Ω. This is an
easy consequence of the celebrated Hörmander theorem on the hypoellipticity of
the “sum of squares of vector fields” [18]. Indeed, let

a := Lie{λ1∂x1 , . . . , λN∂xN }. (1.2)

Then, λ1∂x1 = ∂x1 ∈ a. Moreover, if j ≥ 2, being λj a non zero polynomial
function, there exists a multi-index β(j) such that Dβ(j)

λj = cj , with cj non zero
real constant. This easily implies that ∂x2 , ∂x3 , . . . , ∂xN ∈ a. Hence

rank a(x) = N ∀x ∈ RN ,

so that, by the Hörmander theorem, ∆λ is hypoelliptic.
Celebrated typical examples of ∆λ hypoelliptic PDO’s with polynomial coeffi-

cients are the Baouendi-Grushin operators [6, 16, 17],

Lm,p = ∂2
x1

+ · · ·+ ∂2
xp + (x2

1 + · · ·+ x2
p)

2m(∂2
xp+1

+ · · ·+ ∂2
xN ), (1.3)

m, p ∈ Z, m ≥ 0, 1 ≤ p < N , corresponding to the case

λ1(x) = · · · = λp(x) = 1, λp+1(x) = · · · = λN (x) = (x2
1 + · · ·+ x2

p)
m,

and the Baouendi-Goulaouic operator

L2 = ∂2
x1

+ ∂2
x2

+ x2
1∂

2
x3

(in R3), (1.4)

corresponding to the case

λ1(x) = λ2(x) = 1, λ3(x) = x1.

The Baouendi-Goulaouic operator was the first example appeared in literature of
C∞-hypoelliptic “sum of squares” operator which is not analytic-hypoelliptic (see
[7]).

1.3. If the λj ’s are (merely) smooth functions, a condition making ∆λ hypoelliptic
in RN is the following one:

For every x ∈ RN and for every j ∈ {1, . . . , N}, there exists a
multi-index β depending on x and j such that

Dβλj(x) 6= 0. (1.5)

If we let, for every fixed x ∈ R,

a(x) = {X(x) | X ∈ a},
where a is the Lie algebra in (1.2), then, trivially, ∂x1 ∈ a(x). Moreover, using
condition (1.5), we can prove that for every x = (x1, . . . , xN ) ∈ RN there exist
smooth functions

a2(x) = a2(x1), a3(x) = a3(x1, x2), . . . , aN (x) = aN (x1, . . . , xN−1),

such that aj(x) 6= 0 and aj∂xj ∈ a, j = 2, . . . , N . Then

N ≥ rank a(x) ≥ dim span{∂x1 , a1(x)∂x2 , . . . , an(x)∂xN } = N,

hence rank a(x) = N . Since x is an arbitrary point of RN , this proves that ∆λ

satisfies the Hörmander rank condition, so that is hypoelliptic. If the λj ’s are real
analytic, condition (1.5) is equivalent to say that

λj 6≡ 0 ∀j = 1, . . . , N.

Thus, the hypoellipticity result of subsection 1.2 can be improved as follows:
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If the λ1, . . . , λN are real analytic functions then ∆λ is hypoelliptic
if (and only if)

λj 6≡ 0 ∀j = 1, . . . , N.

1.4. In some papers dated 1982–1984 ([12, 13, 14]), Franchi and Lanconelli stud-
ied ∆λ-operators only assuming the λj ’s locally Lipschitz continuous and of class
C1 out of the coordinate axes. Obviously, in such weak regularity assumptions,
Hörmander condition is meaningless. In [12], suitable condition only involving the
first derivatives of the λj ’s, are introduced, allowing to get a kind of De Giorgi-
Moser theorem for ∆λ, i.e., the Hölder continuity and the Harnack inequality for
the weak solutions.

2. De Giorgi-Moser-type theorem for ∆λ. Liouville-type theorems

Let us assume the λj ’s satisfy the following hypotheses.
(H1) λ1, . . . , λN are continuous and of class C1 and strictly positive outside the

coordinate hyperplanes;
(H2) λ1(x) ≡ 1, λj(x) = λj(x1, . . . , xj−1), j = 2, . . . , N ;
(H3) λj(x) = λj(x∗), where x∗ = (|x1|, . . . , |xN |);
(H4) there exists ρ ≥ 0 such that

0 ≤ xk∂xkλj(x) ≤ ρλj(x), k = 1, . . . , j − 1,

for every x ∈ RN+ := {(x1, . . . , xN ) ∈ RN : xi ≥ 0 ∀i = 1, . . . , N}.
Under these hypotheses in [12] a metric d was constructed in RN that plays for

∆λ the same rôle as the Euclidean distance plays for the classical Laplacian. This
metric, which actually is the Carnot-Carathéodory distance related to the vector
fields

X1 = λ1∂x1 , . . . , XN = λ1∂xN ,

is defined as follows.
An absolutely continuous path γ : [0, T ] → RN , T > 0, is λ-subunit if, letting

ej = (0, . . . , 1
j
, . . . , 0) for every j = 1, . . . , N , we have

γ′(t) =
N∑
j=1

cj(t)λj(γ(t))ej a.e. in [0, T ], with
m∑
j=1

c2j (t) ≤ 1.

In this case we put l(γ) := T and for every x, y ∈ RN we define

C(x, y) := {γ λ-subunit path : γ : [0, T ]→ X, γ(0) = x, γ(T ) = y}.
Note that Hypotheses (H1) and (H2) imply C(x, y) 6= ∅ for all x, y ∈ RN . Then,

letting
d(x, y) := inf{l(γ) : γ ∈ C(x, y)},

we have d(x, y) <∞ for every x, y ∈ RN .
It is easy to see that (x, y) 7→ d(x, y) is a distance in RN , which we call the

λ-distance. In [12] and [14] it is proved that (RN , d) is a doubling metric space, i.e.,
that there exists a positive constant cd such that

|Bd(x, 2r)| ≤ cd|Bd(x, r)| ∀x ∈ RN , ∀r > 0, (2.1)

where | · | stands for the Lebesgue measure and Bd(x, r) denotes the d-ball of center
x and radius r,

Bd(x, r) = {y ∈ RN | d(x, y) < r}.
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It is a standard computation to show that the doubling inequality (2.1) implies

|Bd(x, 2r)| ≤ cd
(R
r

)Q
|Bd(x, r)|, (2.2)

for every x ∈ RN and 0 < r < R <∞. Here Q is the constant Q := log2 cd, which
is called a homogeneous dimension of (RN , d).

The natural functional setting for studying ∆λ-operators is the Sobolev-type
space W 1,p

λ (Ω), 1 < p < ∞. More precisely, if Ω is a bounded open subset of RN
and 1 < p <∞, we denote by

W̊ 1,p
λ (Ω)

the closure of C1
0 (Ω) with respect to the norm

‖u‖W 1,p
λ (Ω) :=

(∫
Ω

|∇λu|p dx
)1/p

,

where
∇λu = (λ1∂x1 , . . . , λN∂xN ).

From [13, Theorem 2.6] (see also [20, Proposition 3.2]), one gets the following result:
the embedding

W̊ 1,2
λ (Ω) ↪→ Lp(Ω) (2.3)

is continuous for every p ∈ [1, 2∗] and compact for every p ∈ [1, 2∗[, where

2∗ =
2Q
Q− 2

.

Another crucial functional inequality in ∆λ-setting is the following Poincaré-type
inequality: for every x ∈ RN and r > 0,∫

Bd(x,r)

|u− ur|2 dy ≤ Cr2

∫
Bd(x,θr)

|∇λu|2 dy ∀u ∈ C1(Bd(x, θr))

where C > 0 and θ > 1 are suitable constants independent of u, x and r, and ur
denotes the average of u on Bd(x, r):

ur =:
1

Bd(x, r)

∫
Bd(x,r)

u(y) dy

(see [14, 25]).
To complete the list of the key results needed to show a De Giorgi-type theorem

for ∆λ, we recall the existence of global cut-off functions modelled on the geometry
of the d-balls. More precisely, the following proposition holds:

Let Bd(x, r1) and Bd(x, r2) be concentric d-balls with 0 < r1 < r2 < ∞. Then
there exists η ∈ W̊ 1,2

λ (Bd(x, r2)) such that η ≡ 1 a.e. in Bd(x, r1) and

|∇λη| ≤
2

r2 − r1
a.e. in Bd(0, r2)

(see [19, Theorem 10]).
The doubling condition (2.1), the Sobolev embedding (2.3), and the cut-off func-

tion η allow to adapt the Moser’s iteration procedure to get the following theorem.

Theorem 2.1 (De-Giorgi-Moser-type theorem for ∆λ). Let Ω be an open subset
of RN and let u ∈W 1,2

λ,loc(Ω) be a weak solution to

∆λu = 0 in Ω.

Then,
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(i) (Scale invariant Harnack inequality) If Bd(z, 2r) ⊆ Ω and u ≥ 0, then

sup
Bd(z,r)

u ≤ C inf
Bd(z,r)

u, (2.4)

where C > 0 is independent of u, z and r.
(ii) (Local Hölder continuity) If Bd(z, 2r) ⊆ Ω, then

|u(x)− u(y)| ≤ C
(d(x, y)

r

)α
sup

B(z,2r)

|u| ∀x, y ∈ Bd
(
z,
r

2

)
, (2.5)

where C > 0 and α ∈]0, 1[ are independent of u, z and r.

Actually, the conclusions of this theorem hold true for the weak solutions of the
λ-elliptic operators. A linear second order PDO of the kind

L =
N∑

i,j=1

∂xi(aij(x)∂xj ) = div(A(x)D)

will be called λ-elliptic in RN if the quadratic form related to the symmetric matrix
A(x) = aij(x))i,j=1,...,n with measurable entries, satisfies

1
c

n∑
j=1

(λj(x)ξj)2 ≤ 〈A(x)ξ, ξ〉 ≤ c
n∑
j=1

(λj(x)ξj)2 ∀x, ξ ∈ RN .

If Ω is an open subset of RN we say that u ∈W 1,2
λ,loc(Ω) if, for every ϕ ∈ C∞0 (Ω,R)

one has uϕ ∈ W̊ 1,2
λ (Ω). To define the notion of weak solution to the equation

Lu = 0, we need to introduce the bilinear form

L(u, v) =
∫

Ω

〈A(x)Du(x), Dv(x)〉 dx

for u ∈ C1(Ω,R) and v ∈ C1
0 (Ω,R). D is the Euclidean gradientD = (∂x1 , . . . , ∂xN ).

Since A ≥ 0, we have (because L is λ-elliptic)

|L(u, v)| ≤
∫

Ω

〈A(x)Du(x), Du(x)〉 12 〈A(x)Dv(x), Dv(x)〉 12 dx

≤ c
∫

Ω

|∇λu(x)| |∇λv(x)| dx .

Then the bilinear form a is well defined and, if Ω is bounded, it can be continuously
extended to W 1,2

λ,loc(Ω) × W̊ 1,2
λ (Ω). A function u ∈ W 1,2

λ,loc(Ω) is a weak solution to
Lu = 0 in Ω if

a(u, v) = 0 ∀v ∈ C1
0 (Ω,R).

The Moser iteration procedure works for λ-elliptic operators as for ∆λ-operators.
Then, De Giorgi-Moser Theorem 2.1 extends to the weak solutions to Lu = 0 for
every λ-elliptic operator L (for the ∆λ-case, see [12, 13, 14], for the λ-elliptic case
see [24]).

The invariant Harnack inequality (2.4) immediately leads to the following Liouville-
type theorem. Here L stands for any λ-elliptic operator.

Theorem 2.2. Let u ∈W 1,2
λ,loc(RN ) be a weak solution to Lu = 0 in RN . If u ≥ 0,

then u is identically constant in RN .

From the Hölder estimates (2.5), one obtains another Liouville-type theorem.
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Theorem 2.3. Let u ∈ W 1,2
λ,loc(RN ) be a weak solution to Lu = 0 in RN . Assume

that, for a suitable x0 ∈ RN ,

lim
r→∞

( 1
rα

sup
B(x0,r)

|u|
)

= 0,

where α ∈]0, 1[ is the Hölder exponent in (2.5). Then, u is identically constant in
RN .

As a last theorem we would like to recall is a Colding-Minicozzi-type Liouville
theorem for the λ-elliptic operators L, which is proved in [19].

Theorem 2.4. Let x0 be a fixed point of RN and denote by d(x) the λ-distance
d(x0, x). Then, for every m > 0, the linear space

{u ∈W 1,2
λ,loc(RN ) : Lu = 0 in RN , u(x) = O(d(x))m as (d(x))→∞}

has finite dimension.

We would like to close this subsection by quoting the recent paper [4] by Anh and
My where a Liouville-type theorem for system of semilinear inequalities involving
∆λ-operators is proved.

3. ∆λ-Laplacians

If the functions λj ’s, together with hypotheses (H1), (H2), (H3) and (H4), are
supposed to be homogeneous with respect to a fixed group of dilations in RN ,
the corresponding ∆λ-operators have been called in [20] ∆λ-Laplacians, since they
share some important homogeneity properties with the classical Laplacian. The
corresponding geometry of the λ-distance achieves some crucial analogies with the
Euclidean ones.

Let (δr)r>0 be a group of dilations in RN of the kind

δr : RN → RN , δr(x) = δr(x1, . . . , xN ) = (rε1x1, . . . , r
εNxN ), (3.1)

where 1 ≤ ε1 ≤ ε2 ≤ · · · ≤ εN . Assume λj is δr-homogeneous of degree εj − 1, i.e.,

λj(δr(x)) = rεj−1λj(x), ∀x ∈ RN , r > 0, j = 1, . . . , N. (3.2)

Under this new assumption, ∆λ becomes δr-homogeneous of degree two, i.e.,

∆λ(u(δr(x))) = r2(∆λu)(δr(x)) ∀x ∈ RN , ∀r > 0,

and for every u ∈ C∞(RN ). The positive real number

Q := ε1 + · · ·+ εN

is the homogeneous dimension of RN with respect to the group of dilations (δr)r>0.
With respect to the Lebesque measure of the λ-balls and the Sobolev-type em-
bedding Theorems, it plays the rôle of the dimension N in the classical Laplacian
case. Indeed, it works as the optimal exponent Q in the inequality (2.2) and in the
embedding (2.3).

In the present homogeneous assumption, precise estimates of both the λ-distance
d and the Lebesque measure of the d-balls are showed by Kogoj and Lanconelli in
[20]. A deep study of the λ-geometry for particular form of the λj ’s have been
recently performed by Wu in [42].

By crucially exploiting the homogeneity (3.2), in [20] the following Pohozaev-
type identities are proved. We stress that the constant Q which will appear in
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(3.3), (3.5) and (3.6), is exactly the homogeneous dimension of RN with respect to
(δr)r>0.
Let T be linear first order PDO

T : RN → RN , T (x) = T (x1, . . . , xN ) =
N∑
j=1

εjxj∂xj ,

i.e., the generator of dilation group (δr)r>0. Then, if Ω is a C1 bounded open subset
of RN , we have∫

Ω

T (u)∆λu dx

=
∫
∂Ω

〈∇λu, νλ〉T (u) ds− 1
2

∫
∂Ω

|∇λu|2〈T, ν〉 ds+
(Q

2
− 1
)∫

Ω

|∇λu|2 dx
(3.3)

for every u ∈ C1(Ω),R). Here 〈·, ·〉 stands for the Euclidean inner product, ν is the
outward normal to Ω and νλ = (λ1ν1, . . . , λNνN ).

From this identity, we easily obtain an integral identity for the solutions to

∆λu+ f(u) = 0, (3.4)

f : R→ R is a continuous function. We let

F (t) :=
∫ t

0

f(s)ds, t ∈ R.

Then, if u ∈ C2(Ω) is a solution to (3.4) the following identity holds∫
Ω

(
F (u) +

( 1
Q
− 1

2

)
uf(u)

)
dx

=
1
Q

∫
∂Ω

(
〈T, ν〉

(
F (u)− 1

2
|∇λu|2

)
+ 〈∇λu, ν〉

(
T (u) +

(Q
2
− 1
)
u
))
ds .

(3.5)

Moreover, if u = 0 on ∂Ω,∫
Ω

(
F (u) +

( 1
Q
− 1

2

)
u f(u)

)
dx =

1
2Q

∫
∂Ω

(∂u
∂ν

)2

|νλ|2〈T, ν〉 ds .

Pohozaev-type identities for particular ∆λ-Laplacians were previously proved in
[39, 40, 36, 10, 37].

If the domain Ω ⊆ RN is (δr)r>0 starlike, i.e.,

〈T, ν〉 ≥ 0 at every point of ∂Ω,

and C1 bounded open set, then the following non-existence result, extending to the
∆λ a celebrated theorem by Pohozaev, holds. The problem

∆λu+ f(u) = 0 in Ω, u|∂Ω = 0, (3.6)

has non trivial non-negative solution in C2(Ω) if

F (t) +
( 1
Q
− 1

2

)
tf(t) < 0 ∀t 6= 0.

Thanks to the properties of the ∆λ’s previously recalled, the techniques of the
variational theory of the critical points work equally well for the ∆λ-Laplacian as
for the classical Laplacian. Many existence and non-existence results are today
present in literature for semilinear ∆λ boundary value problem, both in subcritical
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and critical behaviour assumption on the semilinear term f(u) (see, e.g.,[3, 5, 9,
20, 28, 29, 32, 36, 37, 41]).

The homogeneity properties of the ∆λ-Laplacians have been also exploited in
[23] to prove Hardy-type inequalities, which extend previous results by Garofalo
and D’Ambrosio for the Baouendi-Grushin case [11, 15].

Before closing this section, we have to mention that initial value problems for
evolution equations modelled on ∆λ-Laplacians have been studied in these last
years.

In [2] Anh, Hung, Ke and Phong have proved the existence of the global attrac-
tor for semilinear parabolic equations involving Baouendi-Grushin-type operators.
Kogoj and Sonner have extended this result for ∆λ-Laplacians (and showed the
finite fractal dimension of the attractor) in [21] and for more general degenerate
parabolic equations in [22]. We stress that in this last paper semilinear damped
hyperbolic equations involving ∆λ-Laplacians are also considered.

Extensions to the critical cases of the results in [21] and in [22] have been proved
in [26, 27]. We also quote the papers [1, 30, 31, 34, 35, 38] where evolution equations
related to classes of ∆λ operators are studied.

4. Examples of ∆λ-Laplacians

The following examples are taken from [21]. We split RN as RN = RN1 × · · · ×
RNk , and write

x =
(
x(1), . . . , x(k)

)
, x(i) =

(
x

(i)
1 , . . . , x

(i)
Ni

)
∈ RNi , i = 1, . . . , k.

We denote the classical Laplace operator in RNi by

∆x(i) =
Ni∑
j=1

∂2

x
(i)
j

,

and we write ∆λ operators in the form

∆λ = (λ(1))2∆x(1) + · · ·+ (λ(k))2∆x(k) in RN = RN1 × · · · × RNk ,
where

λ =
(
λ(1), . . . , λ(k)

)
, λ(i) =

(
λ

(i)
1 , . . . , λ

(i)
Ni

)
,

and the functions λ(i) are continuous in RNi , i = 1, . . . , k.

Example 4.1. Let α be a real positive constant and k = 2. We consider at first
the Baouendi-Grushin-type operator

∆λ = ∆x(1) + |x(1)|2α∆x(2) ,

where λ = (λ(1), λ(2)), with λ
(1)
j (x) = 1, j = 1, . . . , N1 and λ

(2)
j (x) = |x(1)|α, j =

1, . . . , N2. A group of dilations making ∆λ homogeneous of degree two is (δr)r>0

with
δr

(
x(1), x(2)

)
=
(
rx(1), rα+1x(2)

)
.

In this case the homogenous dimension of RN with respect to (δr)r>0 is

Q = N1 + (α+ 1)N2.

More generally, for a given multi-index α = (α1, . . . , αk−1) with real constants
αj ≥ 0, j = 1, . . . , k − 1, we define

∆λ = ∆x(1) + |x(1)|2α1∆x(2) + · · ·+ |x(k−1)|2αk−1∆x(k) .
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Then, in our notation λ =
(
λ(1), . . . , λ(k)

)
with

λ
(1)
j (x) ≡ 1, j = 1, . . . , N1

λ
(i)
j (x) = |x(i−1)|αi−1 i = 2, . . . , k, j = 1, . . . , Ni,

and the group of dilations such that λ satisfies (3.2) is given by

δr
(
x(1), . . . , x(k)

)
=
(
rε1x(1), . . . , rεkx(k)

)
,

with ε1 = 1 and εi = αi−1εi−1 + 1 for i = 2, . . . , k. In particular, if α1 = · · · =
αk−1 = α, the dilations become

δr

(
x(1), . . . , x(k)

)
=
(
rx(1), r1+αx(2), . . . , r1+α+α2+···+αk−1

x(k)
)
.

Remark 4.2. A trivial change of variable makes the operator

∆x(1) +
1
4
|x(1)|2∆x(2)

a ∆λ-Laplacian in RN1 × RN2 of the previous type.
Moreover, if the dimensions N1 and N2 satisfy the inequality N2 < ρ(N1), where

ρ is the so called Hurwitz-Radon function, then there exists a composition law ◦
in RN such that HN := (RN , ◦, δλ) is a group of Heinsenberg type (see [8, Remark
3.6.7], ) and, denoting by ∆HN the canonical sub-Laplacian on HN , we have(

∆x(1) +
1
4
|x(1)|2∆x(2)

)
u = ∆HNu

for every smooth function u : RN → R which is radially symmetric in the variable
x(1) (see [8, p. 251]).

Example 4.3. Let α, β and γ be nonnegative real constants. We consider the
operator

∆λ = ∆x(1) + |x(1)|2α∆x(2) + |x(1)|2β |x(2)|2γ∆x(3) ,

where λ = (λ(1), λ(2), λ(3)) with

λ
(1)
j (x) ≡ 1, j = 1, . . . , N1

λ
(2)
j (x) = |x(1)|α, j = 1, . . . , N2,

λ
(3)
j (x) = |x(1)|β |x(2)|γ , j = 1, . . . , N3.

The dilations become

δr

(
x(1), x(2), x(3)

)
=
(
rx(1), rα+1x(2), rβ+(α+1)γ+1x(3)

)
.

Similarly, for operators of the form

∆λ = ∆x(1) + |x(1)|2α1,1∆x(2) + |x(1)|2α2,1 |x(2)|2α2,2∆x(3) + . . .

+
( k−1∏
i=1

|x(i)|2αk−1,i

)
∆x(k) ,

where αi,j ≥ 0, i = 1, . . . , k − 1, j = 1, . . . , i, are real constants, the group of
dilations is given by

δr

(
x(1), . . . , x(k)

)
=
(
rε1x(1), . . . , rεkx(k)

)
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with ε1 = 1 and εj = 1 +
∑j−1
i=1 αj−1,iεi, for i = 2, . . . , k. In particular, if α1,1 =

· · · = αk−1,k−1 = α,

δr

(
x(1), . . . , x(k)

)
=
(
rx(1), rα+1x(2), . . . , r(α+1)k−1

x(k)
)
.

Remark 4.4. We would like to remark that this class of operators contains the
operators

Lα,β = ∆x(1) + |x(1)|2α∆x(2) + |x(1)|2β∆x(3) ,

introduced by Thuy and Tri in [36], and the operators

Pα,β = ∆x(1) + ∆x(2) + |x(1)|2α|x(2)|2β∆x(3) ,

introduced by Thuy and Tri in [37]. We also want to mention that the class of the
Grushin-like operators very recently introduced by Maldonado in [33, Subsection
4.1] extends the one described above.

Example 4.5. The ∆λ-operators of the following type

∆λ = ∆x(1) +
(
µ1(x(1))

)2

∆x(2) +
(
µ2(x(1))

)2(
µ3(x(2))

)2

∆x(3) ,

where µ1, µ2 : RN1 → R and µ3 : RN2 → R are continuous functions satisfying
(H1)–(H4) and

µ1(sx(1)) = sαµ1(x(1)), µ2(sx(1)) = sβµ2(x(1)), µ3(sx(2)) = sγµ3(x(2)), ∀s > 0,

with α, β and γ nonnegative real constants, are ∆λ-Laplacians with the group of
dilations (δr)r>0,

δr

(
x(1), x(2), x(3)

)
=
(
rx(1), rα+1x(2), rβ+(α+1)γ+1x(3)

)
.
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