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ABSTRACT. In recent years a growing attention has been devoted to Ajy-
Laplacians, linear second-order degenerate elliptic PDO’s contained in the gen-
eral class introduced by Franchi and Lanconelli in some papers dated 1983-84
[12] [13] [14]. Here we present a survey on several results appeared in litera-
ture in the previous decades, mainly regarding: (i) Geometric and functional
analysis frameworks for the Ay’s; (ii) regularity and pointwise estimates for
the solutions to Ayu = 0; (iii) Liouville theorems for entire solutions; (iv) Po-
hozaev identities for semilinear equations involving Ajx-Laplacians; (v) Hardy
inequalities; (vi) global attractors for the parabolic and damped hyperbolic
counterparts of the Ay’s.

We also show several typical examples of A y-Laplacians, stressing that their
class contains, as very particular examples, the celebrated Baouendi-Grushin
operators as well as the L, g and P, g operators respectively introduced by
Thuy and Tri in 2002 [36] and by Thuy and Tri in 2012 [37].

1. INTRODUCTION

1.1. Aj-operators. In R, whose point will be denoted by z = (x1,...,2y), let
us consider a n-tuple X := (A1,..., Ayx) of real functions

N RY =R, j=1,...,N,
such that Ay =1 and \;(z) = Aj(z1,...,2;-1) for j > 2. Define the linear second
order partial differential operators Ay as follows:

N N
Ay = N0, (Nja,) =D NI02. (1.1)
j=1

J=1

1.2. If the A;’s are non-identically zero polynomial functions then Ay is hypoel-
liptic, i.e., every distributional solution u to the equation
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in an open set Q C RY_ is actually of class C> in Q if f is C™ in Q. This is an
easy consequence of the celebrated Hérmander theorem on the hypoellipticity of
the “sum of squares of vector fields” [I§]. Indeed, let

a:=Lie{A\10,,,..., ANOzp }- (1.2)
Then, A0z, = 0., € a. Moreover, if j > 2, being A; a non zero polynomial
function, there exists a multi-index 89) such that DB(J))\]‘ = ¢;, with ¢; non zero
real constant. This easily implies that 0,,, Oy, ...,0zy € a. Hence

ranka(r) = N Vo € RY,

so that, by the Hérmander theorem, Ay is hypoelliptic.
Celebrated typical examples of Ay hypoelliptic PDO’s with polynomial coeffi-
cients are the Baouendi-Grushin operators [6, 16, 17],

»Cm,p = 851 4+ -+ agp + (LE% 4+t x%)Qm(agp_H 4+t aiN), (13)
m,p € Z, m>0,1 <p< N, corresponding to the case
(@)= =) =1, Appalz)=-- = An(z) = (aF +--- +23)™,
and the Baouendi-Goulaouic operator
Lo=02 +02, +2102, (inR?), (1.4)

corresponding to the case
/\1(33) = /\2(1‘) = 1, /\3(33‘) =2X1.

The Baouendi-Goulaouic operator was the first example appeared in literature of
C-hypoelliptic “sum of squares” operator which is not analytic-hypoelliptic (see

7).
1.3. If the A;’s are (merely) smooth functions, a condition making Ay hypoelliptic
in RY is the following one:

For every * € RY and for every j € {1,...,N}, there exists a
multi-index § depending on x and j such that

DP)j(z) # 0. (1.5)
If we let, for every fixed x € R,
a(z) ={X(z) | X € a},

where a is the Lie algebra in (1.2]), then, trivially, 9., € a(z). Moreover, using
condition (1.5), we can prove that for every x = (r1,...,2y5) € R¥ there exist
smooth functions

as(x) = az(x1), az(x) = asz(x1,22),...,an(x) = an(z1,...,TN-1),
such that a;j(x) # 0 and a;0,; € a, j =2,...,N. Then
N > ranka(z) > dimspan{9,,,a1(2)0zy, ..., an(x)0sy} = N,

hence ranka(z) = N. Since x is an arbitrary point of RY, this proves that Ay
satisfies the Hormander rank condition, so that is hypoelliptic. If the A;’s are real
analytic, condition (|1.5)) is equivalent to say that

AN £0 Vi=1,...,N.

Thus, the hypoellipticity result of subsection [1.2] can be improved as follows:
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If the A\1,..., Ay are real analytic functions then Ay is hypoelliptic
if (and only if)
Aj#O Vi=1,...,N.

1.4. In some papers dated 1982-1984 ([12| 13| [14]), Franchi and Lanconelli stud-
ied Ajx-operators only assuming the A;’s locally Lipschitz continuous and of class
C! out of the coordinate axes. Obviously, in such weak regularity assumptions,
Hérmander condition is meaningless. In [12], suitable condition only involving the
first derivatives of the A;’s, are introduced, allowing to get a kind of De Giorgi-
Moser theorem for Ay, i.e., the Holder continuity and the Harnack inequality for
the weak solutions.

2. DE GIORGI-MOSER-TYPE THEOREM FOR Ay. LIOUVILLE-TYPE THEOREMS

Let us assume the A;’s satisfy the following hypotheses.

(H1) A1,...,An are continuous and of class C'! and strictly positive outside the

coordinate hyperplanes;

(H2) )\1(.%) = 1, A](JE) = )\j(l‘l, . ,SCj_l), ] = 2, . ,N;

(H3) Aj(z) = Aj(a*), where 2 = (a1, [zx);

(H4) there exists p > 0 such that

0 <20z A\j(x) < pAj(x), k=1,...,5—1,
for every z € RY := {(21,...,2n) € RN 12, >0Vi=1,...,N}.

Under these hypotheses in [12] a metric d was constructed in RY that plays for
Ay the same role as the Euclidean distance plays for the classical Laplacian. This
metric, which actually is the Carnot-Carathéodory distance related to the vector
fields

X1 =M0yy,- -, XN = AOuyp,
is defined as follows.

An absolutely continuous path 7 : [0,7] — RN, T > 0, is A-subunit if, letting
ej = (O,...,},...,O) for every j =1,..., N, we have

N m
v (t) = ch(t)/\j('y(t))ej a.e. in [0,T], with Zc?(t) <1

j=1
In this case we put [(y) := T and for every z,y € RY we define
C(x,y) := {v A-subunit path :~:[0,T] — X, v(0) =z, v(T) = y}.

Note that Hypotheses (H1) and (H2) imply C(z,y) # 0 for all ,y € RY. Then,
letting
d(x,y) == inf{l(7) : v € C(z,y)},
we have d(x,y) < oo for every z,y € RY.
It is easy to see that (z,y) +— d(z,y) is a distance in RY, which we call the
A-distance. In [12] and [I4] it is proved that (RY,d) is a doubling metric space, i.e.,
that there exists a positive constant cg such that

|Ba(,2r)| < cq|Ba(x,r)| Vo € RN, Vr >0, (2.1)

where |- | stands for the Lebesgue measure and Bg(x, ) denotes the d-ball of center
z and radius r,

Ba(z,r) = {y € RY |d(z,y) < r}.
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It is a standard computation to show that the doubling inequality implies
R\Q
[Ba(,20)] < ca( ) Bala, )], (2.2)
for every 2 € RY and 0 < r < R < co. Here @ is the constant @ := log, ¢4, which
is called a homogeneous dimension of (RY, d).

The natural functional setting for studying Ax-operators is the Sobolev-type
space W;p(Q), 1 < p < co. More precisely, if  is a bounded open subset of RY
and 1 < p < oo, we denote by

WP ()

the closure of C(Q) with respect to the norm
» 1/p
lully gy = (/Q Vauprdz)

V)\’U, = ()\18951, ey )\NGIN).
From [13, Theorem 2.6] (see also [20, Proposition 3.2]), one gets the following result:
the embedding

where

Wi2(Q) < LP(Q) (2.3)
is continuous for every p € [1,2*] and compact for every p € [1,2*[, where
2Q
Q-2
Another crucial functional inequality in A)-setting is the following Poincaré-type
inequality: for every € RY and r > 0,

/ lu —u,|* dy < 07“2/ |Vaul?dy VYu € C*(Bqg(z,0r))
Bg(z,r) Bg(x,0r)

2" =

where C' > 0 and € > 1 are suitable constants independent of u, x and r, and u,
denotes the average of u on By(x,r):

1
Bd(xv ’I") /Bd(x,r) U(y) dy
(see [14 25]).

To complete the list of the key results needed to show a De Giorgi-type theorem
for Ay, we recall the existence of global cut-off functions modelled on the geometry
of the d-balls. More precisely, the following proposition holds:

Let Bg(x,r1) and Bg(z,72) be concentric d-balls with 0 < r; < 73 < oco. Then
there exists ) € Wi’Q(Bd(l‘,’l“g)) such that n = 1 a.e. in By(x,r;) and

Uy =:

[Van| < a.e. in By(0,72)

ro —
(see [19, Theorem 10]).
The doubling condition (2.1)), the Sobolev embedding (2.3), and the cut-off func-
tion 7 allow to adapt the Moser’s iteration procedure to get the following theorem.

Theorem 2.1 (De-Giorgi-Moser-type theorem for Ay). Let Q be an open subset
of RN and let u € W/\lfoc(ﬂ) be a weak solution to

Ayu =0 in Q.
Then,
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(i) (Scale invariant Harnack inequality) If Bq(z,2r) C Q and u > 0, then

sup u<C inf w, (2.4)
Bg(z,r) Ba(z,r)

where C' > 0 s independent of u,z and r.
(ii) (Local Hélder continuity) If By(z,2r) C Q, then

d(z,y) r
< B - 2.
) — ) < C(T20)" wp l VeyeB(=F). @)
where C > 0 and « €]0, 1] are independent of u, z and .

Actually, the conclusions of this theorem hold true for the weak solutions of the
A-elliptic operators. A linear second order PDO of the kind

N
L= 0 (aij(x)dy,) = div(A(z)D)

ij=1

will be called M-elliptic in RY if the quadratic form related to the symmetric matrix
A(x) = a;j(x))i j=1,....,n With measurable entries, satisfies

*Z r)€,€) < c Z 0)E)? Vo & € RV

If Q is an open subset of RY we say that u € WiIQOC(Q) if, for every ¢ € C5°(2, R)
one has up € W;Q(Q) To define the notion of weak solution to the equation
Lu = 0, we need to introduce the bilinear form

L(u,v) :/Q<A(3E)Du(x),Dv(:v)>d:c

foru € CY(Q,R) and v € C} (2, R). D is the Euclidean gradient D = (0, ..., 0z, )-
Since A > 0, we have (because L is A-elliptic)

|L(u,v)| < /Q (A(z)Du(z), Du(z))? (A(z)Do(z), Dv(z))? dz

< C/Q IV au(z)] [Vao(z)] dz.

Then the bilinear form «a is well defined and, if €2 is bounded, it can be continuously
extended to W;IQOC(Q) X W/\”(Q) A function u € Wilzoc(Q) is a weak solution to
Lu=0in Qif ’
a(u,v) =0 VYou e CH(Q,R).
The Moser iteration procedure works for A-elliptic operators as for Aj-operators.
Then, De Giorgi-Moser Theorem extends to the weak solutions to Lu = 0 for
every A-elliptic operator £ (for the Ay-case, see [12] [13] 14], for the M-elliptic case
see [24]).
The invariant Harnack inequality immediately leads to the following Liouville-
type theorem. Here £ stands for any A-elliptic operator.

Theorem 2.2. Let u € Wifoc(RN) be a weak solution to Lu =0 in RN, Ifu >0,
then u is identically constant in RV,

From the Holder estimates (2.5)), one obtains another Liouville-type theorem.
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Theorem 2.3. Let u € W/\l”ﬁ)C(RN) be a weak solution to Lu = 0 in RN . Assume
that, for a suitable xo € RY,
. 1
lim (— sup |u|) =0,
0 AT B(ag.r)
where o €]0, 1 is the Hélder exponent in (2.5). Then, u is identically constant in
RYN.

As a last theorem we would like to recall is a Colding-Minicozzi-type Liouville
theorem for the A-elliptic operators £, which is proved in [19].

Theorem 2.4. Let x¢ be a fived point of RN and denote by d(x) the A-distance
d(zg,x). Then, for every m > 0, the linear space

{u e W;:foc(RN) cLu=0inRY, u(z) = 0(d(x))™ as (d(z)) — oo}
has finite dimension.

We would like to close this subsection by quoting the recent paper [4] by Anh and
My where a Liouville-type theorem for system of semilinear inequalities involving
Aj-operators is proved.

3. A)-LAPLACIANS

If the functions A;’s, together with hypotheses (H1), (H2), (H3) and (H4), are
supposed to be homogeneous with respect to a fixed group of dilations in RY,
the corresponding A y-operators have been called in [20] Ay-Laplacians, since they
share some important homogeneity properties with the classical Laplacian. The
corresponding geometry of the A-distance achieves some crucial analogies with the
Euclidean ones.

Let (6,)r>0 be a group of dilations in RY of the kind

6 RN RN §,.(2) =6, (21,...,xNn) = (rTay, ..., 7V ay), (3.1)
where 1 <e; <ey <.+ <ep. Assume A; is §,-homogeneous of degree €; — 1, i.e.,
Aj(6n(x) =r7 (), Ve eRN r>0,5=1,...,N. (3.2)

Under this new assumption, Ay becomes d,-homogeneous of degree two, i.e.,
Ax(u(6:(2))) = r2(Dau) (6:(x)) ¥z R, Vr >0,
and for every u € C*°(RY). The positive real number
Q:=¢e1+ - +en

is the homogeneous dimension of RY with respect to the group of dilations (4,),¢.
With respect to the Lebesque measure of the A-balls and the Sobolev-type em-
bedding Theorems, it plays the role of the dimension N in the classical Laplacian
case. Indeed, it works as the optimal exponent () in the inequality and in the
embedding .

In the present homogeneous assumption, precise estimates of both the A-distance
d and the Lebesque measure of the d-balls are showed by Kogoj and Lanconelli in
[20]. A deep study of the A-geometry for particular form of the A;’s have been
recently performed by Wu in [42].

By crucially exploiting the homogeneity (3.2)), in [20] the following Pohozaev-
type identities are proved. We stress that the constant ) which will appear in
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(3-3), (3.5) and (3.6)), is exactly the homogeneous dimension of RV with respect to

(5T)'I’>O'
Let T be linear first order PDO

N
T:RY RN, T(x)=T(21,....a5) = Y _&;x;0a,,
j=1

i.e., the generator of dilation group (4,),~¢. Then, if 2 is a C'! bounded open subset
of RV, we have

/ T(u)Ayudzx
Q
1 Q

(3.3)
= /aQ<V>\u,1/>\>T(u) ds — 3 /aQ |V aul|?(T,v) ds + (5 — 1) /Q IV yul? dz

for every u € C*(Q),R). Here (-, -) stands for the Euclidean inner product, v is the

outward normal to  and vy = (Avq, ..., ANVN).
From this identity, we easily obtain an integral identity for the solutions to
Ayu+ f(u) =0, (3.4)

f R — R is a continuous function. We let

F(t) ::/0 f(s)ds, teR.

Then, if u € C?() is a solution to (3.4)) the following identity holds
1 1

(3.5)
_ é . (41, v) (P(w) - %muﬁ) + (Vw0 (T(w) + (% ~1)u))ds.
Moreover, if u = 0 on 012,

/Q (F(u) + (% - %)u f(u)) dz = % . (%)2|1/,\|2<T, v)ds.

Pohozaev-type identities for particular Aj,-Laplacians were previously proved in
[39, 40, 36, 10, [37].
If the domain Q C RY is (6,),>0 starlike, i.e.,

(T,v) > 0 at every point of 912,

and C' bounded open set, then the following non-existence result, extending to the
A a celebrated theorem by Pohozaev, holds. The problem

Ayu+ f(u)=0 inQ, wulpg =0, (3.6)
has non trivial non-negative solution in C?(Q) if
1 1
F(t) + (5 - 5)tf(t) <0 Vt#0.

Thanks to the properties of the Ay’s previously recalled, the techniques of the
variational theory of the critical points work equally well for the Ay-Laplacian as
for the classical Laplacian. Many existence and non-existence results are today
present in literature for semilinear A, boundary value problem, both in subcritical
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and critical behaviour assumption on the semilinear term f(u) (see, e.g.,[3, Bl O
20, 28, [29] 32, 136], 37, 41]).

The homogeneity properties of the Ajy-Laplacians have been also exploited in
[23] to prove Hardy-type inequalities, which extend previous results by Garofalo
and D’Ambrosio for the Baouendi-Grushin case [11] [I5].

Before closing this section, we have to mention that initial value problems for
evolution equations modelled on Ajy-Laplacians have been studied in these last
years.

In [2] Anh, Hung, Ke and Phong have proved the existence of the global attrac-
tor for semilinear parabolic equations involving Baouendi-Grushin-type operators.
Kogoj and Sonner have extended this result for Ay-Laplacians (and showed the
finite fractal dimension of the attractor) in [2I] and for more general degenerate
parabolic equations in [22]. We stress that in this last paper semilinear damped
hyperbolic equations involving A -Laplacians are also considered.

Extensions to the critical cases of the results in [2I] and in [22] have been proved
in [26], 277]. We also quote the papers [T}, 30, 311 [34], B5], B8] where evolution equations
related to classes of Ay operators are studied.

4. EXAMPLES OF A\-LAPLACIANS

The following examples are taken from [2I]. We split RY as RY = RM x ... x
R+, and write

T = (x(l),...,x(k)), 2 = (xgl),,x%)b) eRY, i=1,...,k

We denote the classical Laplace operator in RV by

N;

E 2
Am(i) = 336@ 5

X J

Jj=1

and we write Ay operators in the form
Ax=ADPA0 ++ AP)PA0 inRY =RV x o x RV,
where
A= (MO a®) A0 = (AR,
and the functions A\(¥) are continuous in RN:, i =1,..., k.

Example 4.1. Let a be a real positive constant and & = 2. We consider at first
the Baouendi-Grushin-type operator

Ay = Ax(l) + ‘x(1)|2an(z)7
where A = (A, A®), with AV (2) = 1,5 = 1,..., Ny and AP (2) = 2D, j =

1,...,Ns. A group of dilations making Ay homogeneous of degree two is (d,),>0

with
5, <x(1)’x(2)) _ (,r,x(l)’ra+1m(2)>.
In this case the homogenous dimension of RY with respect to (6, )¢ is
Q = N1 + (Oé+ 1)N2

More generally, for a given multi-index o = («1,...,a,_1) with real constants
o; >0,7=1,...,k—1, we define

Ay =A,m + |$(1)|2a1Aw(2) +---+ |$(k71)|2ak_lA(E(k).
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Then, in our notation A = (A, ..., A(®)) with
AW@y=1, j=1,...,N
(4) =)o s o )
Aj (x)—\x( i =2 ...k, j=1,...,N;
and the group of dilations such that A satisfies (3.2)) is given by
Or (:E(l), . ,x(k)) = (7‘811‘(1), . ,rskm(k)),

with ey =1 and ¢; = ;16,1 + 1 for ¢ = 2,..., k. In particular, if oy = --- =
ap_1 = «, the dilations become
5, ($(1)’ o 7x(k)) _ <T$(1)7T1+a$(2), o ,r1+a+‘12+"'+“’°*1$(k)>.

Remark 4.2. A trivial change of variable makes the operator
1
A 1\$(1)|2Az<2>

a Ay-Laplacian in RNt x RN2 of the previous type.

Moreover, if the dimensions N7 and Ny satisfy the inequality No < p(N7), where
p is the so called Hurwitz-Radon function, then there exists a composition law o
in RY such that Hy := (R, 0,6y) is a group of Heinsenberg type (see [8, Remark
3.6.7], ) and, denoting by Ag, the canonical sub-Laplacian on Hy, we have

1
(Azu) + 1|$(1)|2Am(2))u = An,u
for every smooth function u : RN — R which is radially symmetric in the variable
() (see [8, p. 251]).
Example 4.3. Let o, and v be nonnegative real constants. We consider the
operator
Ay = Az(n + |$(1)|2an(2) + |$(1)‘2B|$(2)|27Ax(3),
where A = (A X2 \®)) with
AW@)y=1, j=1,...,N
AP (z) = 2D, =1, Ny,
A (@) = 2P, =1, N,
The dilations become
5, <x<1>’x<2>’x<3>) — (m(l)7Ta+1m(2)7TB+(Q+1)W+1$(3)).
Similarly, for operators of the form
Ay = Aw(l) + |w(1)|2a1,1AI(2) + |x(1)|2o¢2,1 ‘x(2)|2a2,2A$(3) + .
k=1
+ (H |x(l)|2a’“’1’i>ﬁx<k>a
i=1

where a; ; > 0,1 = 1,...,k — 1,5 = 1,...,4, are real constants, the group of
dilations is given by

O (ac(l), e ,x(k)) = (rslx(l), e ra’“x(k))
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. i—1 ) . .
with ey =1l and g; =1+ Zgzl oj_1,4€, for i = 2,..., k. In particular, if a1 =
= Qg1 k-1 = Q,

O (1‘(1), e ,x(k)) = (rx(l), retly() ,r(oﬁLl)kilx(k)).

Remark 4.4. We would like to remark that this class of operators contains the
operators

Lapg =20 + 2D PA o) + 2D PP A L),
introduced by Thuy and Tri in [36], and the operators

Pop =00 + Ay + |$(1)|2a|x(2)|25A$(3)7

introduced by Thuy and Tri in [37]. We also want to mention that the class of the
Grushin-like operators very recently introduced by Maldonado in [33, Subsection
4.1] extends the one described above.

Example 4.5. The Ay-operators of the following type

Ay =420 + (m(x(l)))zﬁz(z) + <u2(l‘(1)))2<N3($(2))>2A$<3>’

where gy, : RV — R and p3 : RY2 — R are continuous functions satisfying
(H1)-(H4) and

pa(520) = 5% (2D, pa(s2D) = P pa(a®),  pa(s2?) = $pg(a @), Vs >0,

with «, 8 and v nonnegative real constants, are Ay-Laplacians with the group of
dilations (6;)r>0,

5, (xu)’x(z)’x(ff)) — (Tx(1)7ra+1x(2)’Tﬂ+(a+1)'y+1m(3))_

Acknowledgements. A. E. Kogoj was partially supported by the Gruppo Nazionale
per I’ Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the
Istituto Nazionale di Alta Matematica (INdAM).

REFERENCES

[1] C. T. Anh; Global attractor for a semilinear strongly degenerate parabolic equation on RN
NoDEA Nonlinear Differential Equations Appl. 21 (2014), no. 5, 663-678. MR 3265192

[2] C. T. Anh, P. Q. Hung, T. D. Ke, T. T. Phong; Global attractor for a semilinear parabolic
equation involving Grushin operator, Electron. J. Differential Equations (2008), No. 32, 11.
MR 2383395

[3] C.T. Anh, B. K. My; Ezistence of solutions to Ax-Laplace equations without the Ambrosetti-
Rabinowitz condition, Complex Var. Elliptic Equ. 61 (2016), no. 1, 137-150. MR 3428858

[4] C. T. Anh, B. K. My; Liouville-type theorems for elliptic inequalities involving the Ay-
Laplace operator, Complex Var. Elliptic Equ. 61 (2016), no. 7, 1002-1013. MR 3500512

[5] C. T. Anh, B. K. My; FEzistence and non-existence of solutions to a hamiltonian strongly
degenerate elliptic system, Adv. Nonlinear Anal. (2017).

[6] M. S. Baouendi; Sur une classe d’opérateurs elliptiques dégénérés, Bull. Soc. Math. France
95 (1967), 45-87. MR 0228819

[7] M. S. Baouendi, C. Goulaouic; Nonanalytic-hypoellipticity for some degenerate elliptic oper-
ators, Bull. Amer. Math. Soc. 78 (1972), 483-486. MR 0296507

[8] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni; Stratified Lie groups and potential theory for their
sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2363343

[9] J. Chen, X. Tang, Z. Gao; Infinitely many solutions for semilinear Ay -laplace equations
with sign-changing potential and nonlinearity, Studia Sci. Math. Hungar. 54 (2017), no. 4,
536-549.

[10] N. M. Chuong, T. D. Ke; Ezistence of solutions for a nonlinear degenerate elliptic system,

Electron. J. Differential Equations (2004), No. 93, 15. MR 2075432



EJDE-2018/CONF/25 A\-LAPLACIANS 177

(11]

(12]

(13]

(14]

[15]

(16]
(17]
18]
(19]
20]
21]
(22]
23]

24]

[25]
[26]
27)
(28]
29]
(30]

(31]

(32]

(33]

34]

(35]

L. D’Ambrosio; Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc.
132 (2004), no. 3, 725-734. MR 2019949

L. D’Ambrosio; Une métrique associée a une classe d’opérateurs elliptiques dégénérés, Rend.
Sem. Mat. Univ. Politec. Torino (1983), no. Special Issue, 105-114 (1984), Conference on
linear partial and pseudodifferential operators (Torino, 1982). MR 745979

L. D’Ambrosio; An embedding theorem for Sobolev spaces related to nonsmooth vector fields
and Harnack inequality, Comm. Partial Differential Equations 9 (1984), no. 13, 1237-1264.
MR 764663

B. Franchi, E. Lanconelli; Hélder regularity theorem for a class of linear nonuniformly elliptic
operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983),
no. 4, 523-541. MR 753153

N. Garofalo; Unique continuation for a class of elliptic operators which degenerate on a
manifold of arbitrary codimension, J. Differential Equations 104 (1993), no. 1, 117-146.
MR 1224123

V. V. Grusin; A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83 (125) (1970),
456-473. MR 0279436

V. V. Grus$in; A certain class of elliptic pseudodifferential operators that are degenerate on
a submanifold, Mat. Sb. (N.S.) 84 (126) (1971), 163-195. MR 0283630

L. Hérmander; Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147—
171. MR 0222474

A. E. Kogoj, E. Lanconelli; Liouville theorem for X-elliptic operators, Nonlinear Anal. 70
(2009), no. 8, 2974-2985. MR 2509383

A. E. Kogoj, E. Lanconelli; On semilinear Ay-Laplace equation, Nonlinear Anal. 75 (2012),
no. 12, 4637-4649. MR 2927124

A. E. Kogoj, S. Sonner; Attractors for a class of semi-linear degenerate parabolic equations,
J. Evol. Equ. 13 (2013), no. 3, 675-691. MR 3089799

A. E. Kogoj, S. Sonner; Attractors met X -elliptic operators, J. Math. Anal. Appl. 420 (2014),
no. 1, 407-434. MR 3229832

A. E. Kogoj, S. Sonner; Hardy type inequalities for Ay-Laplacians, Complex Var. Elliptic
Equ. 61 (2016), no. 3, 422-442. MR 3454116

E. Lanconelli, A. E.. Kogoj; X-elliptic operators and X -control distances, Ricerche Mat.
49 (2000), no. suppl., 223-243, Contributions in honor of the memory of Ennio De Giorgi
(Italian). MR 1826225

E. Lanconelli, D. Morbidelli; On the Poincaré inequality for vector fields, Ark. Mat. 38
(2000), no. 2, 327-342. MR 1785405

D. Li, C. Sun; Attractors for a class of semi-linear degenerate parabolic equations with critical
exponent, J. Evol. Equ. 16 (2016), no. 4, 997-1015. MR 3577407

D. Li, C. Sun, Q. Chang; Global attractor for degenerate damped hyperbolic equations, J.
Math. Anal. Appl. 453 (2017), no. 1, 1-19. MR 3641757

D. T. Luyen; Two mnontrivial solutions of boundary-value problems for semilinear A~-
differential equations, Math. Notes 101 (2017), no. 5-6, 815-823. MR 3669606

D. T. Luyen, N. M. Tri; Existence of solutions to boundary-value problems for semilinear A,
differential equations, Math. Notes 97 (2015), no. 1-2, 73-84. MR 3394492

D. T. Luyen, N. M. Tri; Behavior at large time intervals of solutions of degenerate hyperbolic
equations with damping, Sibirsk. Mat. Zh. 57 (2016), no. 4, 809-829. MR 3601331

D. T. Luyen, N. M. Tri; Global attractor of the Cauchy problem for a semilinear degenerate
damped hyperbolic equation involving the Grushin operator, Ann. Polon. Math. 117 (2016),
no. 2, 141-162. MR 3539074

D. T. Luyen, N. M. Tri; Exzistence of infinitely many solutions for semilinear degenerate
Schrédinger equations, J. Math. Anal. Appl. 461 (2018), no. 2, 1271-1286. MR 3765489

D. Maldonado; On certain degenerate and singular elliptic PDEs I: nondivergence form oper-
ators with unbounded drifts and applications to subelliptic equations, J. Differential Equations
264 (2018), no. 2, 624-678. MR 3720825

D. T. Quyet, L. T. Thuy, N. X. Tu; Semilinear strongly degenerate parabolic equations with
a new class of nonlinearities, Vietnam J. Math. 45 (2017), no. 3, 507-517. MR 3669155

M. X. Thao; On the global attractor for a semilinear strongly degenerate parabolic equation,
Acta Math. Vietnam. 41 (2016), no. 2, 283-297. MR 3506317



178 A. E. KOGOJ, E. LANCONELLI EJDE-2018/CONF/25

[36] N. T. C. Thuy, N. M. Tri; Some ezistence and nonezxistence results for boundary value
problems for semilinear elliptic degenerate operators, Russ. J. Math. Phys. 9 (2002), no. 3,
365-370. MR 1965388

[37] P. T. Thuy, N. M. Tri; Nontrivial solutions to boundary value problems for semilinear strongly
degenerate elliptic differential equations, NoDEA Nonlinear Differential Equations Appl. 19
(2012), no. 3, 279-298. MR 2926298

[38] P. T. Thuy, N. M. Tri; Long time behavior of solutions to semilinear parabolic equations
inwvolving strongly degenerate elliptic differential operators, NoDEA Nonlinear Differential
Equations Appl. 20 (2013), no. 3, 1213-1224. MR 3057173

[39] N. M. Tri; On the Grushin equation, Mat. Zametki 63 (1998), no. 1, 95-105. MR 1631852

[40] N. M. Tri; Critical Sobolev exponent for degenerate elliptic operators, Acta Math. Vietnam.
23 (1998), no. 1, 83-94. MR 1628086

[41] N. M. Tri; Recent results in the theory of semilinear elliptic degenerate differential equations,
Vietnam J. Math. 37 (2009), no. 2-3, 387-397. MR 2568027

[42] J.-M. Wu; Geometry of Grushin spaces, Illinois J. Math. 59 (2015), no. 1, 21-41. MR 3459626

ALessia E. KoGoJ
DIPARTIMENTO DI SCIENZE PURE E APPLICATE (DISPEA), UNIVERSITA DEGLI STUDI DI URBINO
“CARLO B0”, P1AZZA DELLA REPUBBLICA, 13 - 61029 UrBINO (PU), ITALY

E-mail address: alessia.kogoj@uniurb.it

ERMANNO LANCONELLI
DIPARTIMENTO DI MATEMATICA, UNIVERSITA DEGLI STUDI DI BOLOGNA, PiazzA DI PORTA SAN
DonaToO, 5 - 40126 BOLOGNA, ITALY

FE-mail address: ermanno.lanconelli@unibo.it



	1. Introduction
	1.1. -operators
	1.2. 
	1.3. 
	1.4. 

	2. De Giorgi-Moser-type theorem for . Liouville-type theorems
	3. -Laplacians
	4. Examples of -Laplacians
	Acknowledgements

	References

