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GLOBAL REGULARITY CRITERIA FOR 2D MICROPOLAR
EQUATIONS WITH PARTIAL DISSIPATIONS

DIPENDRA REGMI

ABSTRACT. This article addresses the global regularity (in time) issue of two
dimensional incompressible micropolar equations with various partial dissipa-
tions. Micropolar fluids represent a class of fluids with nonsymmetric stress
tensor (called polar fluids) such as fluids consisting of suspending particles,
dumbbell molecules, etc. Whether or not its classical solutions of 2D mi-
cropolar equations without velocity dissipation and micro-rotational viscosity
develop finite time singularities is a difficult problem, and remains open. Here,
we mainly focus on two types of partial dissipation cases, and we prove the
conditional global regularity.

1. INTRODUCTION

In this article we study the global existence and regularity of classical solutions to
the 2D incompressible micropolar equations with various dissipation. The standard
3D incompressible micropolar equations can be written as

Ou+ (u-Vu+ Vr = (v + k)Au + 26V X w,
Ow + (u- V)w + dkw = nAw + aVV - w + 26V X u, (1.1)
V-u=0,
where, for x € R® and t > 0, u = u(x,t),w = w(x,t) and ™ = 7(x,t) denote the
velocity field, the micro-rotation field and the pressure, respectively, and -y denotes
the kinematic viscosity, x the micro-rotational viscosity, and «, and 7 the angular

viscosities.
The 3D micropolar equations reduce to the 2D micropolar equations when

u = (ui(x,y,t),u2(z,9,t),0), w=(0,0,ws(z,y,t)), w=m(z,y,t),
The 2D incompressible micropolar equations can be written as,
Ou+ (u-Vu+Vr = (y+ k) Au+2rV X w,
Ow + (u- Vw + dkw = nAw + 26V X u, (1.2)
V-u=0,

where u = (u1,u2), V X w = (—0yw, O,w) and V x u = Jyus — Oyu;
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Micropolar fluids represent a class of fluids with nonsymmetric stress tensor
(called polar fluids) such as fluids consisting of suspending particles, dumbbell
molecules, etc (see, e.g., [ 8,9, 10, [14]). In the absence of micro-rotational effects,
this system reduces to well-known Navier Stokes equations. A generalization of the
2D micropolar equations is given by

Opur + (u - V)ur + 0, = p1110z2u1 + p120yyu1 + 260yw,
Opug + (u - V)ug + 0y = 121 0pzu2 + H220yyUs — 260w,
Ow + (- V)w + 4kw = 01 0zzw + 120w + 26V X 1,
V-u=0.

(1.3)

where we have written the velocity equation in its two components. Clearly, if

P11 = pi12 = po1 = fo2 =Y+ R, =12 =1
then (|1.3) reduces to the standard 2D micropolar equations in (|1.2)).
We main focus on the global regularity problem on ([1.3]) with various dissipations.
The global regularity to (1.3) with g3 > 0, g2 > 0, po; > 0, pge > 0, and

n1 = 12 = 0 can be done easily. Global regularity of the following cases have been
established.
(I) 11 > O, 12 > 0, 21 > 0, Moo > 0 and N =1mn2 = 0;

(IT) p11 = pa2 = p21 = po2 = 0 and 9y = 0z > 0;

(IT1) p11 =0, p12 > 0, o1 > 0, poo =0, and 71 > 0, 2 = 0;

(IV) p11 >0, paz >0, p21 = 0, piga = 0, and 7y > 0, 12 = 0;

(V) p11 =0, 12 >0, po1 =0, pre2 >0, and m; >0, 2 =0

For (I) and (IT), the global regularity was established in [7], and [6], respectively.
Very recently Regmi and Wu [I7] studied the global regularity of the magneto-
micropolar equations with partial dissipation. The global regularity results for
cases (IIT)—(V) are included in [I7].

The global regularity to for the case: p11 > 0, 12 = 0, po1 > 0, poo = 0,
and n; > 0, o = 0 is very difficult. In fact the dissipation is not sufficient to control
L?-norm when we employ energy method.

In this article, we consider the global regularity to for the following two
cases:

Case 1: M1 = O7 M1 > 0, a1 = O, Mo = O7 and n > 0, N2 = 0.
Case 2: w11 =0, p12 =0, o1 > 0, oy =0, and n =0, 1m2>0.
More precisely, we prove the following two theorems.

Theorem 1.1. Consider the 2D micropolar equations
Opur + (u- V)ur + 0pm = p120yyu1 + 2k0yw,
Owus + (u - V)ug + 0ym = —2K0,w,
Ow + (u- V)w + 4kw = 11 0gzw + 26V X u,
V.u=0.

(1.4)

Assume (ug,wo) € H*(R?), and V - ug = 0. Then the system has a unique global
classical solution (u,w) satisfying, for any T > 0, (u,w) € L*([0,T]; H*(R?))

provided that
T
| sl < oc
0
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Another result in this article is summarized in the following theorem.
Theorem 1.2. Consider the 2D micropolar equations
Owur + (u- V)ur + 0, = 2k0yw,
Opuz + (u - V)ug + Oym = p121052us — 260w,
Oww + (u - V)w + 4kw = n20yyw + 26V X u,
V.u=0.

(1.5)

Assume (ug,wo) € H?(R?), and V - ug = 0. Then the system has a unique global
classical solution (u,w) satisfying, for any T > 0, (u,w) € L*([0,T); H*(R?))

provided that
T
| 10l < o
0

The general approach to establish the global existence and regularity results
consists of two main steps. The first step assesses the local (in time) well-posedness
while the second extends the local solution into a global one by obtaining global
(in time) a priori bounds. For the systems of equations concerned here, the local
well-posedness follows from a standard approach and shall be skipped here. Our
main efforts are devoted to proving the necessary global a priori bounds. More
precisely, we show that, for any "> 0 and t < T,

[[(u, @) (-, )| 12 (r2) < C, (1.6)
where C' denotes a bound that depends on T' and the initial data.

The rest of this paper is divided into three sections. The first section is about
preliminaries. The last two sections devoted to the proof of one of the theorems
stated above. To simplify the notation, we will write ||f||2 for ||f||z2, [ f for

fR2 fdxdy and write 8% f, Ozf or f, as the first partial derivative, and 88—;2 f or
Oz f as the second partial throughout the rest of this paper. For the simplicity
we consider all non zero parameters equal 1 (although we include some of these
parameter in the proof)

2. PRELIMINARIES

In this section we state some important results which will be used later. In the
proof of Theorem [I.1]and the following anisotropic type Sobolev inequality will
be frequently used. Its proof can be found in [2].

Lemma 2.1. If f,g,h,0,g,0,h € L*>(R?), then

[ tanl dzay < Clstalaly 10,00 2100 om0, )

where C is a constant.

The following simple fact on the boundedness of Riesz transforms will also be
used.

Lemma 2.2. Let f be divergence-free vector field such that V f € LP forp € (1,00).
Then there exists a pure constant C > 0 (independent of p) such that

C p?
1V flles < L9 il
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3. PROOF OF THEOREM [I.1]

As explained in the introduction, it suffices to establish the global a priori bound
for the solution in H?. For the sake of clarity, we divide this process into two
subsections. The first subsection proves the global H'-bound while the second
proves the global H2-bound.

3.1. Global L2-bound.

Lemma 3.1. Assume that (ug,wp) satisfies the condition stated in Theorem ,
Let (u,w) be the corresponding solution of (1.4). Then, (u,w) obeys the following
global L?-bound,

t
lu()lIZz + oz + ulz/o 10y ()72 d7

t t
tm / 1000 (r) |22 dr + 85 / lwo(r) |22 dr
0 0

1 1
326%(— + , ,
<e mz e (Jluolz + [lwll2)

for anyt > 0.

Taking the L? inner product of (1.4) with (u,w), integrating with respect to
space variable, we obtain

== (lu@®l3 + lw®)13) + maldyulls + mdzwl3 + 4xllw(®)]l5
= / 2{(V xw) - u+ (V x v)whdr

R2
= / 2k{0ywuy — Ozwug + Opuow — Oyuiwtdx

R2

= —/ 4k{0zwus + Oyuiwlde
RZ

< 4([|0zwll2[lulle + 18y url2[|w(l2)

12 9 M 5 32k? 5 32k?
2 0yur]3 + S 10.w|3 + ——]lw|l3 +
10,3 4+ 0w+ Sl + 5

where we have used the following fact due to the divergence free condition

/R2(U-V)u.udx:/ (u- V)owdz =0

R2

< 3,

Applying Gronwall inequality for 0 < t < oo,

t
IIU(t)\|§+Ilw(t)||§+u12/0 10z u(T) |72 dr

t t
+m/ 100(7) |22 dT—l-SH/ ()22 dr
0 0
1

1
32K%(— + ) )
<e A2 T (Juollz + flwll2)
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3.2. H'-bound.

Theorem 3.2. Assume that (ug,wp) satisfies the condition stated in Theorem n
Then the solution (u,w) corresponding to (L.4) obeys, for any 0 <t < oo,

t
IVu(t)2 + [Vew(t)[2 + e / IV, (7) 3 dr

t t
+m / IV 0uo(r)|[2 dr + 8k / IVw(®)|2dr < C
0 0

Proof. Taking the L? inner product of (1.4) with (Au, Aw) yields
1d

L (a3 + 190I3) + a0y 3 + 1| V0,(0) 3 + 45 Veo(r)

= / (26(V X w) + (—Au) + 26(V X u)(—Aw)) dz —|—/ u - Vw(—Aw) dzx
R2 R2

=9I, + I,

where we have use the fact that
/ (u-V)u-Audx = V- Audz = 0.
R2 R2

Note that
/2 26(V x w) - (—Au) = / 2k(V x u)(—Aw)) dz.

R R2
To estimate I; we write in component-wise

L = / 2k(V x w) - (—Au) dzx
R2
:/ 2k(—0ywAus + OywAuy) dx
R2
= / 2k(OywOpgu1 + OywOyyut — Opwlyzus — Ozwiyyus) dx,
RQ

32K

? 2
u
vl

| [ 26000 de| < TVOw]3 +
R2

16k2
| [ 260,00, do| < 2190, + 2 [Vl
R2? M2

322

| | 260,w0pqus dx| < @HV&Cng + || V|3,
R2 8 1
32K2
| [ 260,00,us dz| < 1| Vo,w|3 + V|2,
R? 8 Y

I, = / (u-Vw(—Aw)dx = / Vw-Vu-Vwdz,
R2 R2

I, = /Vw -Vu-Vw = /3mu1w§ + 2/u1wywmy + /(8Tu2 + Oyu1 )wawy,

2
/@Eulwz = 72/ulwmwx,

1
| [ trasioa] < fellonalf + Cllur B0, V1,
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1 2 2 2 2
| [ wrn| < gV 3+ Cllun B0y 31Vl
1
| [ dpa] < gVl + o, BTl

| / D uzwatoy| < Cll0sua ||| Vol

Combining the estimates above, together with Gronwall’s inequality, we obtain

t
IVu@)l3 + Vw3 + p2 /0 V8, ui (7)|3 dr

t t
+ m/ |VOuw(7)||3 dr + 8n/ IVw(®)|3dr < C
0 0
for any t < T, where C depends on T and the initial H'-norm. This completes the

proof of theorem. O

3.3. Global H? bound and proof of Theorem [1.1l To estimate the H?-norm
of (u,b,w), we consider the equations of Q =V X u, Vw,

Q +u-VQ = —p120yyyu1 + 26Aw, (3.1)
Vow + V(u - Vw) + 4kVw = 191 Vws, + 26VQ (3.2)
Vou=0. (3.3)

Taking the L? inner product of (3.1)) with AQ, and integrating by parts, we obtain

1d

2dt||VQ||2+H2||A3 uy |3 7/VQ Vu-VQdzrdy — QR/AQAwdxdy

= Ll +L27

(3.4)

Taking the L?-inner product of . ) with Aw, and integrating by parts, we obtain

2dt||Aw||2—1—7)1||Awgc||2—4—4,‘<;||Aw||2 = —2&/AQAw+/A(u~Vw)Aw
= LQ +L3.

Adding (3.4) and . 3.5]) yields

1d
5 IV + 1AwI3) + prall A0y wn I + | Awa 3 + 4l Awl3

=L1+2Ly + Ls.
We now estimate Ly through L3. We further split L; into 4 terms.

lef/VQ'Vu~VQ dx dy

= — / (Bxul(amﬁ)z + 0y 20,020,824 0yu1 0,80, + 8yuQ(8yQ)2)
= Ly + Li2 + L1z + La.
Since Q = V X u, we have
0228 = Adgug, 0yl = —A0yu1, 02y§) = Ay us. (3.5)

Therefore,
Lit < [|10zur]loo[VRU3, Lz < [|0zuslloo VO3
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Invoking the divergence-free condition, we note that

IVOzu1 13 = 1|0saur |3 + [[9yyusll3,
IVOyurll3 = 10yyuzll3 + 18yyua |13,

||V8I“2||§ = Hamulug + Hamuﬂlg

By Lemma 2.1}

< Cl|Dyur ||y 18zyur 3 *10: 212118, 2015 18,215
< C)10y, Q|2 |0z yur 12110, 22 + Cl0yur|2]| V12

1
< 3510wl + CA+ [10yurll3 + 10y [DIVRIE.

From Q =V x u, (3.5)), and lemma (2.1]),

L14 S |2/u26y§23yyﬂ|
1/2 1/2 1/2 1/2
< C|0yy lalluslly > 18zually 10,2115 10,213
3 1/2 1/2 1/2
< C1|0y, 213 uz 1y 212052 V23

1
< 5100015 + Clluz 31201 VO3.

Term Ly can be easily bounded,

Ly = /AQAw = /QmAw—l—/nyAw

with

/ Qe = — / 0, Aw, < VO Aws], | / QD] < |9 [l2]l Ao

We now estimate the last term Ls.
L3 = —/A(u -Vw)Aw = — / A(u101w + u20yw)Aw = Lg31 + Las.
We first split L3, and L3o each into two terms.

Ly = — /8zw(u16xw + up0yw)Aw = L3171 + L3j2.

109

L3y = — / Oyy (U1 0z + u20yw) Opgw — /8yy(u13xw + u20yw)yyw = L3o1 + L3aa.
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These terms are bounded as follows.

|Laia| = | — /3m(u18mw)sz|

< | — /3Iu181wAwI| + { /ulamwAwm{
1/2 1/2 1/2 1/2
< O Awe 21011 11y 10y 1510011y | Ot
1/2 1/2 1/2 1/2
+ CllAwy ol10zaw 15 [ Dazawll5 ™ ur 152 0y |3
1/2 1/2 1/2 1/2
< CllAw o]l Awly 101l Vel Vel
3 1/2 1/2 1/2
+ Cl|Aw, I3 Ve 13" [15”% 120157
1
< ZSIIA%II% + CQUBIVS + [VelZIAwl3 + Cllud I3[V 131213,
|L312| = | — /ﬁquaywAwm — /uzazywwaL
| - /8mu28yWwa| < Hamu”oo”ayW”Q”AWzH%
1/2 1/2 1/2 1/2
| [ 20| < Cllwslallualy 210,z 1m0yl
< [|Awz I3 + Clluzll3 192031 Vws 13,
L3o1 = /Byy(ulazw + U20yw) Ogpw = /8m(u18zw + U20yw) Oyyw.
Obviously L32; admits the same bound as that for L1,
1
|Ls21| < @\\Awm\lg + ClIUBIVLS + [ Vwl3 1 Awl3 + Cllua 5] Vs I35 [12]3-
To estimate L300, we write it out explicitly and integrate by parts,
L3go = /ayy(u13xw + U 0yw) Dyyw
= /8y(8yu18xw + U1 Opyw) Oyyw + /8y (Oyu20ow + u20yyw)Oyyw
= /[5'yyu18:,3w + 20,1 Opyw + U1 Ogyyyw] Oyyw
+ /[8yyuz3yw + 20, Uu20yyw + Uz0yyyw]|Oyyw.
The terms on the right can be bounded as follows:

‘ / Oyy U1 OgwOyyw ‘

1/2 1/2 1/2 1/2
< C) 0w 12010y ly 2 18yyyur i 10y ly* 1 0nyylly”

1/2 1/2 1/2
< Cl|O,wl|2l| VA ur |y A0 ua |13/ | Awly | Aduw]ly

1 1
< A% l3 + g lAwellz + Cllwe 5[IVayur 5 + [Aw]3)

IA

1 1
A0l + gllAwe 3 + Cloe3(IVRS + [1Aw]3).
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|/3yu18xyw8yyw|
1/2 1/2 1/2 1/2
< Cll0yywlli2l|0zyw |2 [ Dwyye |2 |0y ua [l (| Oy ua

2
1/2 1/2 1/2 1/2
< CllAw]lolVwelly [ Aws 1y *18yu 15 V215

1
< llAwe |3 + C [ Vws [FIIVQIIS + Clloyus [l2] Awl3

— 48
|/u18zyyw8yyw|
1/2 1/2 1/2 1/2
< Oy llually 210yt |13 210y 13 [Oayye 15

3 1/2 1/2 1/2
< O Awg |12 ]|y 18y |5 Awll5’

1
< wlAwells + Cllw [3]10yua 5] Aw]3 -

| / 0yyuz3yw8yyw|

1/2 1/2
< Cll0yyuzl218,wl3* wyyll2wayy 15

< oy 21 Awe | + CIV Ay B Awl3
1
< lAwells + ClIVe]3 + ClIVoyu[3]| Al
Integration by parts yields

/6yuQ8yyw8yyw = —/qulayywayyw = 2/u18yyw3xyyw,

1
/UZayyywayyw = 5/“261/[3?;3;”]2 = */Ularyywayywv

which can be bounded as
1/2 1/2 1/2 1/2
| / U1y w8y w| < Cl0ayyw 2|0y 13 210yl ually 18y 13

3 1/2 1/2 1/2
< Ol Awg |12 18wy ur|[y?]|8y |15
< [|Awg |1 + Cllur 13110y 13| Aw]2.

111

Collecting the estimates above and applying Gronwall’s inequality, we obtain the
desired global H2-bound. This completes the proof for the global H2-bound and

thus the proof of Theorem [T.1]

4. PROOF OF THEOREM

We just prove the H'-global bound here. The rest of the proof is similar to the

proof of Theorem The global L? bound can be proved easily.

Lemma 4.1. Assume that (ug,wq) satisfies the condition stated in Theorem .
Let (u,w) be the corresponding solution of (1.4). Then, (u,w) obeys the following

global L?-bound,

t
lu(®) |22 + [w(®)]2s + pon / 10, ()2 dr
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t t
4 [ 10,0(r) e dr + 86 [ w(r)|s dr < O
0 0
for any t > 0.
Global H2 bound can be obtained similar to theorem [3.2

Theorem 4.2. Assume that (ug,wp) satisfies the condition stated in Theorem .
Then, the corresponding solution (u,w) of (L.4]) obeys, for any 0 < t < oo,

t
IVu@®)l3 + V()3 + p21 /0 IV 0z uz(7)13 dr

t t
+772/ ||V8yw(7')||gd7'+81€/ IVw(®)3dr < C
0 0

Proof. Taking the L? inner product of (L.5) with (Au, Aw) yields

1d

5 7 IVu@)13 + [V @I3) + pa1l|Vruall3 +n2[[VOyw(B)]3 + 45 Ve ()13

= / (26(V x w) - (—Au) + 25(V x u)(—Aw)) dz —|—/ u - Vw(—Aw) dzx
R2 R2

= 2]\4’1 +M27

To estimate M; we write in component-wise
M, = /R2 2(0ywiyzu1 + Oywiyys — OpwOyzpts — Opwlyyus) dx
| [, 200,001 da < SI90,wI3 + IVl
| [, 200,001 do] < SIVO15 + a3,
| . 260w puz dz| < é”V@muQHg + Vw3,
| [, 200,00, o] < GIVO15 -+ V.
My :/ Vw-Vu-Vwdz,
-
My = /Vw -Vu-Vw = /&Eulwi + 2/u1wywzy + /(6zu2 + Oy )wawy
| [ G < 0yl 3.
| [ wrsen] < 10yl 9 3.
| [ | < 10,01 9.

1/2 1/2
| / Dntizwatwy| < |Optall2llwal¥ ?llwy 12 Veoy 2

A

1
< 51Veulls + Cllowus |3 Vells
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Combining the estimates above, together with Gronwall’s inequalities, we obtain

for

t
IVu@)lI3 + Vw3 + g2 /O IV 0y (7)|3 dr

t t
+771/ HV@;CW(T)H%CZT+8K// [Vw(t)|3dr < C
0 0

any t < T, where C depends on T and the initial H'-norm. This completes the

proof of theorem. O
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