
Tenth MSU Conference on Differential Equations and Computational Simulations.

Electronic Journal of Differential Equations, Conference 23 (2016), pp. 139–154.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

A GENERALIZATION OF PREFACTORED COMPACT SCHEMES
FOR ADVECTION EQUATIONS

ADRIAN SESCU

Abstract. A generalized prefactorization of compact schemes aimed at re-

ducing the stencil and improving the computational efficiency is proposed here

in the framework of transport equations. By the prefactorization introduced
here, the computational load associated with inverting multi-diagonal matrices

is avoided, while the order of accuracy is preserved. The prefactorization can

be applied to any centered compact difference scheme with arbitrary order of
accuracy (results for compact schemes of up to sixteenth order of accuracy are

included in the study). One notable restriction is that the proposed schemes
can be applied in a predictor-corrector type marching scheme framework. Two

test cases, associated with linear and nonlinear advection equations, respec-

tively, are included to show the preservation of the order of accuracy and the
increase of the computational efficiency of the prefactored compact schemes.

1. Introduction

Compact difference schemes, as opposed to explicit schemes, possess the advan-
tage of attaining higher-order of accuracy with fewer grid points per stencil. They
are preferred in applications where high accurate results are desired, such as di-
rect numerical simulations, large eddy simulations, computational aeroacoustics or
electromagnetism, to enumerate few, and in some instances they feature accuracy
comparable to spectral methods. One of the disadvantages of compact schemes is
that an implicit approach is required to determine the derivatives, where a matrix
(usually multi-diagonal) has to be inverted.

A comprehensive study of high-order compact schemes approximating both first
and second derivatives on a uniform grid was performed by Lele [15]. A wavenum-
ber based optimization was introduced wherein the dispersion error was reduced
significantly (assuming an exact temporal integration). Over the next years, com-
pact schemes have been studied by many research groups, and applied to various
engineering problems (see for example, Li et al. [16], Adams and Shariff [1], Liu
[17], Deng and Maekawa [6], Fu and Ma [9, 10], Meitz and Fasel [21], Shen et al
[25], Shah et al [24]). Other examples include Kim and Lee [14] who performed
an analytic optimization of compact finite difference schemes, Mahesh [20] who de-
rived a family of compact finite difference schemes for the spatial derivatives in the
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Navier-Stokes equations based on Hermite interpolations (see also, Chu and Fan [5]
for a similar prior analysis), or Deng and Zhang [7] who developed compact high-
order nonlinear schemes which are equivalent to fifth-order upwind biased explicit
schemes in smooth regions. Hixon and Turkel [12, 13] derived prefactored high-
order compact schemes that use three-point stencils and returns up to eighth-order
of accuracy. These schemes combine the tridiagonal compact formulation with the
optimized split derivative operators of an explicit MacCormack type scheme. The
optimization of Hixon’s [12, 13] schemes in terms of reducing the dispersion error
was performed by Ashcroft and Zhang [2] who used Fourier analysis to select the
coefficients of the biased operators such that the dispersion characteristics match
those of the original centered compact scheme and their numerical wavenumbers
have equal and opposite imaginary components. Sengupta et al [23] derived a new
compact schemes for parallel computing. Today, compact schemes are widely used
in numerical simulations of turbulent flows (e.g., direct numerical simulations), com-
putational aeroacoustics, or computational electromagnetics. In order to increase
the speed of such numerical simulations it is desirable to derive more computa-
tional efficient compact schemes without affecting the order of accuracy and the
wavenumber characteristics.

In this work, we propose a generalized prefactorization of existing compact
schemes aimed at reducing the stencil and increasing the computational efficiency.
It is based on the type of prefactorization introduced previously by Hixon and
Turkel [12, 13], but here the order of accuracy can be increased indefinitely, and
there are no specific requirements for the original compact schemes to be suitable to
prefactorization, other than they must fall in the class of centered scheme. A similar
optimization was recently performed by Bose and Sengupta [3]. They developed
an alternate direction bidiagonal (ADB) scheme, which showed neutral stability
and good dispersion characteristics. The analysis included here can be viewed as
a generalization of their work, except the focus is on the order of accuracy rather
the dispersion characteristics. One of the restrictions of the schemes derived here is
that the proposed prefactored schemes can be combined with a predictor-corrector
type time marching scheme only. This allows the determination of the derivatives
by sweeping from one boundary to the other, thus avoiding the inversion of matrices
which can make the computational algorithm cumbersome and the execution time-
consuming. It is shown that the original order of accuracy of the classical compact
schemes is preserved, while the computational efficiency can be almost doubled
(numerical tests pertaining to fourth and sixth order accurate schemes show over
40% decrease in the processing time, while higher order schemes are expected to be
more efficient).

In Section 2, we discuss the classical compact difference schemes including wave-
number characteristics. In section 3, we introduce and analyze the prefactored
compact schemes. In section 4, we consider two test cases to verify the efficiency
and to check the preservation of the order of accuracy of the proposed schemes.
The two text cases correspond to a linear and a nonlinear problem. In the last
section we have some concluding remarks.
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2. Compact difference schemes

Consider the general compact centered difference approximation for the first
derivative:

Nc∑
k=1

αk(u′j+k + u′j−k) + u′j =
1
h

Ne∑
k=1

ak(uj+k − uj−k) +O(hn), (2.1)

where 1 ≤ j ≤ N (with N being the number of grid points), the gridfunctions at
the nodes are uj = u(xj), the values of the derivatives with respect to x are u′j ,
and h is the spatial step. If αk = 0 then the scheme is termed explicit. Compact
schemes (also known as implicit or Pade schemes), by contrast, have αk 6= 0 and
require the solution of a matrix equation to determine the derivatives of the grid
function. Conventionally, the coefficients αk and ak are chosen to give the largest
possible exponent, n, in the truncation error, for a given stencil width. Table 1
gives several weights for various compact difference schemes that are considered
in this study: fourth (C4), sixth (C6), eight (C8), tenth (C10), twelfth (C12),
fourteenth (C14) and sixteenth (C16) order accurate. Schemes C4 and C6 require
a tri-diagonal matrix inversion, C8 and C10 a penta-diagonal matrix inversion,
C12 and C14 a seven-diagonal matrix inversion, while C16 a nine-diagonal matrix
inversion. The inversion of three- and five-diagonal matrices for determining the
weights of compact differencing schemes received increased attention, while seven-
and nine-diagonal matrices are less popular due to the computational inefficiency.
The prefactored compact scheme of Hixon [12] is also included here in the form

auF
′

j+1 + cuF
′

j−1 + (1− a− c)uF
′

j =
1
h

[buj+1 − (2b− 1)uj − (1− b)uj−1)] ,

cuB
′

j+1 + auB
′

j−1 + (1− a− c)uB
′

j =
1
h

[(1− b)uj+1 − (2b− 1)uj − buj−1)] ,
(2.2)

where F and B stand for ’forward’ and ’backward’, respectively. For sixth order
accuracy, a = 1/2− 1/(2

√
5), b = 1− 1/(30a) and c = 0.

Table 1. Weights of several compact difference schemes

Scheme α1 α2 α3 α4 a1 a2 a3 a4
C4 1/4 0 0 0 3/4 0 0 0
C6 1/3 0 0 0 7/9 1/36 0 0
C8 4/9 1/36 0 0 20/27 25/216 0 0
C10 1/2 1/20 0 0 17/24 101/600 1/600 0
C12 9/16 9/100 1/400 0 21/32 231/1000 49/4000 0
C14 3/5 3/25 1/175 0 31/50 67/250 283/12250 1/9800
C16 16/25 4/25 16/1225 1/4900 72/125 38/125 1784/42875 761/686000

The leading order term in the truncation error of a finite difference scheme
depends on the choice of the coefficients and the (n+1)st derivative of the function u.
To obtain the wavenumber characteristics of compact schemes, consider a periodic
domain with N uniformly spaced points on x ∈ [0, L] (with h = L/N), and the
discrete Fourier transform of u as

uj =
N/2−1∑
m=−N/2

ûme
ikmxj ; j = 1, . . . , N. (2.3)

where the wavenumber is km = 2πm/L. The mth component of the discrete Fourier
transform of u′ denoted û′m is simply ikmûm. Taking the discrete Fourier transform
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of equation (2.1) provides the approximate value of û′m in the form

(û′m)num = iK(kmh)ûm, (2.4)

where the numerical wavenumber is given by:

K(z) =
∑Ne

n=1 2an sin (nz)

1 +
∑Nc

n=1 2αn cos (nz)
. (2.5)

where z is the wavenumber. Figure 1 shows the numerical wavenumber, the phase
velocity, and the group velocity corresponding to the schemes given in table 1 (the
exact wavenumber, phase, and group velocity are also included for comparison).
One can notice that the dispersion error decreases as the order of accuracy is in-
creased.
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Figure 1. (a) Numerical wavenumber for various compact
schemes compared to the exact wavenumber. (b) Numerical phase
velocity compared to the exact phase velocity. (c) Numerical group
velocity compared to the exact group velocity.

3. Generalized profactored schemes

The classical compact difference scheme (2.1) is written (conveniently) in the
following form:
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Nc∑
k=1

γk(u′j+k + u′j−k) +
(

1− 2
Nc∑
k=1

γk

)
u′j =

1
h

Ne∑
k=1

ηk(uj+k − uj−k) +O(hn), (3.1)

where the coefficients γk and ηk are functions of the original coefficients αk and ak
given in table 1. The prefactored compact schemes proposed in this work are given
in the form(

1−
Nc∑
k=1

βk

)
u′j
F +

Nc∑
k=1

βku
′
j+k

F =
1
h

Ne∑
k=1

bk

(
uj+k − uj

)
+O(hn), (3.2)

for the forward operator, and(
1−

Nc∑
k=1

βk

)
u′j
B +

Nc∑
k=1

βku
′
j−k

B =
1
h

Ne∑
k=1

bk (uj − uj−k) +O(hn), (3.3)

for the backward operator (’forward’ and ’backward’ correspond to the predictor
and corrector steps, respectively). Notice that the two new schemes are of downwind
and upwind types, respectively, so they may feature dissipation errors. However,
when combining the predictor and corrector operators the dissipation errors equate
to zero, while the dispersion error is the same as the one corresponding to the
original centered compact scheme. If we consider a spatial discretization on a one-
dimensional grid (consisting of N grid points), the schemes (3.2) and (3.3) can be
written in matricial form (Hixon and Turkel [12, 13]) as

BFmnU
′
n
F =

1
h
CFmnUn, (3.4)

BBmnU
′
n
B =

1
h
CBmnUn (3.5)

where {U ′} is the vector of derivatives, {U} is the vector of grid functions, and
m,n ∈ {1, 2, . . . , N}. Equations (3.2) and (3.3) imply

BFmn = BBnm, (3.6)

CFmn = −CBnm (3.7)

The coefficients in (3.2) and (3.3) are determined by requiring that the original clas-
sical compact scheme is recovered by performing an average between the predictor
and corrector operators, formally written as

〈·〉′ =
1
2

(
〈·〉′F + 〈·〉′B

)
(3.8)

Multiplying (3.8) by BBmnB
B
nm and using (3.4), (3.5), (3.6) and (3.7), as well as the

relation BBmnB
B
nm = BBnmB

B
mn, which is true for matrices of the type considered

here, we obtain

BBmnB
B
nm〈·〉′ =

1
2h
(
BBnmC

B
mn −BBmnCBnm

)
〈·〉 (3.9)

The coefficients βk and bk can now be determined by matching equation (3.9)
with equation (3.1) (in the appendix, a Mathematica [28] code used to determine
the coefficients for the new 12th order accurate scheme is included). Tables 2 and 3
include these coefficients for several schemes of different orders of accuracy, fourth
(PC4), sixth (PC6), eigth (PC8), tenth (PC10), twelfth (PC12), fourteenth (PC14)
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and sixteenth (PC16), that correspond to the classical compact schemes given in
table 1.

Table 2. Weights of several prefactored compact difference
schemes (left-hand side).

Scheme β1 β2 β3 β4

PC4 0.211324870586 0 0 0
PC6 0.276393202250 0 0 0
PC8 0.353614989057 0.022913166676 0 0
PC10 0.390891054882 0.041982762456 0 0
PC12 0.424261339307 0.076528671307 0.002177424900 0
PC14 0.440844836186 0.103628733678 0.005175974177 0
PC16 0.450833811211 0.139274137394 0.012291382216 0.000195518547

Table 3. Weights of several prefactored compact difference
schemes (right-hand-side).

Scheme b1 b2 b3 b4
PC4 1.000000000000 0 0 0
PC6 0.907868932583 0.046065533708 0 0
PC8 0.679849926548 0.160075036725 0 0
PC10 0.544199349631 0.223702048938 0.002798850830 0
PC12 0.377436479527 0.283739040458 0.018361813185 0
PC14 0.270368050633 0.312589794656 0.034570978390 0.000184856220
PC16 0.157403729700 0.326389389050 0.060796869771 0.001856720721

The stencil count has been reduced as follows: from 3- to 2-point stencil for PC4
(this is similar to the scheme proposed by Hixon [12]), from 5- to 3-point stencil
for PC6 and PC8, from 7- to 4-point stencil for PC10 and PC12, and from 9- to
5-point stencil for PC14 and PC16. The advantage of these prefactored schemes is
that there is no need to invert matrices because the derivatives can be obtained ex-
plicitly by sweeping from one boundary to the other (assuming the grid functions
and the derivatives are available at the boundaries). This simplifies the compu-
tational cost significantly, without affecting the performance of the schemes since
by averaging the predictor and corrector operators the original classical compact
schemes are obtained. Thus, the wavenumber characteristics manifested through
zero-dissipation and low dispersion of the original compact scheme (2.1) is retained.

4. Test cases

4.1. Preliminaries. We consider the initial-value problem in R× [0,∞):
∂u

∂t
+ c(u)

∂u

∂x
= 0, (4.1)

u(x, 0) = u0(x), (4.2)

and appropriate boundary conditions, where u(x, t) is a scalar function, c is the
convective velocity which may depend on u, and u0(x) is a given function of space.
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Let Ω = {x, l1 < x < l2} be a finite domain in the real set R with l1 and l2 chosen
such that there exist a real non-negative number h = (l1− l2)/N called spatial step
(N is an integer representing the number of grid points).

Because the accuracy of the time marching scheme is not the focus of this study,
we use a second order MacCormack [19] scheme which is a two-step predictor-
corrector time advancement scheme, and a second order TVD Runge-Kutta scheme
[18]. The first time marching schemes is applied in the framework of prefactored
compact schemes, while the second scheme is applied in the framework of classical
compact schemes. To increase the accuracy of the time marching scheme, a very
small time step is set, the emphasis being on the accuracy of the spatial discretiza-
tion. For the advection equation in one dimension, the MacCormack scheme can
be written as

uFj = unj − σ∆F
x u

n
j

uBj = uFj − σ∆B
x u

F
j

un+1
j =

1
2

(uFj + uBj ),

(4.3)

where σ = c(u)k/h, k is the time step, ∆F
x is the ’forward’, and ∆B

x is the ’backward’
difference operators. The second order TVD Runge-Kutta method [18] is

u
(0)
j = unj

u
(1)
j = u

(0)
j + ∆tL(u(0)

j )

un+1
j =

1
2
u

(0)
j +

1
2
u

(1)
j +

1
2

∆tL(u(2)
j )

(4.4)

where L(uj) = −c(uj)(∂u/∂x)j . These two time marching schemes are essentially
the same, except the first is applied in the framework of predictor-corrector type
marching procedure, while the second is applied with 2 stages per time step.

4.2. Linear advection equation. For the linear advection equation, the convec-
tive velocity c is a positive constant (equal to 1 here), which renders the transport
of the initial condition u0(x) in the positive direction. The initial condition is

u0(x) = u(x, 0) =
1
2

exp
[
− (ln 2)

x2

9
]

(4.5)

(Hardin et al. [11]). The domain boundaries are l1 = −20 and l2 = 450, and the
final time is tf = 200. The equation (4.1) is solved numerically using all prefactored
compact difference schemes considered in the previous section. Figure 2 shows the
numerical solution using the sixth order accurate prefactored and classical compact
schemes; the numerical solutions are compared to the analytical solution (the ini-
tial solution is also included). One can notice that there is no difference among
the solutions. This is stressed in table 4 which lists the L2-errors for the fourth,
sixth, eight and tenth order accurate schemes (both prefactored and classical); the
differences between the errors are very small, which is expected since the schemes
have similar behavior (the differences in the errors come from the time marching
algorithms).

From Taylor series expansions corresponding to two different steps, h1 and h2,
the order of accuracy of the compact scheme can be estimated as

p =
ln(ε1/ε2)
ln(h1/h2)

(4.6)



146 A. SESCU EJDE-2016/CONF/23

0 50 100 150 200 250 300 350 400 450 500
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

u(
x)

 

 

intial

analytical

C6

PC6

Figure 2. Plot of the linear solution at t = 280 for the sixth order
accurate schemes.

Table 4. L2 error comparison between prefactored and conven-
tional compact schemes.

Order of accuracy L2 error PC4 L2 error C4
4th 4.4090580981E-003 4.4101995527E-003
6th 6.0846046295E-004 6.0895634631E-004
8th 7.2394864471E-005 7.2375087716E-005
10th 1.5989324725E-005 1.5470197664E-005

where ε1 and ε2 are errors associated with the spatial steps h1 and h2, respectively.
The smallest time step in the MacCormack time marching scheme was k = 1E − 6
corresponding the the sixteenth order accurate scheme. Different grid point counts
are considered to study the behavior of the numerical errors. Figure 3 shows L1,
L2 and L∞ errors (calculated by taking a summation over all points in the grid)
plotted against grid point count, corresponding to all prefactored schemes, while
table 5 lists these errors and the evaluated order of accuracy (calculated via equation
(4.6)). From the plots in figure 3, a linear decrease of all errors with respect to the
grid count can be noticed, except slight deviations for the last grid count in the
behavior of PC14 and PC16. At this accuracy level the errors approach the machine
precision, but in addition the time marching may no longer provide the required
accuracy (a further decrease of the time step was not pursued). The evaluated
orders of accuracy included in table 5 are close to the theoretical ones (indicated by
the suffixes, e.g. ’PC4’ has 4th order of accuracy) suggesting that the prefactored
schemes are indeed able to maintain the desired order.

The computational efficiency increase is tested for PC4, PC6, PC8 and PC10, by
comparing the computation time to the case when corresponding classical compact
schemes of fourth (C4), sixth (C6), eight (C8) and tenth (C10) order of accuracy,
respectively, are employed. C4 and C6 schemes necessitate the inversion of a three-
diagonal matrix which is performed here via the Thomas algorithm ([27]), while
for the C8 and C10 schemes a pentadiagonal matrix inversion is required; this
is done here using a LU-factorization, where the matrix elements are calculated
only once and stored to be re-used. For classical compact schemes, a second order
TVD Runge-Kutta scheme - which is equivalent to the second-order MacCormack
schemes in terms of the number of operations - is used to march the solution in
time. The number of grid points is significantly large - in the order of 10,000 - such



EJDE-2016/CONF/23 PREFACTORED COMPACT SCHEMES 147

that the spatial discretization consumes most of the computational time. Table 6
shows the results in terms of the computational time. By using PC4 as opposed
to C4, a 41.7% decrease in the computational time is achieved; a 40.2% decrease
in the computational time is achieved when employing PC6 scheme versus C6; a
33.1% decrease is achieved when applying PC6 versus C6; and a 32.3% decrease is
achieved when applying PC10 versus C10.

The percentages shown in table 6 can be explained by a comparison in terms
of the number of operations that are necessary when the two types of schemes are
applied. It was found that fewer operations are necessary in the case of PCn schemes
in all cases (for example, 4 additions and 5 multiplications per step are needed when
applying the PC8 scheme, as opposed to 7 additions and 8 multiplications per stage
that are needed when applying the C8 scheme)
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Figure 3. L1, L2 and L∞ errors plotted against grid point count.

4.3. Nonlinear advection equation. In the context of the nonlinear advection
equation, the convective velocity is c(u) = u. The domain boundaries are l1 = −1/2
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Table 5. L1, L2 and L∞ errors for different grid point counts -
linear case.

PC4 scheme
Grid L1-error L2-error L∞-error

40 6.4309202E-003 1.2147772E-002 4.5647113E-002
60 9.7376776E-004 2.5019901E-003 1.0738430E-002
80 2.7148411E-004 7.4323530E-004 3.2702186E-003

100 1.0678123E-004 2.9341239E-004 1.3099043E-003
estimated order of accuracy p = 3.9058

PC6 scheme
40 2.5853741E-003 4.4073207E-003 1.3058909E-002
60 1.5631156E-004 3.8415139E-004 1.4335771E-003
80 2.1072380E-005 6.1152769E-005 2.6060378E-004

100 5.5345770E-006 1.5190237E-005 6.9914708E-005
estimated order of accuracy p = 5.8700

PC8 scheme
40 1.0269107E-003 1.6601837E-003 5.3893200E-003
60 2.1429783E-005 5.3936887E-005 2.3061682E-004
80 1.4878953E-006 4.2014630E-006 1.9661071E-005

100 2.2419349E-007 6.3432171E-007 3.0175207E-006
estimated order of accuracy p = 8.3155

PC10 scheme
40 5.7962247E-004 9.1838126E-004 2.5118507E-003
60 5.5528859E-006 1.3631097E-005 6.0412057E-005
80 1.9686060E-007 5.5050250E-007 2.8709444E-006

100 2.2838208E-008 6.9681216E-008 3.8666113E-007
estimated order of accuracy p = 10.1140

PC12 scheme
40 3.3956164E-004 5.3364060E-004 1.4421609E-003
60 1.5771299E-006 3.5518382E-006 1.5715408E-005
80 2.6383987E-008 8.0943016E-008 4.6658106E-007

100 8.7747738E-009 2.4115746E-008 1.1512857E-007
estimated order of accuracy p = 11.9781

PC14 scheme
40 2.5287271E-004 3.6913391E-004 9.0116478E-004
60 6.3975306E-007 1.3428221E-006 5.8091922E-006
80 6.0074747E-009 1.9783115E-008 1.0758384E-007

100 2.8940807E-009 7.8821369E-009 3.7617685E-008
estimated order of accuracy p = 13.4793

PC16 scheme
40 1.8127733E-004 2.6222753E-004 6.1433898E-004
60 2.7869625E-007 5.4486475E-007 2.1557661E-006
80 5.6610923E-009 1.5792774E-008 7.7338168E-008

100 2.8717976E-009 7.8132634E-009 3.7871620E-008
estimated order of accuracy p = 15.2329
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Table 6. Computational time decrease by using prefactored schemes.

Schemes comp. time decrease (%)
PC4 vs. C4 41.7%
PC6 vs. C6 40.2%
PC8 vs. C8 33.1%

PC10 vs. C10 32.3%

and l2 = 1/2, while the initial condition is

u0(x) = u(x, 0) = 0.1 exp
(
− x2

0.162

)
sin(2πx) (4.7)

where the Gaussian function was introduced to drive the initial waveform expo-
nentially to zero, at both boundaries (in this way, errors generated by boundary
conditions are minimized). The final time is tf = 1.5. As in the linear case,
the equation (4.1) is solved numerically using all prefactored compact difference
schemes for different grid point counts. Figure 4 shows the numerical solution at
two different time instances, using the sixth order accurate prefactored and classi-
cal compact schemes; a comparison to the analytical solution is also included along
with the initial condition. A discontinuity is forming in x = 0, which is stronger in
figure 4(a), corresponding to t = 2.2; here both compact schemes develop spurious
oscillations around the discontinuity, but the important conclusion is that both
prefactored and conventional schemes behave similarly, as expected. Table 4 lists
the L2-errors for the fourth, sixth, eight and tenth order accurate schemes (both
prefactored and classical schemes); the differences between the errors are very small
as in the linear case.
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Figure 4. Plots of the nonlinear solution for the sixth order ac-
curate schemes: (a) t = 1.6, (b) t = 2.2.

Figure 5 shows L1, L2 and L∞ errors plotted against grid point count, corre-
sponding to all prefactored schemes. Up to tenth order of accuracy, the trends
are the same as in the linear case, but for order of accuracy greater than twelfth
there are some discrepancies that may be the result of the accuracy of calculating
the exact solution. Table 8 lists L1, L2 and L∞ errors and the evaluated order of
accuracy (calculated via equation (4.6)). The orders of accuracy included in table
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Table 7. L2 error comparison between prefactored and conven-
tional compact schemes.

Order of accuracy L2 error PC4 L2 error C4
4th 1.9978793015E-007 2.0023910853E-007
6th 7.9774807530E-008 7.8986651180E-008
8th 3.1242097731E-008 2.8410542257E-008
10th 1.4655545221E-008 5.7531058004E-009

8 are close to the theoretical ones for PC4, PC6, PC8 and PC10, but there are
deviations for PC12, PC14 and PC16 (due to the same reasons that are mentioned
above). However, the trend of increasing the evaluated order of accuracy as the
theoretical one is increased is still right.

In terms of the computational efficiency gain, by using PC4 as opposed to C4
a 40.6% decrease in the computational time is achieved; a 39.8% decrease in the
computational time is achieved when employing PC6 scheme versus C6; a 31.6%
decrease is achieved when applying PC8 scheme versus C8; and a 30.4% decrease
is achieved when applying PC8 scheme versus C8 (see table 9).

Conclusions. In this work, a prefactorization of classical compact schemes was
proposed adn studied, targeting the increase of computational efficiency and the
reduction of the stencil width. The new prefactored compact schemes can be applied
in the context of predictor-corrector type time marching schemes, where sweeping
from one boundary to the other is possible. The wavenumber characteristics of
the original schemes are preserved since by averaging the predictor and corrector
operators the dissipation error vanishes, while the dispersion error matches exactly
the dispersion error of the original scheme. Here, up to sixteenth order accurate
compact schemes were analyzed, but theoretically any order of accuracy can be con-
sidered and tested, including existing optimized compact schemes. As an example,
the coefficients of the prefactored spectral-like compact scheme of Lele [15] were
calculated (given in table 10) and tested, and the results showed similar behavior
as the original scheme.
L1, L2 and L∞ errors for different grid point counts, both for linear and nonlinear

cases, showed that the order of accuracy of the new schemes is preserved (with some
deviations in the nonlinear case attributed to other external sources of errors). As
expected, the computational efficiency increased by using the prefactored schemes
as opposed to corresponding classical compact schemes. This was demonstrated for
fourth, sixth, eighth and tenth order accurate schemes.

As mentioned above, one of the disadvantages of the prefactored schemes is the
restriction to predictor-corrector type time marching schemes. Another disadvan-
tage may be the difficulty in applying the schemes in parallel solvers and at the
boundaries of the domain, although similar issues may also be encountered when
employing classical high order compact schemes.

Appendix

In this appendix, a Mathematica code used to determine the weights of the
optimized 12th order accurate scheme is included.

Next matrix A is from Taylor series
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Table 8. L1, L2 and L∞ errors for different grid point counts -
nonlinear case.

PC4 scheme
Grid L1-error L2-error L∞-error
120 2.6057545E-007 8.5267800E-007 5.1480039E-006
140 1.3189979E-007 4.3851923E-007 2.4635989E-006
160 7.9331220E-008 2.4853181E-007 1.5294059E-006
180 4.7629938E-008 1.5153784E-007 9.2540099E-007

estimated order of accuracy p = 4.2243
PC6 scheme

120 4.2923461E-008 1.4477527E-007 8.8853969E-007
140 1.4589376E-008 5.2417825E-008 2.6191106E-007
160 5.0682594E-009 2.1581203E-008 1.4697422E-007
180 2.7495252E-009 1.0043626E-008 6.3695264E-008

estimated order of accuracy p = 6.3415
PC8 scheme

120 1.5900337E-008 5.0506253E-008 2.6150391E-007
140 4.0357681E-009 1.3133096E-008 7.5480377E-008
160 1.0600384E-009 3.6076941E-009 2.4301185E-008
180 3.1257899E-010 1.2368444E-009 7.7387924E-009

estimated order of accuracy p = 8.4347
PC10 scheme

120 1.2630357E-008 3.5129113E-008 1.5106339E-007
140 2.6550133E-009 7.5831916E-009 3.5363402E-008
160 5.2494587E-010 1.6113340E-009 9.6153273E-009
180 1.4983937E-010 4.8509852E-010 3.3684929E-009

estimated order of accuracy p = 9.8317
PC12 scheme

120 1.1642690E-008 2.8799170E-008 1.1068219E-007
140 2.0583881E-009 5.2232619E-009 2.1042827E-008
160 3.5757610E-010 9.6967151E-010 4.8609743E-009
180 9.8160882E-011 2.7427907E-010 1.5507093E-009

estimated order of accuracy p = 11.1075
PC14 scheme

120 1.1386239E-008 2.6357760E-008 9.1586511E-008
140 1.8347290E-009 4.2047321E-009 1.4882790E-008
160 3.0278882E-010 7.7245435E-010 3.6903868E-009
180 8.5577391E-011 2.1319123E-010 1.1708572E-009

estimated order of accuracy p = 11.4742
PC16 scheme

120 1.1315127E-008 2.4784162E-008 8.0909695E-008
140 1.6970188E-009 3.4771499E-009 1.0244846E-008
160 2.7276821E-010 6.5903831E-010 2.6510809E-009
180 6.9435657E-011 1.6853644E-010 6.9679461E-010

estimated order of accuracy p = 12.1178
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Figure 5. L1, L2 and L∞ errors plotted against grid point count.

Table 9. Computational time decrease by using prefactored schemes.

Schemes comp. time decrease (%)
PC4 vs. C4 40.6%
PC6 vs. C6 39.8%
PC8 vs. C8 31.6%

PC10 vs. C10 30.4%

A = {{ 1, 1, 1, -2, -2, -2 },
{1, 2^2, 3^2, -2*3! /2!, -2*3!/2!*2^2, -2*3!/2!*3^2},
{1, 2^4, 3^4, -2*5! /4!, -2*5!/4!*2^4, -2*5!/4!*3^4},
{1, 2^6, 3^6, -2*7! /6!, -2*7!/6!*2^6, -2*7!/6!*3^6},
{1, 2^8, 3^8, -2*9! /8!, -2*9!/8!*2^8, -2*9!/8!*3^8},
{1, 2^10, 3^10, -2*11!/10!, -2*11!/10!*2^10, -2*11!/10!*3^10}};

R = {1,0,0,0,0,0};
XF = Inverse[A].R;
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Table 10. Weights of the prefactored spectral-like compact
scheme of Lele [15].

β1 0.4482545282296
β2 0.0817278256497
b1 0.3069790178973
b2 0.3294144889364
b3 0.0113973418854

XF[[1]]=XF[[1]]/2; XF[[2]]=XF[[2]]/4; XF[[3]]=XF[[3]]/6;
Simplify[XF]

Solve[{a3/(1-2*a1-2*a2-2*a3)=XF[[6]],
a2/(1-2*a1-2*a2-2*a3)=XF[[5]],
a1/(1-2*a1-2*a2-2*a3)=XF[[4]]}, {a1,a2,a3}]

b1=XF[[1]]*(1-2*a1-2*a2-2*a3)
b2=XF[[2]]*(1-2*a1-2*a2-2*a3)
b3=XF[[3]]*(1-2*a1-2*a2-2*a3)

NSolve[{ap3*(1-ap1-ap2-ap3)=s3,
ap2*(1-ap1-ap2-ap3)+ap1*ap3=s2,
ap1*(1-ap1-ap2-ap3)+ap1*ap2+ap2*ap3=s1},
{ap1,ap2,ap3}, WorkingPrecision->25]
par = (1-ap1-ap2-ap3);

The next 1/2 is from averaging the backward and forward operators;

NSolve[{1/2(-ae3*par-ap3*(ae1+ae2+ae3))=-b3,
1/2(-ae2*par-ae3*ap1+ap3*ae1-ap2*(ae1+ae2+ae3))=-b2,
1/2(-ae1*par-ae2*ap1-ae3*ap2+af3*ae2+ap2*ae1
-ap1*(ae1+ae2+ae3))=-b1},

{ae1,ae2,ae3}, WorkingPrecision->20]
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