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FINITE-TIME STABILIZATION BY USING DEGENERATE
FEEDBACK DELAY

JOSÉ M. VEGAS

Abstract. Some examples are studied in which a linear controllable dynami-

cal system can be steered towards a specific steady state by using some appro-
priate linear, time-varying delayed feedback controller. The associated linear

retarded differential equation has a finite-dimensional invariant subspace which

attracts all orbits in finite time, and this degeneracy property is the reason
why the target is attained in finite time rather than just asymptotically.

1. Introduction

In previous papers [1, 2, 3, 4, 5], Casal, Diaz and the author have considered
different variants of delay-differential equations of the type

ẋ = Ax−M(t)x(t− τ), t ≥ 0, (1.1)

where τ > 0 is a given delay, A is the infinitesimal generator of a continuous
semigroup on some Banach space X, M(t) is a t-continuous bounded linear map
on X whose main characteristic is that it has compact support contained on (0,∞).
In this paper we will only deal with the finite-dimensional case, so A and M(t) will
be n× n matrices and x(t) an n-dimensional vector.

Equation (1.1) arises mainly as the closed-loop system associated to a general
linear, time-invariant controllable system

ẋ = Ax+Bu(t) (1.2)

when a delayed feedback law u(t) = K(t)x(t − τ) is applied for any of the usual
purposes of stabilization, tracking, disturbance rejection, etc.
• If M(t) = 0 except for t ∈ [τ, 2τ ] ⊂ (0,∞) then one can prove (see [3]) that

every solution x(t) vanishes for t ≥ 2τ if matrix M(t) commutes with eAt (or,
equivalently, with A), and

∫ 2τ

τ
M(t)dt = eAτ .

• Concerning system (1.2), if M(t) is factorized as BK(t) in order to study the
closed-loop delayed feedback system, the situation is much more complicated (see
[5]) but similar conclusion can be attained under some quite general circumstances.
Also, some optimality properties of the delayed control are studied.
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• These results mean that, even if A es a completely unstable matrix, the closed-
loop system is, in fact, superstable, that is, all its solutions vanish after some spec-
ified finite time. This finite-time exact recovery of a lost equilibrium is usually
called deadbeat control, (see, e.g., [6]) mostly in the context of the regulator prob-
lem. Of course, uniqueness considerations prevent this behavior from happening in
“standard” control unless severe discontinuities in the coefficients of the equations
are allowed, and it is the fact that the control action starts after a given time lapse
is what enables us to handle the problem. In more technical terms, a functional
differential equation, which is inherently infinite-dimensional, is squashed into Rn
and that fact simplifies many arguments and computations.
• For more general linear systems like ẋ = Ax+ z+B(t)u (with A nonsingular)

the equilibrium xeq = −A−1z of the uncontrolled system can also be reached in
finite time by a similar delayed feedback control. However, its calculation requires
previous knowledge of this equilibrium. However, this problem is avoided if, instead
of a single-delay feedback u(t) = K(t)x(t − τ), we try a “Pyragas” type control
u(t) = K(t)[x(t− τ)− x(t− 2τ)] (see [8, 9]) to eliminate the effect of the nonzero
equilibrium.
• As will be shown here, this can also be done for periodic steady states, which

is, in fact, more akin to Pyragas’s original purpose (stabilizing unstable periodic
orbits in chaotic systems).

2. Main result

In this article we consider a more general control system of the type

ẋ = Ax+ f(t) +B(t)u, (2.1)

with f(t) a continuous τ -periodic function which corresponds to an external forcing.
The associated “unforced system”

ẋ = Ax+B(t)u, (2.2)

will be assumed to be controllable.

Theorem 2.1. Consider the periodically forced linear time-invariant system

ẋ = Ax+ f(t), (2.3)

and assume that the homogeneous system ẋ = Ax has no nonconstant τ -periodic
solution or, equivalently, the matrix I − eAτ is invertible. Then this system has a
unique τ -periodic solution p(t) and there exists a delayed feedback law

u(t) = K(t)[x(t− τ)− x(t− 2τ)]

of Pyragas type with K(t) = 0 outside [2τ, 3τ ] and such that every solution x(t) of
the closed-loop system

ẋ = Ax+ f(t) +B(t)K(t)[x(t− τ)− x(t− 2τ)],

is steered toward the unique τ -periodic solution p(t) of the forced system (2.1).
More specifically

x(t) = p(t) for t ≥ 3τ.

Remark 2.2. The existence and uniqueness of the τ -periodic solution under the
hypothesis that I − eAτ is invertible can be found, for instance, in [7].

Again, irrespective of the possible instability of the matrix A, the (possibly
unstable) steady state (a periodic solution in this case) is reached in finite time.



EJDE-2015/CONF/22 FINITE-TIME STABILIZATION 113

3. The basic change of variables

Let us recall the complete control system

ẋ = Ax+ f(t) +Bu(t), (3.1)

where A is n×n, B(t) is n×m continuous (written simply as B) together with its
associated uncontrolled system (i.e., for u(t) = 0):

ẋ = Ax+ f(t). (3.2)

Let us consider new variables y(t) and w(t) related to x(t) by

x(t) = eAty(t) + w(t). (3.3)

Then ẋ(t) = AeAty(t) + eAtẏ(t) + ẇ(t) must equal A
[
eAty(t) + w(t)

]
+Bu(t) and

this gives the “reduced” system

ẏ = e−At [Aw − ẇ + f(t) +Bu(t)] . (3.4)

Observe that if w(t) is any solution of the uncontrolled system (3.2), the reduced
system (3.4) is just a simple control system ẏ = e−AtBu(t) involving only ẏ and u
but not y.

If u(t) is prescribed to be given by K(t)[x(t− τ)−x(t− 2τ)], a delayed feedback
law, we must also transform this part, thus obtaining the full transformed closed-
loop delay system

ẏ = e−At[Aw − ẇ + f(t)] + e−AtBK(t)
[
eA(t−τ)y(t− τ)

− eA(t−2τ)y(t− 2τ) + w(t− τ) + w(t− 2τ)
]
.

(3.5)

Assume now that w(t) (so far an arbitrary function) is p(t), the unique τ -periodic
solution of the uncontrolled system (3.2). Then both Aw(t) − ẇ(t) + f(t) and
w(t− τ)− w(t− 2τ) vanish for every t and thus (3.5) becomes

ẏ = e−AtBK(t)
[
eA(t−τ)y(t− τ)− eA(t−2τ)y(t− 2τ)

]
. (3.6)

First proof of Theorem 2.1. From the previous discussion, if we can show that
for some continuous K(t) vanishing outside [2τ, 3τ ] every solution y(t) of (3.6)
becomes zero for t ≥ 3τ , then

x(t) = eAty(t) + w(t)

will be equal to w(t) for t ≥ 3τ as stated in the theorem.
The most direct way to handling this problem is integrating both sides of (3.6)

on the interval [2τ, 3τ ] taking into account that, since K(t) = 0 for t ≤ 2τ , y(t)
is constant on [0, 2τ ] and observing that y(t − τ) and y(t − 2τ) are equal to y(0)
(denoted y0). Then

y(3τ) = y0 +
(∫ 3τ

2τ

e−AtBK(t)eAt[e−Aτ − e−2Aτ ]dt
)
y0.

Hence y(3τ) will equal zero for every initial value y0 if and only if∫ 3τ

2τ

e−AtBK(t)eAtdt = [e−2Aτ − e−Aτ ]−1 = [I − eAτ ]−1e2Aτ , (3.7)

where the inverse is well defined as assumed in the statement of the theorem.
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Following an argument similar to Sontag’s [10], we see that controllability is
equivalent to the fact that the “controllability map” C : C([2τ, 3τ ],Rm) → Rn
given by

C[u] := e3Aτ
∫ 3τ

2τ

e−AtBu(t)dt

is onto, and so is

u(·) 7→
∫ 3τ

2τ

e−AtBu(t)dt

and so is

U(·) 7→
∫ 3τ

2τ

e−AtBU(t)dt

defined on the space of continuous matrices U(t) on [2τ, 3τ ]. This means that the
matrix Fredholm integral equation∫ 3τ

2τ

e−AtBU(t)dt = [I − eAτ ]−1e2Aτ

has at least one solution Û(·), and setting K(t) := Û(t)e−At we finally obtain∫ 3τ

2τ

e−AtBK(t)eAtdt = [I − eAτ ]−1e2Aτ

as desired.

Second proof: optimality considerations. Another possibility is using a well-
known explicit expression for a special control u(t) steering any given initial value
x0 to any desired final value x1 over the time interval [t0, t1].

Proposition 3.1 (Minimum-energy control). Consider the control system ż =
Pz +Q(t)u(t), where P is n× n, and Q(t) is n×m continuous on [t0, t1]:

(1) The system
ẋ = Px+Q(t)u

is controllable on [t0, t1] if and only if the so-called controllability Gramian

W :=
∫ t1

t0

e−PtQ(t)Q(t)T e−P
T tdt

is nonsingular.
(2) Assume ẋ = Px + Q(t)u is controllable and let x0 ∈ Rn. Then: the control

law
u∗(t, x0) := −Q(t)T e−P

T tW−1x0

minimizes the “total energy”

E [u] :=
∫ t1

t0

u(t)2dt

over the set of controls steering x0 to 0 on [t0, t1] (which is nonempty by assump-
tion).

For the proof of the above propositon, see, e.g., Sontag [10, Section 3.5]. In our
case, the controllable system is just

y = e−AtB(t)u(t),
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for which the matrix P above is the zero matrix and Q(t) = e−AtB(t). The Gramian
is

W :=
∫ t1

t0

e−AtB(t)B(t)T e−A
T tdt,

which is nonsingular by assumption and the minimum-energy control is u∗(t, y0) =
U∗(t)y0 where U∗(t) is the n× n matrix

U∗(t) = −B(t)T e−A
T tW−1,

which “steers the identity matrix I to the zero matrix O on the interval [t0, t1]”.
In our case, we need u∗(t, y0) to be of the delayed feedback type

u∗(t, y0) = K(t)
[
eA(t−τ)y(t− τ)− eA(t−2τ)y(t− 2τ)

]
.

As previously pointed out, y(t − τ) = y(t − 2τ) = y0 = y(0). Therefore, we must
find an m× n matrix K∗(t), vanishing at the endpoints 2τ and 3τ , such that

−B(t)T e−A
T tW−1 = K∗(t)eAt(e−Aτ − e−2Aτ ) = K,

which is just
K∗(t) = −B(t)T e−A

T tW−1(e−Aτ − e−2Aτ )−1. (3.8)
The feedback law is thus obtained by extending this K∗ outside of [2τ, 3τ ] by setting
K∗(t) = 0.

4. Final remarks

(1) Some of the above results work perfectly well for linear, time-varying systems
ẋ = A(t)x + B(t)u by substituting eAt, e−As by Φ(t), Φ(s)−1, where Φ(t) is the
fundamental matrix solution satisfying Φ(0) = I. The existence of a unique periodic
solution to ẋ = A(t)x+f(t) for τ -periodic f(t) is, of course, quite a difficult matter,
even requiring the coefficient matrix A(t) to be also τ -periodic (see [7]).

(2) From a practical viewpoint, the question of robustness presents itself im-
mediately. Exact equilibria attained in finite time, deadbeat control, etc., are not
found in real life, since neither the plants nor the control links are 100% valid. If
all the eigenvalues of matrix A have negative real parts, the consequences are not
so bad, since the system’s own internal dynamics will drive the state back to (a
neighborhood of) equilibrium. But in the unstable case, this will not be true.

A possible solution to this problem is to extend the control to a stream of equal
actions on intervals [2τ, 3τ ], [5τ, 6τ ], [8τ, 9τ ], and so on. The “inaction intervals”
of length 2τ enable the system to “forget past history” and start al over again. No
recovery of equilibrium (or some other periodic steady state) will happen, but at
least we will make sure that the system will not deviate too far from it. This idea
comes quite close to the so-called “act-and-wait” control strategy or “intermittent
control” (see [6]).

(3) It is well-known that sparse jump discountinuities in controller functions
are not a real problem (at least in finite-dimensional problems), and our delayed
feedback gain function K(t) is usually discontinuous at 2τ and 3τ . Yet, if they are
considered undesirable in some specific situation, these jumps can easily be avoided
by choosing a continuous scalar function β : R → R such that β(t) > 0 on [2τ, 3τ ]
and is 0 outside this interval, and modifying our original system ẋ = Ax+B(t)u(t)
by ẋ = Ax + β(t)B(t)u(t). If the former system is controllable on [2τ, 3τ ], the
latter will have the same property, as can be easily proven (the assumption “β > 0
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on [2τ, 3τ ]” plays an important role). We then pick the new K(t) as in (3.8) with
B(t)T substituted by β(t)B(t)T and W redefined as∫ 3τ

2τ

β(t)2e−AtB(t)B(t)T e−A
T tdt :

K∗
new(t) := −β(t)B(t)T e−A

T tW−1(e−Aτ − e−2Aτ )−1.

Some interesting questions arise as to the “right” choice of β(t), depending on the
performance index associated to the problem under study. Some results in this line
will appear elsewhere.
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