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Abstract. This article concerns the effect of slow diffusion in two-species

competition-diffusion problem with spatially homogeneous nearly identical re-
action terms. In this case all (nonnegative) equilibria are spatially homoge-

neous, and the set of nontrivial equilibria is the graph of a C1-curve. This

article shows convergence of positive solutions to an equilibria which is deter-
mined by the initial data. The proof relies on the existence of a Lyapunov

function and is adapted from [6] which dealt with linear diffusion.

1. Introduction

We study the asymptotic behavior of positive solutions of the two-species system
ut −∆pu = ug(u, v) in (0,∞)× Ω,

vt − d∆qv = rvg(u, v) in (0,∞)× Ω,

∂nu = 0 = ∂nv on (0,∞)× ∂Ω.

u(0, x) = u0(x) in Ω,

v(0, x) = v0(x) in Ω.

(1.1)

under the following hypotheses:
(H1) N ∈ N, Ω ⊆ RN bounded smooth domain, p, q > max{2, N}, d, r > 0;
(H2) g ∈ C2(R2

+,R), ∂jg < 0 for j = 1, 2, g(0, 0) > 0; g is negative outside a
bounded region.

Slow diffusion (p, q > 2) arises in filtration, and (1.1) could, e.g., model the spread
of microorganisms in lymph nodes. The case considered here can be thought of as
competition between a species and one of its mutants. The crucial difference is the
dispersal, but no spatial adaptation has taken place, and the fitness function differ
at most by a constant factor r > 0, in applications r = 1.

Our main result states that every positive solution of (1.1) converges to one
of the nontrivial equilibria. The same result has been obtained in [6] for linear
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diffusion p = q = 2. The case where spatial adaption has occurred is different
(isolated equilibria) and has found quite some interest over the years. The reader
is referred to the classical papers [8] and [5] for linear dispersal, where the “slower
diffuser” persists and can invade, to [12] for nonlocal diffusion, and to [14] for linear
vs. nonlocal dispersal. Other related papers are [9], [10], [11], [13], and [15] but
slow dispersal has not been considered to our knowledge.

We remark that system (1.1) with degenerate operators (p > 2, q > 2) may
involve a time dependent free boundary problem for some initial data (see e.g [1]),
but this issue is not considered here.

The paper is organized as follows. The next section recalls some well-known
results for the solution semiflow of (1.1) and outlines the proof for global existence
and nonnegativity. These results are used in Section 3 to establish the convergence
result.

2. Preliminaries

Let r ∈ {p, q} and Ar : L2(Ω) ⊃ dom(Ar)→ L2(Ω) be the subdifferential of

w 7→

{
1
r

∫
Ω
|∇w|r w ∈W 1,r(Ω)

∞ w ∈ L2(Ω) \W 1,r(Ω)
,

then A = (Ap, dAq) is the realization of the principal (elliptic) part of (1.1) in L2(Ω).
A is densely defined, m-accretive, and generates a completely continuous solution
semigroup in L2(Ω) × L2(Ω). Therefore the standard theory of local Lipschitz
perturbations of A (cf. [18], e.g.) guarantees that (1.1) generates a local solution
semiflow in L2(Ω) × L2(Ω), if g is smoothly extended to R2. The reader is also
referred to [17] for a general setting involving set-valued solution semiflows. Since
one is dealing with a competition problem, one is interested in nonnegative solutions
only. Thus, solutions of (1.1) satisfying u(0, ·) ≥ 0, v(0, ·) ≥ 0 should be global and
nonnegative. For our main result it suffices to consider smooth initial conditions
(regularity properties), hence one can assume for solutions (u, v) of (1.1) on [0, T ]
that u ∈ Lp([0, T ],W 1,p(Ω))∩W 1,p′

([0, T ],W−1,p′
(Ω)) and v ∈ Lp([0, T ],W 1,p(Ω))∩

W 1,p′
([0, T ],W−1,p′

(Ω)). Moreover, if p, q > N as assumed in (H1), one has
W 1,r(Ω) ↪→ C(Ω) for r ∈ {p, q}.

Lemma 2.1. Let (H1)–(H2) be satisfied, T > 0, u0, v0 ∈ dom(A) be positive,
and (u, v) be the solution of (1.1) on [0, T ) with (u(0, ·), v(0, ·)) = (u0, v0). Then
0 ≤ u(t, ·) ≤ ‖u0‖∞ + β + 1 and 0 ≤ v(t, ·) ≤ ‖v0‖∞ + β + 1 for 0 ≤ t < T .

Proof. It suffices to deal with the statements for u. Let σ > g(0, 0) and w(t, ·) =
e−σtu(t, ·) ≥ 0 for t ∈ [0, T ]. Then w satisfies

∂tw − e(p−2)σt∆pw + σw − wg(eσtw, v) = 0. (2.1)

Note that the function h(t, x, y) := σy−yg(eσty, v(t, ·)) is strictly increasing in y
in view of (H2) and the choice of σ. Weak p−Laplacian comparison theorems have
been established beginning with [2], and the proof of proposition 2.2 in [3] or that
of Lemma 4.9 in [16] (Dirichlet case) apply immediately. We also refer to [4] for a
more general quasilinear operator. In fact, let φ be the solution of φ̇ = φg(φ, 0),
φ(0) = 0, and ψ(t) = e−σtϕ(t), then ψ satisfies

ψ̇(t) + σψ(t)− ψg(eσtψ, 0) = 0,
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hence
ψ̇(t) + σψ(t)− ψg(eσtψ, v(t)) ≥ 0

in view of (H2). Thus,∫
Ω

(
(∂tw(t, x)− ψ̇(t))[w(t, x)− ψ(t)]+ − e(p−2)σt∆pw(t, x)[w(t, x)− ψ(t)]+

+ σ(w(t, x)− ψ(t))[w(t, x)− ψ(t)]+

− (w(t, x)g(eσtw(t, x), v(t, x))− ψg(eσtψ, v(t, x)))[w(t, x)− ψ(t)]+
)
dx ≤ 0,

hence the m-accretiveness of the p-Laplacian and h monotone increasing imply that∫
Ω

[w(t, x)− ψ(t)]+ dx ≤
∫

Ω

[w(0, x)− ψ(0)]+ dx = 0,

hence w(t, ·) ≤ ψ(t) for t ∈ [0, T ), therefore,

u(t, ·) ≤ φ(t) ≤ ‖u0‖∞ + β + 1

for t ∈ [0, T ). The nonnegativity of u follows from the same weak comparison
argument and the fact that the constant 0 solves (2.1). �

3. Main result

Let Z := {(y, z) ∈ R2
+ : y2 + z2 > 0, g(y, z) = 0}. It follows from (H2) that there

exists a β > 0 with g(β, 0) = 0 and a strictly decreasing function γ ∈ C1([0, β],R+)
with Z = {(y, γ(y)) : y ∈ [0, β]}. In fact, γ′(y) = −∂1g(y,γ(y))

∂2g(y,γ(y)) and in particular
γ′(β) < 0.

Theorem 3.1. Let (H1)–(H2) be satisfied, u0, v0 ∈ dom(A) be positive, and (u, v)
be the solution of (1.1) with (u(0, ·), v(0, ·)) = (u0, v0). Then (u(t, ·), v(t, ·)) con-
verges uniformly to some (ζ, η) ∈ Z.

Proof. Select ε ∈ (0, β) with ε < min({γ(ξ)− ξγ′(ξ) : 0 ≤ ξ ≤ β}). Set

κ(ξ) :=

{
ε− γ(ξ) 0 ≤ ξ ≤ β
ε/ξ/β ξ > β

and

V0(y, z) :=
∫ y

1

(κ(ξ)
ξ

)
dξ +

1
r

∫ z

1

(
1− ε

ξ

)
dξ

for (y, z) ∈ (0,∞)× (0,∞).
Clearly, V0 is continuously differentiable on R2

+ and has, as outlined in [6], the
following properties:

• V0 ≥ 0;
• V0(y, z)→∞, if y → 0+ or z → 0+;
• V0(y, z)→∞, if y →∞ or z →∞;
• ∇V0(y, z) · (yg(y, z), rzg(y, z)) ≤ 0 and “=” implies (y, z) ∈ Z.

The last statement follows from

∇V0(y, z) · (yg(y, z), rzg(y, z)) =

{
(ε− γ(y))g(y, z) + (1− ε

z )zg(y, z) 0 < y ≤ β
ε
β yg(y, z) + (1− ε

z )zg(y, z) y > β.

Thus, we obtain −γ(y)g(y, z) + zg(y, z) = (z − γ(y))g(y, z) if 0 < y < β, which is
≤ 0, since sgn(z − γ(y)) = −sgn(g(x, y)). Note that the expression is equal to 0, if
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and only if (y, z) ∈ Z. If y ≥ β and z > 0, then ε
β y − ε > 0 and g(y, z) < 0, hence

ε
β yg(y, z) + (1− ε

z )zg(y, z) < 0.
Set

V (ϕ,ψ) :=
∫

Ω

V0(ϕ(x), ψ(x)) dx for ϕ,ψ ∈ L∞(Ω).

Then
d

dt
V (u, v)(t)

=
∫

Ω

∂1V0(u(t, x), v(t, x))ut(t, x) dx+
∫

Ω

∂2V0(u(t, x), v(t, x))vt(t, x) dx

=
∫

Ω

∂1V0(u(t, x), v(t, x))∆pu(t, x) dx+ d

∫
Ω

∂1V0(u(t, x), v(t, x))∆qu(t, x) dx

+
∫

Ω

∇V0(u(t, x), v(t, x)) · (u(t, x)g(u(t, x), v(t, x)), rv(t, x)g(u(t, x), v(t, x)) dx.

Integration by parts shows that∫
Ω

h(w(x))∆pw(x) = −
∫

Ω

h′(w(x))|∇w(x)|p ≤ 0,

if h ∈ C1(R) is nondecreasing and w ∈ dom(Ap). This and the corresponding Aq
statement imply ∫

Ω

∂1V0(u(t, x), v(t, x))∆pu(t, x) dx ≤ 0,

d

∫
Ω

∂1V0(u(t, x), v(t, x))∆qu(t, x) dx ≤ 0,

which yields that d
dtV (u, v)(t) ≤ 0 and equal to zero, if and only if (u, v)(t) ∈ Z.

Thus, the ω-limit set of (u, v) contains only pairs (ζ, η) with (ζ(x), η(x)) ∈ Z for
x ∈ Ω. Since the ω-limit set is backward invariant (cf. [7]), each (ζ, η) is constant
on Ω.

Assume that (aj , γ(aj)) ∈ ω(u, v) for j = 1, 2 and that a1 < a2, then (ρ, γ(ρ)) ∈
ω(u, v), and we can assume without loss of generality that 0 < a1 < a2 < β.
Moreover, ρ 7→ V0(ρ, γ(ρ)) is constant, hence ε−γ(ρ)

ρ + 1
r

(
1 − ε

γ(ρ)

)
γ′(ρ) = 0 for

a1 ≤ ρ ≤ a2. This yields γ′(ρ) = r
ρ > 0 for a1 ≤ ρ ≤ a2 which contradicts

γ′ < 0. �

Remark 3.2. Our results imply that mutations affecting dispersal alone do not
drive the original species into extinction.
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