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METHODS FOR NUMERICAL DIFFERENTIATION OF
NOISY DATA

IAN KNOWLES, ROBERT J. RENKA

Abstract. We describe several methods for the numerical approximation of

a first derivative of a smooth real-valued univariate function for which only

discrete noise-contaminated data values are given. The methods allow for
both uniformly distributed and non-uniformly distributed abscissae. They are

compared for accuracy on artificial data sets constructed by adding Gaussian

noise to simple test functions. We also display results associated with an
experimental data set.

1. Introduction

The problem of approximating a derivative of a function defined by error-con-
taminated data points arises in several scientific computing and engineering disci-
plines. Among the applications are image reconstruction, probability density esti-
mation, satellite orbit determination, and seismic profiling. The problem is notable
for the large variety of methods that have been developed for its treatment. These
include polynomial regression, spline smoothing, filtering with Fourier and wavelet
transforms, total variation denoising, and convolution with a mollifier, as well as
local methods and other global methods. We describe the problem in Section 2,
discuss methods in Section 3, and present test results in Section 4.

2. The problem

Given a set of m discrete data points (observations) {(xi, yi)} taken from a
smooth function g : [a, b]→ R with

a ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ b, (2.1)

we wish to construct an approximation u to the first derivative g′. The differen-
tiation problem is the inverse of the problem of computing an integral. As with
most inverse problems, it is ill-posed because the solution u ≈ g′ does not depend
continuously on g. If we use divided difference approximations to derivative values,
then arbitrarily small relative perturbations in the data can lead to arbitrarily large
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relative changes in the solution, and the discretized problem is ill-conditioned. We
therefore require some form of regularization in order to avoid overfitting.

In addition to constructing the derivative u, we compute a smooth function f
which approximates g. If u is computed directly from the data, it may be integrated
to produce f . Alternatively, we may view the problem as that of constructing a
smooth approximation f which may then be differentiated to obtain u = f ′. We as-
sume that the data values are contaminated by independent identically distributed
zero-mean noise values ηi:

yi = g(xi) + ηi, E[ηi] = 0, (i = 1, . . . ,m).

Treating values of the fitting function f(x) as random variables, the mean squared
error at each point x ∈ [a, b] is

MSE(x) = E[(g(x)− f(x))2] = (g(x)− E[f(x)])2 + E[(f(x)− E[f(x)])2],

where the first term is the squared bias and the second term is the variance. A small
error requires that both terms be small, but generally there is a tradeoff between
the two terms. We can minimize the bias by choosing a very flexible model with a
large number of free parameters — enough freedom to interpolate the data points
as the extreme case. However, this would result in large variance due to too much
sensitivity to the data. The fit would be poor on another sample data set. The
inflexibility of too few parameters, on the other hand, would result in large error
due to large bias. Most smoothing methods incorporate the bias-variance tradeoff
into a single smoothing parameter which must be chosen to achieve the proper
balance.

3. Methods

We implemented and tested one or more methods in each of the following cate-
gories:

(i) Least squares polynomial approximation.
(ii) Tikhonov regularization.
(iii) Smoothing spline.
(iv) Convolution smoothing with a Friedrichs mollifier.
(v) Knowles and Wallace variational method.
(vi) Total variation regularization.

Each category is described in a separate subsection below.

3.1. Least squares polynomial approximation. A simple smoothing method
consists of fitting the data points in a least squares sense with a sequence of poly-
nomials f of degree d for d = 0, 1, . . . , k, where k is the smallest value for which the
residual norm is bounded by a tolerance. We then define u = f ′. The reciprocal
of the polynomial degree serves as a regularization parameter with k ≥ m− 1 cor-
responding to interpolation, and k = 0 corresponding to a constant. This method
requires that the data abscissae be distinct, and produces f, u ∈ C∞[a, b] for a = x1

and b = xm.
The polynomial is taken to be a linear combination of the monomial basis func-

tions φj(x) = xj for j = 0, . . . , k, and the coefficients are computed by solving the
normal equations with a QR factorization of the Vandermonde matrix.

We implemented only the simple global method, but a method that could be more
effective for dense data sets is locally weighted polynomial regression, referred to
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as LOESS or LOWESS [3]. The idea is to fit a low-degree polynomial (degree 1 or
2) to the nearest neighbors of each data point with weight proportional to inverse
distance from the abscissa of the neighbor to that of the point. The number of
points used in each fit increases with the value of a smoothing parameter. Another
method that uses local polynomial regression (for uniformly distributed data points)
is the Savitsky-Golay smoothing filter [17].

3.2. Tikhonov regularization. Tikhonov regularization was introducted in [20]
and first applied to the numerical differentiation problem in [5]. Refer also to
[21]. We include three methods, indexed by k = 0, 1, and 2, corresponding to
the smoothness of the solution u. We assume that g(a) is given and that g is in
the Sobolev space Hk+1(a, b). We formulate the problem as that of computing an
approximate solution u ∈ Hk(a, b) to the operator equation

Au(x) =
∫ x

a

u(t) dt = ĝ(x), x ∈ [a, b], (3.1)

where ĝ(x) = g(x) − g(a). Once u is computed, f can be obtained from f(x) =∫ x
a
u(t) dt+ g(a).
We discretize the problem by representing f as a vector f of function values on

a uniform grid that partitions [a, b] into n subintervals of length ∆t = (b− a)/n:

fj = f(tj), tj = a+ (j − 1)∆t, (j = 1, . . . , n+ 1). (3.2)

The function u is represented by derivative values at the midpoints:

uj = f ′(tj + ∆t/2), (j = 1, . . . , n).

The discretized system is Au = ŷ, where ŷi = yi − g(a) and Aij is the length of
[a, xi] ∩ [tj , tj+1]:

Aij =


0 if xi ≤ tj
xi − tj if tj < xi < tj+1

∆t if tj+1 ≤ xi .
This linear system may be underdetermined or overdetermined and is likely to
be ill-conditioned. We therefore use a least squares formulation with Tikhonov
regularization. We minimize the convex functional

E(u) = ‖Au− ŷ‖2 + α‖Du‖2, (3.3)

where α is a nonnegative regularization parameter, ‖ · ‖ denotes the Euclidean
norm, and D is a differential operator of order k defining a discretization of the Hk

Sobolev norm:

Dt =


I if k = 0
(I Dt

1) if k = 1
(I Dt

1D
t
2) if k = 2

where I denotes the identity matrix, and D1 and D2 are first and second difference
operators. We use second-order central differencing so that D1 maps midpoint
values to interior grid points, and D2 maps midpoint values to interior midpoint
values. The regularization (smoothing) parameter α defines a balance between
fidelity to the data (with high fidelity corresponding to low bias) on the one hand,
and the size of the solution norm, which is related to variance, on the other hand.
The optimal value depends on the choice of norm. Larger values of k enforce more
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smoothness on the solution. Setting the gradient of E to zero, we obtain a linear
system with an order-n symmetric positive definite matrix:

(AtA+ αDtD)u = Atŷ.

In the case that the error norm ‖η‖ is known, a good value of α is obtained by
choosing it so that the residual norm ‖Au− ŷ‖ agrees with ‖η‖. This is Morozov’s
discrepancy principle [9].

3.3. Smoothing spline. The cubic smoothing spline was introduced by Schoen-
berg [18] and Reinsch [12, 13]. The method of generalized cross validation for
automatic selection of a smoothing parameter first appeared in [4]. The cubic
spline was generalized to a spline under tension by Schweikert [19], and methods
for automatic selection of tension factors were developed in [14]. This method is
effective for relatively sparse data sets.

For this method we take m = n, and require that the abscissae are distinct and
include the endpoints:

a = x1 < x2 < · · · < xn = b.

The smoothing function f is a spline with knots at the abscissae. Denote the knot
values by vi = f(xi), and for each subinterval [xi, xi+1], denote the subinterval
length by ∆xi, denote the slope of the piecewise linear interpolant by si = (vi+1 −
vi)/∆xi, and let τi be a nonnegative tension factor associated with the subinterval.
Then our measure of smoothness for f ∈ H2[a, b] is

q1(f) =
∫ b

a

f ′′2 +
n−1∑
i=1

( τi
∆xi

)2
∫ xi+1

xi

(f ′ − si)2.

For a given set of knot values {vi} the minimizer of q1 is in C2[a, b] and satisfies

f (4) − (τi/∆xi)2f ′′ = 0 (3.4)

on each subinterval so that f is cubic in subintervals for which τi = 0, and f ap-
proaches the linear interpolant of (xi, vi) and (xi+1, vi+1) as τi →∞. Solutions to
(3.4) lie in the span of {1, x, e(τi/∆xi)x, e−(τi/∆xi)x} so that f is piecewise exponen-
tial. Using a Hermite interpolatory representation of f, the four degrees of freedom
in each subinterval are taken to be the endpoint function values vi, vi+1 and first
derivative values di = f ′(xi), di+1 = f ′(xi+1). Let q1 now denote the quadratic
functional defined on the pair of n-vectors of knot function values v and derivatives
d.

We obtain a smoothing spline by minimizing q1 subject to the constraint

q2(v) =
n∑
i=1

(yi − vi
σi

)2

≤ S,

where σi is the standard deviation in yi and S is a nonnegative number with nominal
value in the confidence interval [n−

√
2n, n+

√
2n] for the weighted sum of squared

deviations from the data values q2(v). For S sufficiently large, f is linear and
q1 = 0. For an active constraint the problem is equivalent to minimizing

E(v,d, λ) = q1(v,d) + λ(q2(v)− S)
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for Lagrange multiplier λ (whose reciprocal serves as a regularization parameter).
This problem is treated by finding a zero of

φ(λ) =
1√
q2(v)

− 1√
S
,

where v and d satisfy the order-2n symmetric positive definite linear system ob-
tained by setting the gradient of E to zero with λ fixed.

Our test suite includes two methods in this category: a cubic spline in which
all tension factors are zero, and a tension spline with just enough tension in each
subinterval to preserve local monotonicity and convexity of the data [14, 15].

3.4. Convolution smoothing with a Friedrichs mollifier. We compute a
smooth approximation f ∈ C∞[a, b] by convolution of the piecewise linear inter-
polant p of the data values with the positive symmetric Friedrichs mollifier function
[6]

ρ(x) =

{
ce1/(x2−1) if |x| < 1
0 if |x| ≥ 1 ,

where c is chosen so that ρ integrates to 1. Then for x ∈ [a, b],

f(x) =
1
h

∫ b+h

a−h
ρ
(x− s

h

)
p(s) ds

for small positive h. The derivative g′ is then approximated by u = f ′. Note that h
is a smoothing parameter: f → p in Lr(a, b), 1 ≤ r <∞, as h→ 0 (interpolation),
and f → 0 as h→∞.

We represent the smoothed function f by a discrete set of values on a uniform
grid with mesh width ∆t = (b− a)/(n− 1):

fi = f(ti), ti = a+ (i− 1)∆t for i = 1, . . . , n.

We use second-order central difference approximations to midpoint first derivative
values

f ′(ti + ∆t/2) = (fi+1 − fi)/∆t for i = 1, . . . , n− 1.

This method has the limitation that the abscissae must be distinct, and the ap-
proximation is valid only on the subdomain [a + h, b − h]. To our knowledge, this
novel numerical application of the well-known Friedrichs mollifier was first suggested
by Aimin Yan as a way to handle the numerical differentiation of a measurement
dataset arising from a function of two variables. This was needed for the solution
of the inverse groundwater problem in [8], and elsewhere, and found to be quite
effective in those contexts.

3.5. Knowles and Wallace variational method. The method of Knowles and
Wallace [7] was designed with the goal of eliminating the difficult problem of de-
termining an effective regularization parameter when nothing is known about the
errors in the data. Let p(x) = g(x) + k for x ∈ [a, b] and a constant k large enough
that p is bounded below by a positive constant and Q(x) = p′′(x)/p(x) is bounded
above by a curvature-limiting constant M < (π/(b − a))2 for x ∈ [a, b]. Then
u = g′ = p′ can be obtained by solving −p′′ + Qp = 0 with specified endpoint
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values of p, where Q is the unique global minimizer of the strictly convex nonlinear
energy functional

E(q) =
∫ b

a

(p′ − f ′)2 + q(p− f)2,

with f as the solution to the two-point boundary value problem

Aqf = −f ′′ + qf = 0 in (a, b),

f(a) = p(a), f(b) = p(b).

Note that E(Q) = 0 and f = p so that f − k = g at the solution. Since g is
specified only by discrete data points, possibly contaminated by noise, using the
data to discretize E will not result in a zero at the minimizer, but the computed
function f will be a smooth approximation to p and can be used to compute u.
The idea is thus to compute the best approximation to p in the space of solutions
to the two-point boundary value problem.

An equivalent expression for the functional is

E(q) =
∫ b

a

p′2 + qp2 − (f ′2 + qf2).

The gradient of E is defined by the first Gateaux derivative

E′(q)[h] =
∫ b

a

(p2 − f2)h,

and the Hessian is defined by the second derivative

E′′(q)[h][k] = 2
∫ b

a

(fk)A−1
q (fh),

where Aq is restricted to functions satisfying homogeneous Dirichlet boundary con-
ditions.

In order to discretize the problem, we take p to be the piecewise linear interpolant
of {(xi, yi + k)}, and we represent functions p, f , and q as n-vectors of grid-point
values on the uniform grid with mesh width ∆t = (b− a)/(n− 1):

fi = f(ti), ti = a+ (i− 1)∆t (i = 1, . . . , n).

We use second-order central difference approximations to midpoint first derivative
values

(D1f)i = f ′(ti + ∆t/2) = (fi+1 − fi)/∆t (i = 1, . . . , n− 1).
We then have second-order approximations to Aqf at the interior grid points

(Aqf)i =
−fi−1 + 2fi − fi+1

∆t2
+ qifi

for i = 2, . . . , n − 1 with f1 = p(a) and fn = p(b). The solution to the two-point
boundary value problem is f = A−1

q c for order-(n-2) matrix Aq = diag(q) − D2

and c = (p(a)/∆t2)e1 + (p(b)/∆t2)en−2, where D2 denotes the second difference
operator, and e1 and en−2 are standard basis vectors. We approximate E(q) with
a rectangle rule for the midpoint derivative values (first term) and a trapezoidal
rule for the interior grid-point values (second term):

E(q) =
1

∆t

n−1∑
i=1

(wi+1 − wi)2 + ∆t
n−1∑
i=2

qiw
2
i
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for w = p−f . A Newton-like method for minimizing E is not feasible because every
component of the Hessian would require solution of a linear system. We therefore
use a gradient descent iteration, but not with the ordinary gradient. The standard
method of steepest descent is notoriously slow, but we obtain an effective method
by using the Sobolev gradient [10]:

qk+1 = qk − β∇SE(qk),

where β denotes a positive step size, and ∇SE(q) is the H1 Sobolev gradient of E
at q defined by

∇SE(q) = (I +Dt
1D1)−1∇E(q)

for Euclidean gradient ∇E(q) with components p2
i − f2

i . Note that D1 is restricted
to the interior grid points, and I +Dt

1D1 = I −D2. The inverse of this matrix is a
smoothing operator which serves as a preconditioner for the descent iteration.

3.6. Total variation regularization. In some applications it may be necessary
to allow for discontinuities in the derivative u corresponding to corners in g. To
this end, we assume only that g ∈ L2[a, b] and we take the measure of regularity to
be the total variation in u: F (u) =

∫ b
a
|u′| for u in the space BV [a, b] of functions

of bounded variation. The method of total variation regularization was introduced
by Rudin, Osher, and Fatemi [16] for the purpose of removing noise from images
without smearing edges. It was applied to the problem of differentiating noisy data
by Chartrand [2] using an iterative method of Vogel and Oman [22]. Here we use
a generalized Sobolev gradient method to minimize the energy functional.

As in the case of Tikhonov regularization we assume that g(a) is given and we
seek an approximate solution u to the operator equation

Au(x) =
∫ x

a

u(t) dt = ĝ(x), x ∈ [a, b],

where ĝ(x) = g(x)− g(a). We again represent u by a vector u of discrete values at
the midpoints of a uniform grid:

uj = f ′(a+ (j − 1)∆t+ ∆t/2), (j = 1, . . . , n)

for ∆t = (b− a)/n. The discretized system consists of m equations in n unknowns
Au = ŷ, where Aij is the length of [a, xi]∩ [tj , tj+1] and ŷi = yi− g(a). The energy
functional is

E(u) =
1
2
‖Au− ŷ‖2 + α

n−1∑
j=1

√
(uj+1 − uj)2 + ε, (3.5)

where ‖ · ‖ denotes the Euclidean norm, and α is a nonnegative regularization pa-
rameter. The regularization term is the discretization of the BV seminorm F (u) =∫ b
a
|u′| using the trapezoidal rule and natural end conditions: u′(a) = u′(b) = 0.

Since the gradient of F is ∇F (u) = −(u′/|u′|)′, the perturbation by a small positive
number ε is necessary for differentiability of E where u′ = 0.

The gradient of E is

∇E(u) = At(Au− ŷ)− αs′,

where the sign vector s is the approximation to u′/|u′|:

si = (ui+1 − ui)/
√

(ui+1 − ui)2 + ε (i = 1, . . . , n− 1),
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and

(s′)1 = s1, (s′)i = si − si−1 (i = 2, . . . , n− 1), (s′)n = −sn−1.

The Hessian of E at u is

H(u) = AtA+ αDt
u(I − diag(s)2)Du,

where Du is the discretization of the operator that maps v to v′/
√
|u′|, and 1−s2

i =
ε/((ui+1 − ui)2 + ε). We approximate H(u) by the preconditioner

Au = AtA+ α∆tDt
uDu.

The Sobolev gradient A−1
u ∇E(u) is the gradient associated with the weighted

Sobolev inner product

〈v,w〉u = (Av)t(Aw) + α∆t(Duv)t(Duw).

The steepest descent iteration is

uk+1 = uk − βA−1
u ∇E(uk)

with constant step size β, and initial value u0 obtained by differencing y values.
Since the gradient and inner product at step k depend on uk, this is a variable-
metric method. The gridpoint values of f are computed as

fj = ∆t
j−1∑
i=1

ui + g(a) (j = 1, . . . , n+ 1).

4. Test results

Our first test function is g(x) = cos(x) on [−.5, .5]. We generated two data sets,
one with m = 100 points, and one with m = 10 points, and both with uniformly
distributed abscissae xi and data values yi = g(xi) + ηi, where ηi is taken from
a normal distribution with mean 0 and standard deviation σ. We tested with
σ = 0.01 on both data sets, and σ = 0.1 on the dense data set only. For the
Tikhonov regularization method we used the known value of ‖η‖ to compute the
optimal parameter value α. In the case of smoothing splines we used the known
value of σ to define the smoothing parameter. Table 1 displays the maximum
relative error in the computed derivative for most of the methods. We omitted the
tension spline because the results are almost identical to those of the cubic spline,
and we omitted the total variation regularization method because it is not designed
to fit data from a smooth function.

Method m = 100, σ = .01 m = 100, σ = .1 m = 10, σ = .01
Degree-2 polynomial .0287 .3190 .2786
Tikhonov, k = 0 .7393 .8297 .7062
Tikhonov, k = 1 .1803 .3038 .6420
Tikhonov, k = 2 .0186 .0301 .4432
Cubic spline .1060 1.15 .3004
Convolution smoothing .1059 .8603 .2098
Variational method .1669 .7149 .3419

Table 1. Relative errors in derivative approximations
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The best method on the dense data set is clearly Tikhonov regularization with
k = 2. The solution is graphed in Figure 1. Note that the curvature is exagerated
by the mismatched axis scaling. The large error in the cubic spline with σ = .1 is
the result of fitting with a polynomial of degree 1 because the constraint was not
active. The last three methods outperform Tikhonov regularization on the sparser
data set, with convolution smoothing producing the smallest error. The fitting
function is graphed in Figure 2. The polynomial of degree 2 does reasonably well
on both data sets for this particular test function.

Figure 1. Tikhonov regularization, k = 2, g(x) = cos(x)

Figure 2. Convolution smoothing, h = .3, g(x) = cos(x)

To demonstrate the benefits of tension factors we chose test function g(x) = x7

on [−1, 1] and created a data set consisting of m = 10 points with a uniform
random distribution of the abscissae and data values with Gaussian noise, σ = .01.
Figure 3 depicts derivative curves associated with zero tension on the left, and
shape-preserving tension factors on the right.

Figure 4 demonstrates the effectiveness of the total variation regularization
method for test function g(x) = |x−.5| on [0, 1]. The data set is again 100 uniformly
distributed points with σ = .01.

The variational method of Knowles and Wallace was compared with the spectral
method of Anderssen and Bloomfield [1] on a data set provided by Pallaghy and
Lüttge [11] in [7]. The data set consists of 101 points with uniformly distributed
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Figure 3. Smoothing splines with no tension (left), nonzero ten-
sion (right)

Figure 4. Total variation regularization: g(x) = |x− .5|

abscissae. Values and central difference approximations to derivative values are
depicted in Figure 5.

Figure 5. Pallaghy and Lüttge data and derivative approximations

Figures 6, 7 and 8 depict derivatives computed by some of the methods described
in the previous section. Parameters were chosen experimentally to balance smooth-
ness against fidelity to the data. Only a few tests were required to select reasonable
values: tolerance .05 resulting in degree 14 for the polynomial on the left side of
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Figure 6; parameters α = 10−3, α = 10−7, and α = 10−10 for Tikhonov regulariza-
tion with k = 0, k = 1, and k = 2, respectively; standard deviation σ = 3 × 10−3

for the smoothing spline on the left side of Figure 8; and h = .06 for the convolu-
tion method on the right side. The exponential tension spline with optimal tension
factors produced a fit nearly identical to that of the cubic spline. Refer to [7] for
results with the variational method. The total variation method was not tested on
this data set.

Figure 6. Polynomial (left), Tikhonov regularization, k = 0 (right)

Figure 7. Tikhonov regularization with k = 1 (left), k = 2 (right)
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