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CONVERGENCE OF A MOUNTAIN PASS TYPE ALGORITHM
FOR STRONGLY INDEFINITE PROBLEMS AND SYSTEMS

CHRISTOPHER GRUMIAU, CHRISTOPHE TROESTLER

Abstract. For a functional E and a peak selection that picks up a global

maximum of E on varying cones, we study the convergence up to a subsequence
to a critical point of the sequence generated by a mountain pass type algorithm.

Moreover, by carefully choosing stepsizes, we establish the convergence of the

whole sequence under a “localization” assumption on the critical point. We
illustrate our results with two problems: an indefinite Schrödinger equation

and a superlinear Schrödinger system.

1. Introduction

Let us consider H a Hilbert space with inner product 〈·|·〉 and norm ‖ · ‖, and a
functional E ∈ C1(H; R). In this work, we develop a provably convergent “general”
mountain pass type algorithm to approximate saddle points of E , with a Morse index
possibly larger than one. The pioneer work in this direction is due to Y. S. Choi and
P. J. McKenna [4] who proposed a constrained steepest descent method to compute
saddle points with one “descent direction” (such as a mountain pass solution). A
proof of convergence of a variant of that algorithm was later given by Y. Li and
J. Zhou in [10, 11]. To briefly describe it, let us fix a closed subspace E of H and
ϕ a continuous E⊥-peak selection, i.e. ϕ(u) is the location of a maximum of E on
E⊕R+u := {e+ty | e ∈ E, t > 0} for any u ∈ H\E and ϕ is constant on E⊕R+u.
As it will be convenient in the rest of the paper that ϕ is not solely defined on a
unit sphere, we present here a slightly different version [22].

Algorithm 1.1 (Mountain Pass Algorithm).

(i) Choose u0 ∈ Ranϕ, ε > 0 and n← 0;
(ii) if ‖∇E(un)‖ 6 ε then stop;

else compute

un+1 = ϕ
(
un − sn

∇E(un)
‖∇E(un)‖

)
,
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for some sn ∈ S(un) ⊆ (0,+∞) where S(un) is a set of “admissible step-
sizes” chosen so that at least the following inequality (which is reminiscent
of Armijo condition [17]) holds:

E(un+1)− E(un) < − 1
2sn‖∇E(un)‖;

(iii) let n← n+ 1 and go to step 2.

Y. Li and J. Zhou proved that (un) converges to a nontrivial critical point of
E up to a subsequence. The proof of convergence is performed in the space H to
ensure that the rate of convergence for the discretized problem does not deteriorate
when the approximating subspace becomes finer. The original goal of the authors
for introducing E was to try to obtain multiple critical points by taking E as the
linear subspace generated by previously found solutions which the algorithm must
try to avoid. The proof is performed in two steps. First, they show that sn exists
and that E decreases along (un)n∈N. This step relies on the following Deformation
Lemma.

Lemma 1.2. If ϕ is continuous, u0 ∈ Ranϕ, u0 /∈ E, ∇E(u0) 6= 0, then there
exists s0 > 0 such that

∀s ∈ (0, s0], E
(
ϕ(us)

)
− E(u0) < − 1

2s‖∇E(u0)‖,

where

us := u0 − s
∇E(u0)
‖∇E(u0)‖

.

The second step consists in proving, under some traditional assumptions on
ϕ, that a subsequence of (un) converges. For this, it is essential to show that the
stepsize sn controls the distance between un and un+1 and that sn is chosen in such
a way that it is close to 0 only when “mandated” by the functional. Let us remark
that the choice of ϕ is very sensitive. Indeed, to seek sign-changing critical points,
the modified Mountain Pass algorithm was introduced by J. M. Neuberger [14] (see
also [7]). He considers Algorithm 1.1 above and only modifies the projection ϕ
into a “sign-changing peak selection” ϕN which is a map defined from the set of
sign-changing functions of H \ {0} to H \ {0} such that, for any u, E

(
ϕN (u)

)
> 0

and ϕN (u) is a maximum of E on R+u+⊕R+u− where u+(x) := max{0, u(x)} and
u−(x) := min{0, u(x)}. Although in practice it appears to converge to a nontrivial
sign-changing critical point, its convergence has yet to be formally proved.

In this paper, for any u, ϕ(u) is allowed to be any maximum point of E inside an
abstract cone Cu and we are interested in giving assumptions on Cu which imply
the convergence of the mountain pass algorithm. This work is partly motivated
by the article [18] where the authors define the notion of “natural constraints” to
seek nontrivial critical points of functionals. To the best of the authors’ knowledge,
using peak selections along cones that vary from point to point in a “continuous”
fashion (see (1.2)) is novel and allows us to propose a general, provably convergent,
algorithm that subsumes into a unified setting several previous mountain-pass type
algorithms. We will show how it can be applied both to strongly indefinite problems
and to systems.

Let us first make precise the peak selection ϕ that we use. We write intC for
the interior of C relative to spanC, the smallest closed subspace containing C, for
the topology induced by H.
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Definition 1.3. Let A be an open subset of H. We say that ϕ is a peak selection
for (Cu)u∈A if ϕ is a map from A to A such that, for all u ∈ A,

(i) Cu is a closed cone pointed at 0;
(ii) ϕ(u) ∈ intCu;
(iii) for any v ∈ intCu, ϕ(v) = ϕ(u);
(iv) ϕ(u) is a global maximum point of E on Cu.

Note that properties (ii) and (iii) imply that ϕ(ϕ(u)) = ϕ(u). We write that
d ⊥ Cu if and only if d ⊥ spanCu for the inner product 〈·|·〉. In Section 2, we
assume that ϕ is continuous and that (Cu) verifies the following conditions:

∀u ∈ A, u ∈ Cu (1.1)

and

∃γ ∈
(
0,
π

2
)
, ∃δ ∈ (0, 1), ∀u0 ∈ Ranϕ, ∃r > 0, ∀ũ0 ∈ Ranϕ ∩B(u0, r),

∀d ∈ B(0, r), d ⊥ Cũ0 , Cũ0+d ∩B(u0, r) ⊆ Cũ0 + [1− δ, 1 + δ]Aγ(d),
(1.2)

where Aγ(d) := {d′ | ‖d′‖ = ‖d‖ and ∠(d′, d) 6 γ} and ∠(d, d′) := arccos
( 〈d|d′〉
‖d‖‖d′‖

)
denotes the angle between two non-zero vectors d and d′ (we set Aγ(0) := {0}).
This assumption, which speaks about the behavior of the cones under small defor-
mations, is essential to prove a Deformation Lemma in this generalized setting (see
Lemma 2.1). This lemma ensures the non-emptiness of the set S(u0) of admissible
stepsizes at u0 which we now define. For any u0 ∈ Ranϕ such that ∇E(u0) 6= 0,
we set

S∗(u0)

:=
{
s > 0 : us := u0 − s

∇E(u0)
‖∇E(u0)‖

∈ A and E
(
ϕ(us)

)
− E(u0) < −αs‖∇E(u0)‖

}
for some value α > 0 given by Lemma 2.1 and we require that s ∈ S(u0) :=
S∗(u0)∩

[
1
2 supS∗(u0),+∞

)
. Other definitions of admissible stepsizes are possible

provided they imply a local uniformity in the sense that sn ∈ S(un) forces the
stepsize sn not to be small when the gradient is not (see Lemma 2.4). The definition
given above draws its inspiration from a paper [22] written by N. Tacheny and
C. Troestler.

To obtain the convergence of (un) up to a subsequence (see Theorem 2.14), we
unfortunately need to replace (1.2) with the following stronger assumption:

there exist a closed subspace E ⊆ H (possibly infinite dimensional)
and a family of C1-vector fields ξi : A → E⊥, i = 1, . . . , k, for some
k ∈ N, such that for all u ∈ A and i ∈ {1, . . . , k},

(i) the family
(
ξi(u)

)k
i=1

is orthonormal;
(ii) ∀v ∈ Vu, ξ′i(u)[v] ∈ Vu, where Vu := span{ξ1(u), . . . , ξk(u)};
(iii) ∀v ∈ intCu ∩ A, ξi(v) = ξi(u);
(iv) 〈u|ξi(u)〉 6= 0;
(v) ∃r > 0, ξ′i is bounded on {u | dist(u,Ranϕ) < r} ∩ A.

For u ∈ A, the cone Cu is defined as Cu := E ⊕ {
∑
i tiξi(u) | ti >

0 for all i}.



(1.3)

Here, the notation dist(u, ∂A) stands for inf{‖u − v‖ | v ∈ ∂A}. Let us remark
that conditions (1.3) (i), (ii), (iv) and (v) are already present (albeit somehow
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implicitly for (iv)) in [18] in the context of trivial C1-subbundles intead of cones.
The additional condition (iii) is equivalent to ∀v ∈ intCu ∩ A, Cv = Cu. This
condition is rather natural to require in view of property (iii) of the definition of
peak selection. This “finite presentation” of the cones is used in Lemma 2.8 to
ensure that the stepsize sn controls the distance between un+1 and un.

As a particular case of (1.3), let us mention that we can work with a family
of continuous linear projectors (see Proposition 2.12). This case is an abstract
formulation of the setting of [2, 3] where the convergence (up to a subsequence) of
a mountain pass type algorithm for systems has been announced.

In Section 2.3, we are interested in the convergence of the whole sequence gener-
ated by the Mountain Pass Algorithm. To that aim, we need to refine the definition
of S∗ in order to control E

(
ϕ(un − s ∇un

‖∇un‖ )
)

for any 0 < s < sn.
In Section 3, we illustrate our method with two semi-linear problems. The first

application takes its inspiration from a paper due to A. Szulkin and T. Weth [21]
in which the authors study the following Schrödinger problem

−∆u(x) + V (x)u(x) = |u(x)|p−2u(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.4)

where V : Ω → R is such that 0 is in a spectral gap of −∆ + V and 2 < p <
2∗ := 2N

N−2 (+∞ when N = 2). They are interested in the existence of non-zero
solutions on an open bounded domain Ω ⊆ RN or on Ω = RN (in the latter case,
V is assumed to be 1-periodic in each xi, i = 1, . . . , N). Solutions to this equation
are critical points of the indefinite functional

E : H → R : u 7→ 1
2

∫
Ω

(
|∇u(x)|2 + V (x)u(x)2

)
dx− 1

p

∫
Ω

|u(x)|p dx, (1.5)

where H = H1
0 (Ω). The first proof of the existence of non-zero critical points for E

when −∆ + V is not positive definite and Ω is an open bounded domain is due to
P. H. Rabinowitz [19]. Recently, A. Szulkin and T. Weth proposed an alternative
method [21] that also makes easier to deal with the lack of compactness that occurs
when Ω = RN . Denoting E the negative eigenspace of −∆ +V , they introduce the
following nonlinear map

ϕ : H \ E → H : u 7→ ϕ(u)

where ϕ(u) is the point at which E reaches its maximum value on E ⊕R+u. They
prove that minimizing E on Ranϕ =

{
u ∈ H \ E

∣∣ ∂E(u)[v] = 0 for v = u and any
v ∈ E

}
yields a non-zero solution with least energy. Notice that, here, E is used

to deal with the indefiniteness of the problem and not to compute multiple critical
points as in the papers of J. Zhou & al. [10, 11]. We will prove that our algorithm
converges for this problem. The numerical solutions that we obtain lead to some
conjectures on the symmetries of ground state solutions.

The second application is based on a paper by B. Noris and G. Verzini [18]. The
authors study the superlinear Schrödinger system

−∆ui(x) = ∂iF
(
u1(x), . . . , uk(x)

)
, x ∈ Ω,

ui(x) = 0, x ∈ ∂Ω,
i = 1, . . . , k, (1.6)

where k ∈ N. They require that Ω ⊆ RN is a bounded smooth domain and
F ∈ C2(Rk; R). Note that the system −∆ui = µiu

3
i + ui

∑
j 6=i βi,ju

2
j where µi > 0

and βi,j = βj,i is a particular case of (1.6). Such type of nonlinearities have
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been studied due to their applications to nonlinear optics and to Bose-Einstein
condensation (see [6, 5, 8, 23]). Solutions to (1.6) are critical points of the functional

E : H → R : u = (u1, . . . , uk) 7→ 1
2

∫
Ω

|∇u(x)|2 dx−
∫

Ω

F (u) dx, (1.7)

where H = H1
0 (Ω; Rk). As already mentioned, B. Noris and G. Verzini [18] propose

a general method of “natural constraints”. Applied to the above problem, it goes
as follows. Denote A := {u ∈ H : ui 6= 0 for every i}. To find a solution u =
(u1, . . . , uk) of (1.6) with ui 6= 0 for all i = 1, . . . , k, they minimize E on the
constraint N :=

{
u ∈ A

∣∣ ∀i = 1, . . . , k,
∫

Ω
|∇ui|2 dx =

∫
Ω
∂iF (u)ui dx

}
. We will

show that, under their assumptions, N = Ranϕ with ϕ being the peak selection

ϕ : A → A : u 7→ argmax
{
E(t1u1, . . . , tkuk) : t1 > 0, . . . , tk > 0

}
.

Again, we prove that our algorithm converges for this problem and some numerical
experiments are performed.

2. Steepest descent method on varying cones

2.1. Uniform Deformation Lemma. Let E : H → R be a C1-functional de-
fined on a Hilbert space H and A an open subset of H. The following lemma is
instrumental in proving the convergence of the algorithm.

Lemma 2.1 (Uniform Deformation Lemma). Let ϕ : A → A be a peak selection
for (Cu)u∈A and u0 ∈ Ranϕ be such that ∇E(u0) 6= 0. Assume that ϕ is continuous
at u0 and that (1.1)–(1.2) hold. Then there exist s0 > 0 and r0 > 0 such that, for
any s ∈ (0, s0] and ũ0 ∈ B(u0, r0) ∩ Ranϕ, one has

• ∇E(ũ0) 6= 0,
• ũs ∈ A where ũs := ũ0 − s ∇E(ũ0)

‖∇E(ũ0)‖ and
• there exists some α > 0 solely depending on γ and δ given in assump-

tion (1.2) such that

E
(
ϕ(ũs)

)
− E(ũ0) < −αs‖∇E(ũ0)‖. (2.1)

Proof. Let u0 ∈ Ranϕ ⊆ A and let us consider γ, δ and r given by the assump-
tion (1.2) for u0. Since A is open, there exists ε1 > 0 such that for any u ∈ B(u0, ε1)
and v ∈ B(u, ε1), one has u, v ∈ A, ∇E(u) 6= 0, ∇E(v) 6= 0 and u, v ∈ B(u0, r).

For any u ∈ B(u0, ε1), let du := −∇E(u)/‖∇E(u)‖. Then

∀u ∈ B(u0, ε1), ∀d ∈ Aγ(du), 〈∇E(u)|d〉 6 − cos γ ‖∇E(u)‖.
Let γ̃ := 1

2 cos γ > 0. Taking ε1 smaller if necessary, we may assume that

∀u, v ∈ B(u0, ε1), ∀d ∈ Aγ(du), 〈∇E(v)|d〉 < −γ̃‖∇E(u)‖.
Thus, on one hand, there exists ε2 > 0 such that, for any u ∈ B(u0, ε2), v ∈ B(u, ε2),
d ∈ Aγ(du) and σ ∈ (0, ε2),

〈∇E(v + σd)|d〉 < −γ̃‖∇E(u)‖.
For any ũ0 ∈ B(u0, ε2) ∩ Ranϕ, v ∈ Cũ0 ∩ B(ũ0, ε2), d ∈ Aγ(dũ0) and σ < ε2, the
Mean Value Theorem implies there exists a σ̃ ∈ (0, σ) such that

E(v + σd)− E(ũ0) 6 E(v + σd)− E(v) (2.2)

=
〈
∇E(v + σ̃d)

∣∣σd〉
< −γ̃σ‖∇E(ũ0)‖, (2.3)
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where the first inequality results from v ∈ Cũ0 and ũ0 = ϕ(ũ0) is a global maximum
of E on Cũ0 .

On the other hand, by the continuity of ϕ at u0, there exist s0 ∈ (0, r) and
ε3 ∈

(
0,min{r, 1

3ε2}
)

such that, for any ũ0 ∈ B(u0, ε3) and s ∈ [0, s0], one has
ϕ(ũ0 + sdũ0) ∈ B(u0,min{r, 1

3ε2}). Let ũs := ũ0 + sdũ0 . If in addition ũ0 ∈ Ranϕ,
one has dũ0 ⊥ spanCũ0 (because ũ0 = ϕ(ũ0) ∈ intCũ0 is a local maximum) and
therefore one deduces from assumption (1.2) that

ϕ(ũs) ∈ Cũs
∩B(u0, r) ⊆ Cũ0 + [1− δ, 1 + δ]Aγ(sdũ0).

Thus, ϕ(ũs) = vs +Kssd
∗
s for some vs ∈ Cũ0 , Ks ∈ [1− δ, 1 + δ] and d∗s ∈ Aγ(dũ0).

So, possibly taking s0 smaller, we get that Kss <
1
3ε2 and vs = ϕ(ũs) −Kssd

∗
s ∈

B(ũ0, ε2). Using Equation (2.3), we conclude that

E
(
ϕ(ũs)

)
− E(ũ0) = E(vs +Kssd

∗
s)− E(ũ0) 6 −γ̃ (1− δ)s‖∇E(ũ0)‖

for any ũ0 ∈ B(u0, ε3) ∩ Ranϕ and s ∈ (0, s0]. �

Remark 2.2.

• Equation (2.2) is the unique place we use that ϕ(u) is a global maximum
of E on Cu. This assumption can be weakened by only requiring that the
neighborhood on which ϕ(u) achieves the maximum of E is locally uniform
w.r.t. u:

∀u0 ∈ Ranϕ, ∃ρ > 0, ∀u ∈ Ranϕ∩B(u0, ρ), E
(
ϕ(u)

)
= max
v∈Cu∩B(u,ρ)

E(v). (2.4)

This assumption allows the existence of multiple maximum points in Cu.
It was not used in Definition 1.3 for simplicity but also because, in the
examples of Section 3, ϕ(u) is a maximum on the whole Cu.
• Let us also note that, if we are just interested in the inequality (2.1) at u0

(and not for all ũ0 in a neighborhood of u0), we only need to require that
ϕ(u) is a local maximum of E on Cu.
• A careful reader may notice that we did not really use the fact that Cu is

a cone pointed at 0. However, if (Cu) was just a family of sets satisfying
(1.1), (1.2), (2.4) and the fact that ϕ(u) ∈ intCu in a locally uniform way:

∀u0 ∈ Ranϕ, ∃ρ > 0, ∀u ∈ Ranϕ ∩B(u0, ρ), B(u, ρ) ∩ spanCu ⊆ Cu, (2.5)

then the cone Ĉu, defined as the closure of {tv | t > 0 and v ∈ Cu}, also
satisfies (1.1), (1.2), (2.4) and ϕ(u) ∈ int Ĉu. So very little is gained by not
using cones, especially because they are the natural structures encountered
in our examples.
• As a consequence of the above Deformation Lemma, one can interpret Ranϕ

as somewhat a natural constraint for E in the sense of [18]. More precisely,
it implies that if u0 ∈ Ranϕ is a local minimum of E on Ranϕ then u0 is
a critical point of E on the whole space H.

2.2. Convergence up to a subsequence. In this section, we first remark that it
is possible to construct a sequence of stepsizes sn such that the energy E decreases
along the sequence (un)n∈N generated by Algorithm 1.1. In the following, without
loss of generality, we can assume that ∇E(un) 6= 0 for any n ∈ N (otherwise the
algorithm finds a critical point in a finite number of steps).
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Proposition 2.3. If sn > 0 verifies inequality (2.1) given in Lemma 2.1 for any
n ∈ N, then the functional E decreases along the sequence (un)n∈N.

Proof. As ∇E(un) 6= 0, sn is well-defined by Lemma 2.1. By construction, we have

E(un+1)− E(un) = E
(
ϕ
(
un − sn

∇E(un)
‖∇E(un)‖

))
− E(un) < −αsn‖∇E(un)‖ < 0.

So, E(un+1) < E(un). �

As explained in the introduction, we now consider the sets S∗(u0) and S(u0).
The set S∗(u0) is not empty as soon as u0 is not a critical point of E (thanks to the
Deformation Lemma). Concerning the set S(u0), it is not-empty once E is bounded
from below on Ranϕ, an assumption that we will later make (see Theorem 2.10).

Lemma 2.4. If u0 ∈ Ranϕ, ∇E(u0) 6= 0 and ϕ is continuous at u0, then there
exists an open neighborhood V of u0 and s∗ > 0 such that S(u) ⊆ [s∗,+∞) for any
u ∈ V ∩ Ranϕ.

Proof. By the Uniform Deformation Lemma 2.1, there exists s0 > 0 and r0 > 0 such
that, for any 0 < s 6 s0 and u ∈ B(u0, r0)∩Ranϕ, we have us := u−s ∇E(u)

‖∇E(u)‖ ∈ A,
∇E(u) 6= 0 and

E
(
ϕ(us)

)
− E(u) < −αs‖∇E(u)‖. (2.6)

In particular, for any u ∈ B(u0, r0) ∩ Ranϕ, s0 ∈ S∗(u). It follows that S(u) ⊆
[ s02 ,+∞). It suffices to take s∗ 6 s0/2. �

Remark 2.5. To prove Lemma 2.4, let us remark that we could only use inequal-
ity (2.6) at u = u0 for s = s0 fixed. Indeed, by continuity, it directly implies that
s0 ∈ S(u) for u close to u0. However, to obtain Lemma 2.4 for S̃(u) (see Section 2.3)
instead of S(u), the full strength of the Deformation Lemma is needed.

From now on, we have to require condition (1.3). Let us first show it sub-
sumes (1.2).

Lemma 2.6. Let (ξi)ki=1 be the family of vector fields given by (1.3) and assume
(1.1) holds. Then

∀u ∈ A, ∀d ⊥ Cu,
k∑
i=1

〈
u
∣∣ ξi(u)

〉
ξ′i(u)[d] = d−

k∑
i=1

〈
u
∣∣ ξ′i(u)[d]

〉
ξi(u).

Proof. For any u ∈ A, the fact that u ∈ Cu ⊆ Vu and that (ξi)ki=1 is an orthonormal
basis of Vu imply u =

∑
〈u|ξi(u)〉ξi(u). Differentiating in a direction d ∈ H, yields

d =
k∑
i=1

〈d|ξi(u)〉 ξi(u) +
k∑
i=1

〈u|ξ′i(u)[d]〉 ξi(u) +
k∑
i=1

〈u|ξi(u)〉 ξ′i(u)[d].

If d ⊥ spanCu, the first term vanishes. This completes the proof. �

Proposition 2.7. Properties (1.1) and (1.3) imply (1.2).

Proof. Let δ ∈ (0, 1) (property (1.2) will be satisfied whatever value is chosen).
Simple geometrical considerations show that there exists a γ ∈ (0, π/2) such that

B(d, δ‖d‖) ⊆ [1− δ, 1 + δ]Aγ(d).
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Let u0 ∈ Ranϕ. As u0 ∈ intCu0 , there exist α > 0 such that 〈u0|ξi(u0)〉 > α for
all i. Using the continuity of ξi and ξ′i at u0, we can choose r sufficiently small and
a M > 0 (depending only on u0) so that, for all u ∈ B(u0, r) and all i = 1, . . . , k,

〈u|ξi(u)〉 > α, ‖ξi(u)− ξi(ũ0)‖ 6 ε, ‖ξ′i(u)‖ 6M, and ‖ξ′i(u)− ξ′i(ũ0)‖ 6 ε,

where ε > 0 is a constant depending only on δ and u0 (to be chosen later).
Let ũ0 ∈ B(u0, r) and d ∈ B(0, r) such that d ⊥ Cũ0 . Let w ∈ Cũ0+d ∩B(u0, r).

One can write w = e +
∑
tiξi(ũ0 + d) for some e ∈ E and ti > 0. Let us start by

noticing that ti = 〈w|ξi(ũ0 + d)〉. Therefore, recalling that ‖ξi‖ = 1, one deduces∣∣ti − 〈ũ0|ξi(ũ0)〉
∣∣ 6 ∣∣〈w − ũ0

∣∣ ξi(ũ0 + d)
〉∣∣+

∣∣〈ũ0

∣∣ ξi(ũ0 + d)− ξi(ũ0)
〉∣∣

6 ‖w − ũ0‖+ ‖ũ0‖‖ξi(ũ0 + d)− ξi(ũ0)‖
6 2r + (‖u0‖+ r)ε. (2.7)

Provided that ε and r are chosen small enough, one can assume that 2r + (‖u0‖+
r)ε 6 α/3. In particular, this implies ti > 2α/3 > 0.

Using the integral form of the Mean Value Theorem, we get

w = e+
k∑
i=1

tiξi(ũ0 + d) = e+
k∑
i=1

tiξi(ũ0) +
∫ 1

0

k∑
i=1

ti ξ
′
i(ũ0 + sd)[d] ds. (2.8)

The third term can be rewritten as follows:
k∑
i=1

〈ũ0|ξi(ũ0)〉 ξ′i(ũ0)[d] +
k∑
i=1

(
ti − 〈ũ0|ξi(ũ0)〉

)
ξ′i(ũ0)[d]

+
∫ 1

0

k∑
i=1

ti
(
ξ′i(ũ0 + sd)[d]− ξ′i(ũ0)[d]

)
ds =: d1 + d2 + d3.

Using Lemma 2.6 on d1, one can write equation (2.8) as

w = e+
k∑
i=1

(
ti − 〈ũ0|ξ′i(ũ0)[d]〉

)
ξi(ũ0) + d+ d2 + d3.

Since ∣∣〈ũ0|ξ′i(ũ0)[d]〉
∣∣ 6 ‖ũ0‖‖ξ′i(ũ0)‖‖d‖ 6 (‖u0‖+ r)Mr,

we can assume r was chosen small enough so that this is smaller that α/3. Recalling
that ti > 2α/3, one sees that the coefficients of ξi(ũ0) are positive and therefore
e+

∑(
ti − 〈ũ0|ξ′i(ũ0)[d]〉

)
ξi(ũ0) ∈ Cũ0 .

The proof is complete if we show that d+ d2 + d3 ∈ B(d, δ‖d‖). Using (2.7), we
deduce |ti| 6

∣∣ti − 〈ũ0|ξi(ũ0)〉
∣∣+ ‖ũ0‖ 6 2r+ (‖u0‖+ r)(ε+ 1). Thus the following

estimates

‖d2‖ 6
k∑
i=1

∣∣ti − 〈ũ0|ξi(ũ0)〉
∣∣ ‖ξ′i(ũ0)‖‖d‖ 6 k

(
2r + (‖u0‖+ r)ε

)
M ‖d‖,

‖d3‖ 6
k∑
i=1

|ti| sup
s∈[0,1]

‖ξ′i(ũ0 + sd)− ξ′i(ũ0)‖‖d‖ 6 k
(
2r + (‖u0‖+ r)(ε+ 1)

)
ε‖d‖,

show that ‖di‖ 6 1
2δ‖d‖, i = 2, 3, provided that the constants ε and r were chosen

small enough. �
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Lemma 2.8 is the second key element to prove the convergence up to a subse-
quence.

Lemma 2.8. Let ϕ be a peak selection for (Cu)u∈A which verifies conditions (1.1)
and (1.3). Let (un)n∈N and (sn)n∈N be given by the MPA (Algorithm 1.1) with
sn ∈ S(un) for all n. Let us assume that ϕ is continuous, Ranϕ ⊆ A, and either

∃τ1, . . . , τk ∈ (0,+∞), dist
({ k∑

i=1

τiξi(u) : u ∈ Ranϕ
}
, ∂A

)
> 0, (2.9a)

or

{
∀(vn) ⊆ Ranϕ,

(
E(vn)

)
is bounded from above⇒ (vn) is bounded

and dimE <∞.
(2.9b)

If
∑+∞
n=0 sn < +∞ then (un)n∈N converges in A.

Proof. Let k be given by the assumption (1.3). For i = 1, . . . , k, set vi,n := ξi(un),
and dn := − ∇E(un)

‖∇E(un)‖ . Let r be given by assumption (1.3) (v) and Ki be a bound
for ξ′i. Denote K := maxi=1,...,kKi.

By assumption (1.3) and as ϕ(un + sndn) ∈ intCun+sndn
, we have

vi,n+1 = ξi
(
ϕ(un + sndn)

)
= ξi(un + sndn)

for any n ∈ N. Let n∗ be large enough so that for all n > n∗, sn < r. Thus, for all
n > n∗,

‖vi,n+1 − vi,n‖ 6 K‖sndn‖ = Ksn. (2.10)

Since
∑
sn < +∞, it follows that for any i = 1, . . . , k, (vi,n)n∈N is a Cauchy

sequence and therefore converges to, say, vi,∞.
Let us assume (2.9a) holds. Consider ṽn :=

∑k
i=1 τivi,n =

∑k
i=1 τiξi(un). The

sequence converges and its limit belongs to A. Since ϕ(ṽn) = ϕ(un) = un and ϕ is
continuous, (un)n∈N converges. Its limit lies in Ranϕ and thus in A.

If on the other hand (2.9b) holds, the fact that the sequence (E(un)) is decreasing
implies that (un) is bounded. Let (u′n) be a subsequence of (un). Since u′n ∈ Cu′n ,
one can write u′n = e′n +

∑k
i=1 t

′
i,nξi(u

′
n) for some e′n ∈ E and t′i,n ∈ (0,+∞).

As (u′n) is bounded, so are (e′n) and |t′i,n| = |〈u′n|ξi(u′n)〉| 6 ‖u′n‖. So, up to
subsequences, (e′n)n∈N and (t′i,n)n∈N converge to, say, e′∞ and t′i,∞. Thus u′n →
u′∞ := e′∞ +

∑
t′i,∞vi,∞. Thanks to Ranϕ ⊆ A, u′∞ ∈ A. But then the continuity

of ξi and ϕ imply

vi,∞ = ξi(u′∞) and u′n = ϕ(u′n)→ ϕ(u′∞). (2.11)

If the same reasoning is performed with another subsequence (u′′n), (2.11) implies
that ξi(u′∞) = ξi(u′′∞) and therefore, in view of Definition 1.3 (1.3), ϕ(u′∞) = ϕ(u′′∞).
As the limit does not depend on the subsequence, the whole sequence (un) converges
in A. �

Remark 2.9. If we wanted to seek sign-changing solutions using the cones Cu :=
R+u+ ⊕ R+u− (as explained in the Introduction), then we would not be able to
write (2.10) in the above computation because the map H1

0 → H1
0 : u 7→ u+ is not

Lipschitz. This sheds some light on the difficulty of proving the convergence of the
Modified Mountain Pass Algorithm [14].
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Theorem 2.10. Assume ϕ : A → A is a continuous peak selection s.t. Ranϕ ⊆ A
and the cones (Cu)u∈A verify the conditions (1.1), (1.3) and (2.9a) or (2.9b).
Suppose moreover that E ∈ C1(H; R) satisfies the Palais-Smale condition in Ranϕ
and that infu∈Ranϕ E(u) > −∞. Then the sequence (un)n∈N given by the Mountain
Pass Algorithm 1.1 possesses a subsequence converging to a critical point of E in
Ranϕ. In addition, all limit points of (un)n∈N are critical points of E.

Proof. Let us start by showing that
(
∇E(un)

)
n∈N converges to zero up to a subse-

quence. If not, we could assume there exist δ > 0 and n0 ∈ N such that, for any
n > n0, ‖∇E(un)‖ > δ. Then, for any n > n0, the Deformation Lemma 2.1 implies

E(un+1)− E(un) 6 −αsnδ.

Thus, summing up,

lim
n→+∞

E(un)− E(un0) =
+∞∑
n=n0

E(un+1)− E(un) 6 −δα
+∞∑
n=n0

sn.

As the left-hand side is a real number (E is bounded from below on Ranϕ and
decreasing along (un)n∈N), we have

∑+∞
n=0 sn < +∞. So, by Lemma 2.8, un →

u∗ ∈ A and ‖∇E(u∗)‖ > δ. By continuity of ϕ at u∗ ∈ A, we obtain ϕ(u∗) = u∗

and, so, u∗ ∈ Ranϕ. By Lemma 2.4, there exists a neighborhood V of u∗ and
s∗ > 0 such that S(u) ⊆ [s∗,+∞) for any u ∈ V . Consequently, there exists n0

such that, for any n > n0, sn > s∗, whence
∑+∞
n=0 sn does not converge, which is a

contradiction.
In conclusion, there exists a subsequence (unk

)k∈N of (un)n∈N s.t. ‖∇E(unk
)‖ → 0

when k → +∞. As E satisfies the Palais-Smale condition, (unk
)k∈N possesses a

subsequence converging to a critical point of E .
Concerning the second statement of the theorem, the argument is very similar.

Let (unk
)k∈N be a convergent subsequence and assume on the contrary that u :=

limk→∞ unk
is not a critical point of E . In that case, on one hand, there exists

δ > 0 and k1 ∈ N such that, for any k > k1, ‖∇E(unk
)‖ > δ. By Lemma 2.1, we

have

∀k > k1, E(unk+1)− E(unk
) 6 −αδsnk

.

On the other hand, as u ∈ Ranϕ, we have by Lemma 2.4 that

∃ s∗ > 0, ∃k2 ∈ N, ∀k > k2, sn > s
∗.

So, for large k, E(unk+1) − E(unk
) 6 −α2 δs

∗, which is a contradiction because(
E(un)

)
n∈N is a convergent sequence. �

Remark 2.11. By previous Remarks 2.2 and 2.5, we conclude that we could get
the convergence up to a subsequence using the equation (2.1) only at u0. Thus, the
uniform form of Lemma 2.1 is not required (and we could consider that ϕ(u) is a
local maximum of ϕ on Cu instead of a global maximum). Nevertheless, we have
kept the uniform setting along the paper as it will be required in Section 2.3.
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The following special case of (1.3) is important for the applications.

There exist a closed subspace E ⊆ H (possibly infinite dimensional)
and linear continuous projectors Pi : H → E⊥, i = 1, . . . , k, for some
k ∈ N, such that

• ∀ u ∈ H, Pi(u) ⊥ Pj(u) whenever i 6= j;
• E ⊕

∑k
i=1 RanPi = H.

For all u ∈ H, set Cu := E ⊕
{∑

tiPi(u)
∣∣ ti > 0 for all i

}
.


(2.12)

Let us now sketch the proof that (2.12) implies both (1.1) and (1.3). Consider
A := {u ∈ H | Pi(u) 6= 0 for all i} and ξi(u) := Pi(u)

‖Pi(u)‖ . Clearly ξ1, . . . , ξk are C1

functions on A. Moreover e +
∑
tiPi(u) ∈ intCu if and only if all ti > 0. Since

u = PE(u) +
∑k
i=1 Pi(u) where PE denotes the orthogonal projection onto E, one

has u ∈ intCu. Given the definitions of A and ξi, points (i), (iii) and (iv) of (1.3) are
straightforward. A simple computation shows that ξ′i(u)

[∑
tjPj(u)

]
is a multiple of

Pi(u) whence (ii) follows. Finally, as ‖ξ′i(u)‖ = O(1/‖Pi(u)‖), (v) will hold provided
‖Pi(u)‖ is bounded away from 0 when u ∈ Ranϕ. Note that this latter condition
also ensures that Ranϕ ⊆ A. We remark that these cones satisfy property (2.9a)
with τ1 = · · · = τk = 1 because dist(

∑
ξi(u), ∂A) = minj ‖Pj(

∑
ξi(u))‖ = 1.

Thus, as a corollary of Theorem 2.10, we get the following proposition. It can
be thought as an abstract version of the convergence results in [3, 10, 11].

Proposition 2.12. Let us consider ϕ : A → A a continuous peak selection with
the cones (Cu)u∈A being given by condition (2.12) and A := {u ∈ H | Pi(u) 6=
0 for all i = 1, . . . , k}. Assume that infu∈Ranϕ ‖Pi(u)‖ > 0 for all i = 1, . . . , k, that
E ∈ C1(H; R) satisfies the Palais-Smale condition in Ranϕ and that infu∈Ranϕ E(u) >
−∞. Then the sequence (un)n∈N given by the Mountain Pass Algorithm 1.1 pos-
sesses a subsequence converging to a critical point of E in Ranϕ. In addition, all
limit points of (un)n∈N are critical points of E.

In Theorem 2.10, the Palais-Smale condition is required. For the particular case
of H = H1(RN ), this condition does not generally hold, as RN is not bounded,
some mass of Palais-Smale sequences may be lost at infinity i.e.,

lim
R→∞

lim sup
n→∞

∫
RN\B(0,R)

u2
n > 0.

Fortunately, H1(RN ) enjoys the following compactness condition (see for example
the paper [12] for a proof): for any bounded sequence (un)n∈N ⊆ H1(RN ) staying
away from zero, there exists (xn)n∈N ⊆ ZN such that the sequence

(
un(· + xn)

)
,

where un(· + xn) denotes the function x 7→ un(x + xn), converges weakly, up to a
subsequence, to a non-zero function. This is enough to get the convergence up to
a subsequence.

Proposition 2.13. Assume the hypotheses of Theorem 2.10 hold, except for the
Palais-Smale condition. Let H := H1(RN ) and (un)n∈N be the sequence given by the
Mountain Pass Algorithm 1.1. If, for any u ∈ H and x ∈ ZN , E

(
u(·+ x)

)
= E(u)

and if ∇E : H → H is continuous for the weak topology on H, then there exists
a sequence (xn)n∈N ⊆ ZN such that

(
un(· + xn)

)
n∈N converges weakly up to a

subsequence to a nontrivial critical point of E.
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Proof. We will only briefly sketch the proof. As (un)n∈N is bounded in H1(RN )
and stays away from 0, the compactness condition recalled above implies that there
exists a sequence (xn)n∈N ⊆ ZN such that u(· + xn) converges weakly, up to a
subsequence, to u∗ 6= 0. Intuitively, the translations “bring back” some mass that
un may loose at infinity.

Using the translation invariance of E , the corresponding equivariance of ∇E and
the weak continuity of ∇E , we conclude that u∗ is a critical point of E . �

2.3. Convergence of the whole sequence. In this section, we refine the stepsize
used previously to get the convergence of the whole sequence generated by Algo-
rithm 1.1. We require that the stepsize sn ∈ S̃(u0) := S̃∗(u0)∩

(
1
2 sup S̃∗(u0),+∞

)
where

S̃∗(u0) :=
{
s0 > 0 :∀ s ∈ (0, s0], us := u0 − s

∇E(u0)
‖∇E(u0)‖

∈ A and

E
(
ϕ(us)

)
− E(u0) < −αs‖∇E(u0)‖

}
.

Using the Deformation Lemma 2.1, we get that S̃(un) 6= ∅ as long as un is not
a critical point. Moreover, working as previously, we get results 2.4, 2.8 and 2.10
for this new choice of stepsizes. Let us remark that, this time, we really need
that inequality (2.1) is valid in a neighborhood of u0 to get Lemma 2.4. This
new stepsize will allow us to control the energy for any 0 < s 6 s0. Under a
“localization” assumption, we now prove that the whole sequence (un)n∈N given by
the Mountain Pass Algorithm 1.1 converges to a nontrivial critical point of E .

Theorem 2.14. Assume that u is the unique critical point of E in the ball B(u, δ)
for some δ > 0. Under the same assumptions as those of Theorem 2.10, if there
exists n∗ ∈ N such that E(un∗) < a := infv∈∂B(u,δ)∩Ranϕ E(v) and un∗ ∈ B(u, δ)
then the sequence (un)n∈N produced by Algorithm 1.1 with stepsizes sn ∈ S̃(un)
converges to u.

Proof. For any m > n∗, we claim that um ∈ B(u, δ). If not, as un∗ ∈ B(u, δ), there
exists m > n∗ such that um ∈ B(u, δ) and um+1 = ϕ

(
um− sm ∇E(um)

‖∇E(um)‖
)
/∈ B(u, δ),

with sm ∈ S̃(um). By continuity, there exists 0 < s 6 sm such that ϕ
(
um −

s ∇E(um)
‖∇E(um)‖

)
∈ ∂B(u, δ) ∩ Ranϕ. This is a contradiction because, by the definition

of sm and as E is decreasing along (un)n∈N, we have a 6 E
(
ϕ(um − s ∇E(um)

‖∇E(um)‖ )
)
6

E(um) 6 E(un∗) < a.
As u is the unique critical point in B(u, δ), by Theorem 2.10, u is the unique

accumulation point of (un)n∈N. So, un converges to u. �

3. Applications

3.1. Application to indefinite problems. For problem (1.4), the energy func-
tional E given by (1.5) is defined on H := H1

0 (Ω). Let us denote the decompo-
sition H = H(−) ⊕ H(+) corresponding to the spectral decomposition of −∆ + V
with respect to the positive and negative part of the spectrum. For any u, we let
u(−) ∈ H(−) and u(+) ∈ H(+) be the unique elements such that u = u(−) + u(+).
Let us remark that the case H(−) = {0} corresponds the traditional Mountain Pass
Algorithm with a positive definite linear operator.
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We choose the following peak selection. Let A := H \ H− and, for any u ∈ A,
let Cu be the cone Cu := H(−) ⊕ R+u = H(−) ⊕ R+u(+). The peak selection ϕ for
(Cu)u∈A is the map

ϕ : A → A : u 7→ ϕ(u)
such that, for all u ∈ A, ϕ(u) maximizes E on Cu. To prove that ϕ is continuous,
we refer to the original paper [21]. Is is easy to check that these cones verify (2.12).
Indeed it suffices to consider E = H(−), k = 1 and P1 : H → E⊥, the orthogonal
projection onto E⊥.

To apply Proposition 2.12, we need to verify the following assumptions on E : on
a bounded domain Ω,

(i) 0 does not belong to Ran(P1 ◦ ϕ): it comes from the fact that 0 is a strict
local minimum of E on E⊥ = H(+) (see [21]);

(ii) E ∈ C1
(
H1

0 (Ω); R
)
: it follows from standard arguments;

(iii) E verifies the Palais-Smale condition on Ranϕ: see [21];
(iv) infu∈Ranϕ E(u) > −∞: actually E is bounded from below by 0 on Ranϕ,

see [21].
In conclusion, Proposition 2.12 applies and gives the convergence up to a subse-
quence of the sequence (un) generated by Mountain Pass Algorithm 1.1 for this
indefinite problem provided that the domain Ω is bounded.

Let us now sketch what happens about the convergence up to a subsequence when
Ω = RN . As (E(un))n∈N is decreasing (see Proposition 2.3) and is bounded away
from zero, we have that (un)n∈N is bounded and stays away from zero in H1(RN )
(see [21]). On the other hand, V is assumed to be 1-periodic, thus E

(
u(·+x)

)
= E(u)

for any u ∈ H and x ∈ ZN . It is not difficult to check that∇E : H → H is continuous
for the weak topology onH. Thus, Theorem 2.13 asserts that, if (un) is the sequence
generated by the MPA, there exists a sequence of translations (xn) ⊆ ZN such that
(un(·+xn))n∈N converges weakly, up to a subsequence, to a nontrivial critical point
u∗ of E . Moreover, if E(un)→ infu∈Ranϕ E(u), then it can be proved that the above
convergence is strong. The idea is that, if it does not converge strongly, some mass
is lost at infinity. At the limit, this mass will take away a quantity of energy greater
or equal to infu∈Ranϕ E(u) > 0, a contradiction.
Numerical experiments. Let us start by giving some details on the computation
of various objects used in the MPA. Functions in H will be approximated using
P 1-finite elements on a Delaunay triangulation of Ω generated by the software
Triangle [20]. The matrix of the quadratic form (u1, u2) 7→

∫
Ω
∇u1∇u2 is readily

evaluated on the finite elements basis. For (u1, u2) 7→
∫

Ω
V (x)u1u2 dx and the

various integrals involving u to a power, a quadratic integration formula on each
triangle is used. The gradient g := ∇E(v) is computed in the usual way: the
function g ∈ H is the solution of the linear system of equations ∀ϕ ∈ H, (g|ϕ)H =
E ′(v)[ϕ]. In practice, the peak selection ϕ must be evaluated with great accuracy
to obtain satisfying results. For this, we use a limited-memory quasi-Newton code
for bound-constrained optimization [13]. The program stops when the gradient of
the energy functional at the approximation has a norm less than 10−4.

As an illustration, we consider Ω = (0, 1)2, V ∈ R constant and p = 4. Let
us remark that H(−) is then formed by eigenfunctions of −∆ + V with negative
eigenvalues. In dimension 2, the eigenvalues λi of −∆ on the square (0, 1)2 with zero
Dirichlet boundary conditions are given by π2(n2 + m2) with n,m = 1, 2, . . . The
related eigenfunctions are given by sin(nπx) sin(mπy). We get λ1 = 2π2 ≈ 19.76,



142 C. GRUMIAU, C. TROESTLER EJDE-2014/CONF/21

λ2 = λ3 = 5π2 ≈ 49.48 (a double eigenvalue), λ4 = 8π2 ≈ 78.95, λ5 = λ6 = 10π2 ≈
98.69,...

Figure 1 depicts four non-zero solutions approximated by the Algorithm 1.1 for
four different values of V . The algorithm was always started from u0(x, y) :=
xy(x− 1)(y − 1). The graphs on the left-hand side are given for the values V = 0
(dimH(−) = 0) and −λ2 < V = −21 < −λ1 (dimH(−) = 1). The graphs on
the right-hand side are given for −λ4 < V = −50 < −λ3 (dimH(−) = 3) and
−λ5 < V = −80 < −λ4 (dimH(−) = 4). In Table 1, we present some characteristics
of the solutions.
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Figure 1. MPA solutions for an indefinite problem on a square

V ‖∇E‖ # of steps E(u)
0 6.0× 10−5 7 37.89

−21 6.4× 10−5 48 70.43
−50 5.3× 10−5 113 91.42
−80 6.5× 10−5 44 35.06

Table 1. Characteristics of approximate solutions to an indefinite problem.
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For V = 0, we remark that the approximation is even w.r.t. any symmetry of the
square and is positive. It was expected and it is actually already known in this case
(i.e. for the problem −∆u = |u|p−2u) that ground state solutions have the same
symmetries as the first eigenfunctions of −∆ (see [9, 1]).

For V = −21, the approximation has two nodal domains and a diagonal as
nodal line. It seems to respect the symmetries of a second eigenfunction of −∆,
which can be explained as follows. When V = 0, it is proved [1] that, for p close
to 2, least energy nodal solutions have the same symmetries as their projections
onto the second eigenspace of −∆. On the square, it is even conjectured that the
projection must be a function odd w.r.t. a diagonal. In view of the bifurcation
diagrams computed by J. M. Neuberger [15, 16], the least energy nodal solution for
V ∈ (−λ1, 0] becomes the solution with lowest energy when V ∈ (−λ2,−λ1] and
no bifurcation happens along the way. So it is reasonable (and this is supported
by the bifurcation diagrams) that they keep the same symmetries along the whole
branch.

We also observe that, for V = −50 (resp. −80), the approximation seems to
respect the symmetries of (and has the “same form” as) a fourth (resp. fifth)
eigenfunction of −∆. Their number of bumps corresponds to their Morse index
(dimH(−) + 1).

All those considerations support the conjecture that if −λn < V < −λn−1 then,
at least for p small enough, ground state solutions respect the symmetries of a nth

eigenfunction of −∆.

3.2. Application to systems. In this section we will perform numerical experi-
ments for the system (1.6). The corresponding energy functional (1.7) is defined
on H = H1

0 (Ω,Rk) endowed with the norm ‖u‖2 =
∫

Ω
|∇u|2 =

∑
i

∫
Ω
|∇ui|2 dx. In

[18], B. Noris and G. Verzini prove that the minimization of E on

N :=
{
u ∈ A : ∀i = 1, . . . , k,

∫
Ω

|∇ui|2 dx =
∫

Ω

∂iF (u)ui dx
}
,

where A := {u ∈ H | ui 6= 0 for every i}, yields a solution u = (u1, . . . , uk) =∑
uiei with ui 6= 0 for all i = 1, . . . , k provided that the following assumptions are

satisfied: there exist p ∈ (2, 2∗), CF > 0 and δ > 0 such that, for any u, λ ∈ Rk,
one has

(i)
∑
i,j |∂2

i,jF (u)| 6 CF |u|p−2,
∑
i |∂iF (u)| 6 CF |u|p−1 and |F (u)| 6 CF |u|p;

(ii)
∑
i,j ∂

2
i,jF (u)λiuiλjuj − (1 + δ)

∑
i ∂iF (u)λ2

iui > 0;
(iii) for every i there exists ūi > 0 such that ∂iF (ūiei) > 0;
(iv) ∂iF (u)ui 6 ∂iF (uiei)ui for every i.

The first three assumptions are traditional in the framework of variational methods.
The last one insures ui 6= 0 for all i. In this section, we will use the Mountain Pass
Algorithm 1.1 with the following peak selection. For any u = (u1, . . . , uk) ∈ A, we
consider the cone Cu := {(t1u1, . . . , tkuk) | ti > 0 for all i = 1, . . . , k}. The peak
selection ϕ for (Cu)u∈A is the map

ϕ : A → A : u 7→ ϕ(u)

such that ϕ(u) maximizes E on Cu. Under the additional hypothesis that
∑
i ∂iF (u)ui >

0, the second assumption plays the role of the traditional super-quadraticity and
implies that ϕ is well-defined as a peak selection. In fact, if u ∈ A verifies
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E ′(u)[(λ1u1, . . . , λkuk)] = 0 for any (λ1, . . . , λk) ∈ Rk then u is a strict local max-
imum of E on Cu. It implies the uniqueness of the global maximum of E on Cu.
Moreover, ϕ is continuous.

To see that assumption (2.12) is satisfied, it suffices to take E = {0} and,
for i = 1, . . . , k, Pi(u) = Pi

(
(u1, . . . , uk)

)
:= uiei, i.e., Pi is the projection onto

the ith component of u. Finally, let us quickly run through the assumptions of
Proposition 2.12:

(i) dist(Ranϕ, ∂A) > 0: see [18];
(ii) E ∈ C1(H; R): it follows from standard arguments;
(iii) E verifies the Palais-Smale condition on Ranϕ: see [18];
(iv) infu∈Ranϕ E(u) > −∞: actually E is bounded from below by 0 on Ranϕ

(see [18]).
In conclusion, Proposition 2.12 applies and gives the convergence, up to a subse-
quence, of the sequence (un) generated by the Mountain Pass Algorithm 1.1.

Numerical experiments. For the numerical experiments, we will consider the
following particular case of equation (1.6):

−∆ui(x) = µiu
3
i + ui

∑
j 6=i

βi,ju
2
j , x ∈ Ω,

ui(x) = 0, x ∈ ∂Ω,
i = 1, . . . , k, (3.1)

where βi,j = βj,i and Ω is a bounded domain of R2. This system is modeling a
competition between k populations. We will focus on the case Ω = (0, 1)2 and
k = 2. In this setting, the assumptions (3.2)–(3.2) stated above boil down to

µ1 > 0, µ2 > 0, and −√µ1µ2 6 β1,2 6 0. (3.2)

Let us remark that the condition
∑
i ∂iF (u)ui > 0 discussed in the previous section

is also verified in this range.
Let us now give the outcome of the algorithm for various choices of (µ1, µ2, β1,2).

The MPA will always start with the function u0 = (u0,1, u0,2) ∈ A where u0,1(x, y) =
u0,2(x, y) = xy(1 − x)(1 − y) and stops when the norm of the gradient is less
than 10−4.

First we choose (µ1, µ2, β1,2) = (1, 4,−1). The numerical solution (u1, u2) is
depicted on Figure 2 and some characteristics are given in Table 2. In this case,
the assumptions (3.2) are satisfied so the algorithm converges to a solution (u1, u2)
with u1 > 0 and u2 > 0 as expected. Notice also that the solutions u1 and u2 are
even w.r.t. axes of symmetry of the square.

As a second choice, we consider (µ1, µ2, β1,2) = (1, 4, 0.5). The MPA solution
(u1, u2) is depicted on Figure 3 and some characteristics are given in the second row
of Table 2. Despite the fact that the assumptions (3.2) are not satisfied anymore,
the solution is similar to that found in the first case. If we enlarge β1,2 further and
choose (µ1, µ2, β1,2) = (1, 4, 1.2), the algorithm still converges (see the third row
of Table 2), but this time, the second component vanishes (see Figure 4). What
happens is that, at the very first step, u2 = 0 and then the MPA essentially proceeds
as if the system was only consisting in the first equation.
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Figure 2. MPA solution for the system with (µ1, µ2, β1,2) = (1, 4,−1).
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Figure 3. MPA solution for the system with (µ1, µ2, β1,2) = (1, 4, 0.5)
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Figure 4. MPA solution for the system with (µ1, µ2, β1,2) = (1, 4, 1.2).

‖∇E(u)‖ # steps E(u) maxu1 maxu2

(1, 4,−1) 7.9× 10−5 11 88.4 8.6 5.4
(1, 4, 0.5) 5.4× 10−5 11 40.4 6.4 2.4
(1, 4, 1.2) 5.2× 10−5 11 39.9 6.6 0.0

Table 2. Characteristics of the solution to system (3.1).
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