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A MODEL PROBLEM FOR ULTRAFUNCTIONS

VIERI BENCI, LORENZO LUPERI BAGLINI

Abstract. In this article. we show that non-Archimedean mathematics (NAM),

namely mathematics which uses infinite and infinitesimal numbers, is useful to

model some physical problems which cannot be described by the usual math-
ematics. The problem which we will consider here is the minimization of the

functional

E(u, q) =
1

2

Z
Ω
|∇u(x)|2dx + u(q).

When Ω ⊂ RN is a bounded open set and u ∈ C2
0(Ω), this problem has

no solution since inf E(u, q) = −∞. On the contrary, as we will show, this
problem is well posed in a suitable non-Archimedean frame. More precisely,

we apply the general ideas of NAM and some of the techniques of Non Standard

Analysis to a new notion of generalized functions, called ultrafunctions, which
are a particular class of functions based on a Non-Archimedean field. In this

class of functions, the above problem is well posed and it has a solution.

1. Introduction

By non-Archimedean mathematics (NAM) we mean mathematics based on non-
Archimedean fields, namely ordered fields which contain infinite and infinitesimal
numbers. We believe that, in many circumstances, NAM allows to construct models
of the physical world in a very elegant and simple way. In the years around 1900,
NAM was investigated by prominent mathematicians such as Du Bois-Reymond
[7], Veronese [13], David Hilbert [10] and Tullio Levi-Civita [9], but then it has
been forgotten until the ’60s when Abraham Robinson presented his Non Standard
Analysis (NSA) [12]. We refer to Ehrlich [8] for a historical analysis of these facts
and to Keisler [11] for a very clear exposition of NSA (see also [1, 4])

The purpose of this article is to show that NAM is useful to model some Physical
problems which cannot be described by the usual mathematics even if they are
relatively simple.

The notion of material point is a basic tool in Mathematical Physics since the
times of Euler who introduced it. Even if material points do not exist, nevertheless
they are very useful in the description of nature and they simplify the models so
that they can be treated by mathematical tools. However, as new notions entered
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in Physics (such as the notion of field), the use of material points led to situations
which required new mathematics. For example, in order to describe the electric
field generated by a charged point, we need the notion of Dirac measure δq, namely
this field satisfies the following equation:

∆u = δq (1.1)

where ∆ is the Laplace operator.
In this article, we will describe a simple problem whose model requires NAM.

Let Ω ⊆ R2 be an open bounded set which represents a (ideal) membrane. Suppose
that in Ω is placed a material point P , which is left free to move.

Suppose that the point has a unit weight and the only forces acting on it are the
gravitational force and the reaction of the membrane. If q ∈ Ω is the position of
the point and u(x) represents the profile of the membrane, it follows that equation
(1.1) holds in Ω with boundary condition u = 0 on ∂Ω.

The question is: which is the point q0 ∈ Ω that the particle will occupy?
The natural way to approach this problem would be the following: for every q ∈ Ω,
the energy of the system is given by the elastic energy plus the gravitational energy,
namely

E(u, q) =
1
2

∫
Ω

|∇u(x)|2dx+ u(q). (1.2)

If the couple (u0, q0) minimizes E, then q0 is the equilibrium point. For every
q ∈ Ω, let uq(x) be the configuration when P is placed in q, namely the solution of
equation (1.1). So the equilibrium point q0 is the point in which the function

F (q) = E(uq, q) (1.3)

has a minimum.
In the classical context, this “natural” approach cannot be applied; in fact uq(x)

has a singularity at the point q which makes u(q) not well defined and the integral
in (1.2) to diverge. On the contrary, this problem can be treated in NAM as we will
show. In fact, since infinite numbers are allowed, we will be able to find a minimum
configuration for the energy (1.2).

To pursue this program, we apply the general ideas of NAM and some of the
techniques of NSA to a new notion of generalized functions which we have called
ultrafunctions (see [2]). Ultrafunctions are a particular class of functions based
on a superreal field R∗ ⊃ R. More exactly, to any continuous function f : RN → R
we associate in a canonical way an ultrafunction fΦ : (R∗)N → R∗ which extends
f ; but the ultrafunctions are much more than the functions and among them we
can find solutions of functional equations such as equation (1.1) which are defined
in every point of Ω∗ ⊂ (R∗)N . Thus, the energy ((1.2) is well defined for every
ultrafunction even if it might assume infinite values.

Now we list some of the peculiar properties of the ultrafunctions:

• the space of ultrafunctions is larger than the space of distributions, namely,
to every distribution T , we can associate in a canonical way an ultrafunction
TΦ (for details see [2]); in particular the Dirac measure can be represented
by an ultrafunction δq(x) and, for every ultrafunction u, we have that∫

u(x)δq(x)dx = u(q);
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• similarly to the distributions, the ultrafunctions are motivated by the need
of having generalized solutions and also by the need to model extreme
physical situations which cannot be described by functions defined in RN ;
however, while the distributions are no longer functions, the ultrafunctions
are still functions even if they have larger domain and range;
• unlike the distributions, the space of ultrafunctions is suitable for non linear

problems such as the one described above;
• if a problem has a unique classical solution u, then uΦ is the only solution

in the space of ultrafunctions;
• the main strategy to prove the existence of generalized solutions in the

space of ultrafunction is relatively simple; it is just a variant of the Faedo-
Galerkin method.

Before concluding the introduction, we refer to [3] and to [5] where other situa-
tions which require NAM are presented.

1.1. Notation. Let Ω be a subset of RN : then
• C(Ω) denotes the set of real continuous functions defined on Ω;
• C0(Ω) denotes the set of real continuous functions on Ω which vanish on
∂Ω;
• Ck(Ω) denotes the set of functions defined on Ω ⊂ RN which have continu-

ous derivatives up to the order k;
• Ck0 (Ω) = Ck(Ω) ∩ C0

(
Ω
)

;
• D(Ω) denotes the set of the infinitely differentiable functions with compact

support defined on Ω ⊂ RN ;
• H1(Ω) is the usual Sobolev space defined as the set of functions u ∈ L2(Ω)

such that ∇u ∈ L2(Ω);
• H1

0 (Ω) is the closure of D(Ω) in H1(Ω);
• H−1(Ω) is the topological dual of H1

0 (Ω).

2. Ultrafunctions

In this section we briefly recall the notion of Λ-limit and of ultrafunction which
have been introduced in [2].

2.1. The Λ-limit. The idea behind the concept of Λ-limit is the following: let U
denote a ”mathematical universe” (which will be precisely introduced in definition
(2.4)), and F the set of finite subsets of U, ordered by inclusion. The Λ-limit can
be thought as a way to associate to every net ϕ : F → R a limit limλ↑U ϕ(λ) that
satisfies a few properties of coherence.
These limits will be elements of a Non-Archimedean field K; since this leads to work
in such fields, we recall a few basic facts and definitions:

Definition 2.1. Let K be an ordered field. Let ξ ∈ K. We say that:
• ξ is infinitesimal if for all n ∈ N |ξ| < 1

n ;
• ξ is finite if there exists n ∈ N such as |ξ| < n;
• ξ is infinite if for all n ∈ N |ξ| > n.

Definition 2.2. An ordered field K is called non-Archimedean if it contains an
infinitesimal ξ 6= 0.

We are interested in fields that extend R:
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Definition 2.3. A superreal field is an ordered field K that properly extends R.

Since R is complete, it is easily seen that every superreal field contains infinites-
imal and infinite numbers.
In order to precise the notion of Λ-limit, we need to define the notion of ”math-
ematical universe”. For our applications, we take as mathematical universe the
superstructure on R:

Definition 2.4. The superstructure on R is

U = ∪∞n=0Un
where Un is defined by induction as follows:

U0 = R;

Un+1 = Un ∪ P (Un) .

Here P(E) denotes the power set of E. If we identify the couples with the
Kuratowski pairs and the functions and the relations with their graphs, U formalizes
the intuitive idea of mathematical universe.
We denote by F the set of finite subsets of U. Ordered with the relation of inclusion,
F becomes a direct set; following the usual nomenclature, we call net (with values
in E) any function ϕ : F → E.
Following [2], we introduce the Λ-limit axiomatically:

(A1) Existence Axiom. There is a superreal field K ⊃ R such that for every
net ϕ : F → R there exists a unique element L ∈ K called the “Λ-limit”
of ϕ. The Λ-limit will be denoted by

L = lim
λ↑U

ϕ(λ).

Moreover we assume that every ξ ∈ K is the Λ-limit of some net ϕ : F → R.
(A2) Real numbers axiom. If ϕ(λ) is eventually constant, namely ∃λ0 ∈ F :

∀λ ⊃ λ0, ϕ(λ) = r, then

lim
λ↑U

ϕ(λ) = r.

(A3) Sum and product Axiom. For all ϕ,ψ : F → R:

lim
λ↑U

ϕ(λ) + lim
λ↑U

ψ(λ) = lim
λ↑U

(ϕ(λ) + ψ(λ)) ;

lim
λ↑U

ϕ(λ) · lim
λ↑U

ψ(λ) = lim
λ↑U

(ϕ(λ) · ψ(λ)) .

Theorem 2.5 ([2, Theorem 7]). Axioms (A1)–(A3) are consistent.

We say that a net ϕ : F → U is bounded if there exists n ∈ N such that,

∀λ ∈ F , ϕ(λ) ∈ Un.
The notion of Λ-limit can be extended to bounded nets by induction on n: for

n = 0, limλ↑U ϕ(λ) is defined by the axioms (A1)–(A3); so by induction we may
assume that the limit is defined for n− 1 and we define it for a net ϕ : F → Un as
follows:

lim
λ↑U

ϕ(λ) =
{

lim
λ↑U

ψ(λ) : ψ : F → Un−1 and ∀λ ∈ Λ, ψ(λ) ∈ ϕ(λ)
}
.

A set that is a Λ-limit of sets is called internal. The Λ-limit provides a way to
extend subset of R and functions defined on (subsets of) R to K:
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Definition 2.6. Given a set E ⊂ R, let cE : F → U be the net such that for all
λ ∈ F cE(λ) = E. Then

E∗ := lim
λ↑U

cE(λ) =
{

lim
λ↑U

ψ(λ) : ψ(λ) ∈ E
}

is called natural extension of E.

Using the above definition we have that

K = R∗.

A function f can be extended by identifying f and its graph, and this extension
satisfies the following properties:

Theorem 2.7. For every sets A,B ∈ U, the natural extension of a function
f : A→ B is a function

f∗ : A∗ → B∗;
moreover for every ϕ : Λ ∩ P(A)→ A, we have that

lim
λ↑U

f(ϕ(λ)) = f∗
(

lim
λ↑U

ϕ(λ)
)
.

A property that is natural to ask for the Λ-limit of a net ϕ is that some properties
of the limit can be deduced from the properties of ϕ. This is ensured by the following
important theorem:

Theorem 2.8 (Leibnitz Principle). Let R be a relation in Un for some n ≥ 0 and
let ϕ,ψ : F → Un. If for all λ ∈ F , ϕ(λ)Rψ(λ), then(

lim
λ↑U

ϕ(λ)
)
R∗
(

lim
λ↑U

ψ(λ)
)
.

The last key concept that we need is that of hyperfinite set.

Definition 2.9. An internal set is called hyperfinite if it is the Λ-limit of finite
sets.

All the internal finite sets are hyperfinite, but there are hyperfinite sets which
are not finite, e.g. the set

R◦ := lim
λ↑U

(R ∩ λ)

is not finite. The hyperfinite sets are very important since, by Leibnitz Principle,
they inherit many properties of finite sets; e.g., R◦ has a maximum and a minimum
element, and every internal function (i.e. a function such that its graph is an
internal set)

f : R◦ → R∗

has a maximum and a minimum as well. Intuitively, hyperfinite sets can be thought
as having an hyperfinite number β of elements, where β is an element of N∗.
Given a set A ∈ U we denote by A◦ its hyperfinite extension:

A◦ = lim
λ↑U

(λ ∩A).

By this construction, if a hyperfinite set consists of numbers, or vectors, it is
possible to add all its elements. Let

A := lim
λ↑U

Aλ
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be a hyperfinite set; the hyperfinite sum of the elements of A is defined as follows:∑
a∈A

a = lim
λ↑U

∑
a∈Aλ

a.

In particular, if A = {a1, . . . , aβ} consists of β elements, with β ∈ N∗, we use the
notation ∑

a∈A
a =

β∑
j=1

aj .

2.2. Definition of the ultrafunctions. Let Ω be a subset of RN , and let VG(Ω)
be a vector space such that D(Ω) ⊆ VG(Ω) ⊆ C(Ω) ∩ L2(Ω). Let ϕVG(Ω) be the net
such that, for every λ ∈ F , ϕVG(Ω)(λ) = Vλ(Ω), where

Vλ(Ω) = span(VG(Ω) ∩ λ).

Definition 2.10. The set of ultrafunctions generated by VG(Ω) is

V (Ω) = lim
λ↑U

Vλ(Ω) = span(VG(Ω)◦);

any element u(x) of V (Ω) is called ultrafunction and VG(Ω) is called the gener-
ating space.

Observe that, being the Λ-limit of a net of vector spaces of finite dimensions,
V (Ω) is a vector space of hyperfinite dimension. Its dimension, that we denote by
β, is

β = limλ↑U dim(Vλ(Ω)).
The ultrafunctions are Λ-limits of continuous functions in Vλ(Ω), so they are

internal functions
u : Ω∗ → C∗.

(we recall that a function is called ”internal” if it is a Λ-limit of functions).
Notice that V (Ω) inherits an Euclidean structure that is the Λ-limit of the Eu-

clidean structure of every space Vλ(Ω) given by the usual L2(Ω) scalar product;
also, since V (Ω) is a subset of L2(Ω)∗, it can be equipped with the following scalar
product

(u, v) =
∫ ∗

Ω

u(x)v(x) dx.

where
∫ ∗

Ω
is the natural extension of the Lebesgue integral considered as a func-

tional. Being a vector space of hyperfinite dimension, V (Ω) admits an hyperfinite
orthonormal basis {ei(x) : i ≤ β}. Having fixed a basis, we can make two important
constructions in an explicit form. The first is the extension to V (Ω) of continuous
functions f(x) such that

∀v(x) ∈ V (Ω), −∞ <

∫ ∗
Ω

f∗(x)v(x)dx < +∞.

Let f(x) be such a function, and let Φ denote the orthogonal projection

Φ : C(Ω)∗ → V (Ω).

We call canonical extension of f(x) the ultrafunction

fΦ(x) = Φ(f∗(x)).
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Observe that fΦ = f∗ ⇔ f(x) ∈ VG(Ω) as expected, and that for every function
f(x) the following holds:

∀v(x) ∈ V (Ω),
∫ ∗

f∗(x)v(x)dx =
∫ ∗

fΦ(x)v(x)dx.

In terms of the basis {ei(x) | i ≤ β}, the operator Φ has the expression

Φ(f(x)) = fΦ(x) =
β∑
i=1

(∫ ∗
f∗(ξ)ei(ξ)dξ

)
ei(x). (2.1)

The second important construction regards the Dirac delta functions.

Theorem 2.11 ([2, Theorem 23]). Given a point q ∈ Ω, there exists a unique
function δq(x) in V (Ω) such that

∀v ∈ V (Ω),
∫ ∗

δq(x)v(x) dx = v(q). (2.2)

The ultrafunction δq(x) is called the Dirac ultrafunction in V (Ω) concentrated
in q. In terms of the basis {ei(x) : i ≤ β}, the δq has the expression

δq(x) =
β∑
i=1

ei(q)ei(x), (2.3)

which validity can be checked by a direct calculation.

Remark 2.12. We observe that, in the context of ultrafunctions, the Dirac ultra-
functions are actual functions, while in the classical theory of functions they are
distributions. For example, in the ultrafunction context it makes perfect sense to
consider objects like δq(x)2, δq(x)− 1, δq(x) · δq′(x) and so on.

3. Model problem

In this section we want to solve the problem described in the introduction via
a “natural” approach that can not be applied in the classical framework, while it
can be applied in the ultrafunction setting. We begin by describing the Dirichlet
problems in the framework of ultrafunctions.

3.1. Dirichlet problem. Let Ω be a bounded open set in RN , and consider the
Dirichlet problem

u ∈ C2
0(Ω),

−∆u = f(x) for x ∈ Ω.
(3.1)

When ∂Ω and f(x) are smooth, problem (3.1) has a unique solution. Otherwise,
in the classical Sobolev approach, problem (3.1) is transformed into the problem

u ∈ H1
0 (Ω);

−∆u = f(x).
(3.2)

Problem (3.2) has a unique solution whenever Ω is a bounded open set and f(x)
is in H−1(Ω); in this case the equation −∆u = f is required to be satisfied in a
weak sense:

−
∫

Ω

u∆ϕdx =
∫

Ω

fϕ dx ∀ϕ ∈ D(Ω).
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Also, the solution u(x) given by this process is not a function but an equivalence
class of functions defined a.e. in Ω. In the approach with ultrafunctions let V 2

0 (Ω)
be the space of ultrafunctions generated by C2

0 (Ω). Problem (3.1) can be rewritten
as follows:

u ∈ V 2
0 (Ω);

−∆Φu = f(x) for x ∈ Ω∗.
(3.3)

where ∆Φ = Φ ◦∆∗ : V 2
0 (Ω)→ V 2

0 (Ω).
Observe that now we are solving the problem in an hyperfinite space, and by

Leibnitz Principle it follows that there is an unique solution for every f(x) ∈ V 2
0 (Ω)

(for the details see [2, Theorem 27]). The idea of the proof is the following. The so-
lution can be constructed by first finding a solution uλ(x) in each finite dimensional
space (V 2

0 (Ω))λ = span(C2
0 (Ω) ∩ λ), and then taking the Λ-limit

u(x) = lim
λ↑U

uλ(x).

The solution u(x) is an ultrafunction defined for every x ∈ Ω∗ and, since

∀x ∈ ∂Ω, ∀λ ∈ F ∩ C2
0 (Ω), uλ(x) = 0,

it follows by Leibniz principle that for all x ∈ ∂(Ω∗), u(x) = 0.
So u(x) satisfies the pointwise boundary condition, a result that is not true in

the Sobolev approach. Finally, when problem (3.1) has a solution s(x) ∈ C2(Ω),
then

u(x) = s∗(x)

and, when problem (3.2) has a solution g(x) ∈ H1
0 (Ω), then we have that∫

Ω

g(x)v(x) dx ∼
∫ ∗

Ω

ū(x)v(x) dx ∀v(x) ∈ C2
0(Ω).

3.2. A solution by means of ultrafunctions. Now let us consider a minimiza-
tion problem inspired by the one which we have discussed in the introduction. Let
Ω ⊆ RN be an open bounded set; we want to find a function u defined in Ω (with
u = 0 on ∂Ω) and a point q ∈ Ω which minimize the functional

E(u, q) =
1
2

∫
Ω

|∇u(x)|2dx+ u(q).

It is well known that this problem has no solution in C2
0(Ω) and it makes no sense

in the space of distributions. On the contrary it is well defined and it has a solution
in V 2

0 (Ω). More exactly, we have the following result.

Theorem 3.1. For every point q ∈ Ω
∗
, the Dirichlet problem

∆Φu = δq for x ∈ Ω∗;

u(x) = 0 for x ∈ ∂Ω∗.

has a unique solution uq ∈ V 2
0 (Ω) whose energy E(uq, q) ∈ R∗ is an infinite number;

moreover there exists q0 ∈ Ω∗ such that

E(uq0 , q0) = min
q∈Ω

∗
E(uq, q) = min

q∈Ω
∗
, u∈V 2

0 (Ω)
E(u, q).
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Proof. First of all we observe that

min
q∈Ω

∗
E(uq, q) = min

q∈Ω
∗
, u∈V 2

0 (Ω)
E(u, q)

since every stationary point (u, q) of E(u, q) satisfies −∆Φ(u) = δq.
To minimize E(u, q) we use the Feado-Galerkin method, namely the finite di-

mensional reduction. First of all, for every λ ∈ F , we solve the following problem
in (V 2

0 (Ω))λ = span(C2
0 (Ω) ∩ λ):

u ∈ (V 2
0 (Ω))λ;∫

∆u v dx =
∫
δqv dx for every v ∈ (V 2

0 (Ω))λ.
(3.4)

This problem has a unique solution uq,λ(x) for every λ ∈ F ∩C2
0(Ω), since (V 2

0 (Ω))λ
is a nonempty finite-dimensional vector space. We show that this solution depends
continuously on q. Consider the linear operator

−∆λ : (V 2
0 (Ω))λ → (V 2

0 (Ω))λ

that associate to every u of (V 2
0 (Ω))λ the unique element −∆λ(u) such that

∀v ∈ (V 2
0 (Ω))λ,

∫
Ω

−∆λu v dx =
∫

Ω

−∆u v dx. (3.5)

So, −∆λu is the orthogonal projection of −∆u on (V 2
0 (Ω))λ. Observe that −∆λ

is a linear operator that acts on a finite dimensional vector space with ker(−∆λ) =
{0}, so it is invertible. Now, let e1(x), . . . , en(x) be an orthogonal base of (V 2

0 (Ω))λ,
and consider the function k : Ω → (V 2

0 (Ω))λ that associates to every point q ∈ Ω
the unique function δq,λ ∈ (V 2

0 (Ω))λ defined as follows:

δq,λ(x) =
n∑
i=1

ei(q)ei(x).

Observe that, by definition, ∀v ∈ (V 2
0 (Ω))λ we have∫

Ω

δq,λv dx =
∫

Ω

n∑
i=1

ei(q)ei(x)v(x) =
n∑
i=1

ei(q)
∫

Ω

ei(x)v(x) = v(q),

and, since v(q) =
∫

Ω
δq(x)v(x) dx, we have

∀v ∈ (V 2
0 (Ω))λ,

∫
Ω

δq,λ(x)v(x) dx =
∫ ∗

Ω

δq(x)v∗(x). (3.6)

Let uq,λ(x) be a solution to 3.4. Then, since −∆λ is invertible and (3.5) and (3.6)
hold, we have

uq,λ(x) = ∆−1
λ ◦ k(q).

Since, as observed, k and (−∆λ)−1 are continuous functions, it follows that uq,λ
depends continuously on q. Thus also

Fλ(q) = Eλ(uq, q) =
1
2

∫
Ω

|∇uq,λ(x)|2dx+ u(q)

is continuous. Since Ω is compact, Fλ(q) has a minimizer which we denote by qλ.
Now let

q = lim
λ↑U

qλ,
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uq = lim
λ↑U

uqλ,λ.

By Leibniz Principle, (uq, q) is the minimizer of E(u, q) in Ω
∗
. Let us see that

q ∈ Ω∗. By definition of Dirac ultrafunction we have that, for all q ∈ ∂Ω, δq = 0,
so uq(x) = 0 and E(uq, q) = 0, while E(uq, q) < 0 for every q ∈ Ω∗. So q ∈ Ω∗. �

Remark 3.2. A similar problem that can be studied with the same technique is
the problem of a electrically charged pointwise free particle in a box. Representing
the box with an open bounded set Ω ⊆ R3, denoting by uq the electrical potential
generated by the particle placed in q ∈ Ω, then uq satisfies the Dirichlet problem

u ∈ C2
0(Ω);

∆Φu = δq for x ∈ Ω.

The equilibrium point would be the point q0 ∈ Ω
∗

that minimizes the electrostatic
energy which is given by

Eel(q) =
1
2

∫
Ω

|∇uq(x)|2dx.

Notice that

Eel(q) =
∫

Ω

δq(x)uq(x)dx− 1
2

∫
Ω

|∇uq(x)|2dx,

namely, on the solution, the electrostatic energy is the opposite than the energy of
a membrane-like problem in R3. To solve this problem we notice that, by definition
of Dirac ultrafunction (2.2), we have that, for all q ∈ ∂Ω, δq = 0. So Eel(q) ≥ 0
and Eel(q) = 0 if and only if q ∈ ∂Ω. More precisely we have:

• Eel(q) is infinite if the distance between q and ∂Ω is larger than some
positive real number;
• Eel(q) is positive but not infinite for some q infinitely close to ∂Ω;
• Eel(q) = 0 if and only if q ∈ ∂Ω.
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