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A COMPUTATIONAL DOMAIN DECOMPOSITION APPROACH
FOR SOLVING COUPLED FLOW-STRUCTURE-THERMAL

INTERACTION PROBLEMS

EUGENIO AULISA, SANDRO MANSERVISI, PADMANABHAN SESHAIYER

Abstract. Solving complex coupled processes involving fluid-structure-ther-

mal interactions is a challenging problem in computational sciences and engi-

neering. Currently there exist numerous public-domain and commercial codes
available in the area of Computational Fluid Dynamics (CFD), Computational

Structural Dynamics (CSD) and Computational Thermodynamics (CTD). Dif-

ferent groups specializing in modelling individual process such as CSD, CFD,
CTD often come together to solve a complex coupled application. Direct nu-

merical simulation of the non-linear equations for even the most simplified

fluid-structure-thermal interaction (FSTI) model depends on the convergence
of iterative solvers which in turn rely heavily on the properties of the coupled

system. The purpose of this paper is to introduce a flexible multilevel algo-

rithm with finite elements that can be used to study a coupled FSTI. The
method relies on decomposing the complex global domain, into several local

sub-domains, solving smaller problems over these sub-domains and then gluing
back the local solution in an efficient and accurate fashion to yield the global

solution. Our numerical results suggest that the proposed solution methodol-

ogy is robust and reliable.

1. Introduction

Engineering analysis is constantly evolving with a goal to develop novel tech-
niques to solve coupled processes that arise in multi-physics applications. The effi-
cient solution of a complex coupled system which involves FSTI is still a challenging
problem in computational mathematical sciences. The solution of the coupled sys-
tem provides predictive capability in studying complex nonlinear interactions that
arise in several applications. Some examples include a hypersonic flight, where the
structural deformation due to the aerodynamics and thermal loads leads to a sig-
nificant flow field variation or MAVs (Micro Air Vehicles) where geometric changes
possibly due to thermal effects may lead to a transient phase in which the structure
and the flow field interact in a highly non-linear fashion.
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The direct numerical simulation of this highly non-linear system, governing even
the most simplified FSTI, depends on the convergence of iterative solvers which
in turn relies on the characteristics of the coupled system. Domain decomposi-
tion techniques with non-matching grids have become increasingly popular in this
regard for obtaining fast and accurate solutions of problems involving coupled pro-
cesses. The mortar finite element method [1, 2] has been considered to be a viable
domain decomposition technique that allows coupling of different subdomains with
nonmatching grids and different discretization techniques. The method has been
shown to be stable mathematically and has been successfully applied to a variety
of engineering applications [3, 4]. The basic idea is to replace the strong continuity
condition at the interfaces between the different subdomains by a weaker one to
solve the problem in a coupled fashion. In the last few years, mortar finite ele-
ment methods have also been developed in conjunction with multigrid techniques,
[5, 6, 7, 8]. One of the great advantages of the multigrid approach is in the grid
generation process wherein the corresponding refinements are already available and
no new mesh structures are required. Also, the multigrid method relies only on
local relaxation over elements and the solution on different domains can be easily
implemented over parallel architectures.

The purpose of this paper is to introduce a flexible multigrid algorithm that
can be used to study different physical processes over different subdomains involv-
ing non-matching grids with less computational effort. In particular, we develop
the method for a model problem that involves Fluid-Structure-Thermal interaction
(FSTI). In section 2, the equations of the coupled model are discretized via the
finite element discretization. In section 3, the multigrid domain decomposition al-
gorithm to solve the discrete problem is discussed. Finally in section 4 the method
is applied to a two-dimensional FSTI application.

2. Model and governing equations

Let the computational domain Ω ⊂ <2 be an open set with boundary Γ. Let
the fluid subdomain Ωf and the solid subdomain Ωs be two disjoint open sets with
boundary Γf and Γs, respectively and let Ω = Ω̄f ∪ Ω̄s.

Ω sΩ f Γsf

fΓ

Γ2Γ1

ΓsΓ

Ω f

fΓ

Γ2Γ1

Γsf

Ω s

Γs

Γ

Figure 1. Domain Ω = Ωf ∪ Ωs in two different configurations.

Figure 1 presents illustrations of two sample computational domains. Γsf is the
interior boundary between Ωf and Ωs, Γe

f = Γ ∩ Γf is the fluid exterior boundary
and Γe

s = Γ ∩ Γs is the solid exterior boundary. For simplicity let us assume that
the only boundary which can change in time is the interior boundary Γsf . In
agreement with this assumption both subdomains Ωf and Ωs are time dependent
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and constrained by
Ω̄f (t) ∪ Ω̄s(t) = Ω̄ . (2.1)

In the model problem, we employ the unsteady Navier-Stokes equations describing
the flow of a fluid in a region Ωf given by:

ρf
∂~u

∂t
− µf∆~u + ρf (~u · ∇)~u +∇p = ~f in Ωf × (0, T )

∇ · ~u = 0 in Ωf × (0, T )

~u = ~U on Γ1

where ρf and µf are the density and the viscosity and ~f is the body force. This is
coupled with the energy equation given by,

ρcp
∂T

∂t
− k∆T + ρcp(~u · ∇T ) = 0 in Ω× (0, T )

T = Θ on Γ2

that is solved over the whole domain Ω. In the solid region Ωs the approximate
Euler-Bernoulli beam equation is considered. In this approximation plane cross
sections perpendicular to the axis of the beam are assumed to remain plane and
perpendicular to the axis after deformation [9] and under these hypotheses only a
mono-dimensional model is required for the normal transverse deflection field w.
We will denote by Λ the beam axis and by (ξ, η) a local reference system oriented
with the ξ-axis parallel to Λ.

η

L

δ Λ

Γsf

ξ

Figure 2. Domain notation for the beam domain Ωs.

As shown in Figure 2, variables δ and L are the thickness and the length of the
beam respectively, the interior boundary Γsf is in (ξ,±δ/2) for 0 ≤ ξ ≤ L and in
(L, η) for −δ/2 ≤ η ≤ δ/2.

In Γ1 ⊂ Γe
f , Dirichlet boundary conditions are imposed for the velocity field ~u;

Neumann homogenous boundary conditions are considered on the remaining part,
Γe

f \ Γ1. Similarly, on Γ2 ⊂ Γ Dirichlet boundary conditions are imposed for the
temperature T , while Neumann homogenous boundary conditions are considered
on Γ \ Γ2. In ξ = 0 Dirichlet zero boundary conditions are imposed for the solid
displacement w and its derivatives. Conditions of displacement compatibility and
force equilibrium along the structure-fluid interface Γsf are satisfied.

Let ~U ∈ H1/2(Γ1) be the prescribed boundary velocity over Γ1, satisfying the
compatibility condition, and Θ ∈ H1/2(Γ2) be the prescribed temperature over Γ2.
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We are using Hk(Ω) to denote the space of functions with k generalized derivatives.
We set L2(Ω) = H0(Ω) and note that the derivation of these spaces can be extended
to non-integer values k by interpolation. The velocity, the pressure, the temperature
and the beam deflection (~u, p, T, w) ∈ H1(Ωf ) × L2(Ωf ) ×H1(Ω) ×H2(Λ) satisfy
the weak variational form of the unsteady fully coupled system given by the Navier-
Stokes system over Ωf ,

〈ρf
∂~u

∂t
,~vf 〉+ af

(
~u,~vf

)
+ bf

(
~vf , p

)
+ cf

(
~u; ~u,~vf

)
= −〈ρf ~g β(T − T0), ~vf 〉 ∀~vf ∈ H1(Ωf ) ,

(2.2)

bf

(
~u, rf

)
= 0 ∀rf ∈ L2(Ωf ) , (2.3)

〈~u− ~U,~sf 〉Γ1 = 0 ∀~sf ∈ H− 1
2 (Γ1) , (2.4)

〈~u− ẇ · n̂sf , ~ssf 〉Γsf
= 0 ∀~ssf ∈ H− 1

2 (Γsf ) , (2.5)

the energy equation over Ω

〈ρ cp
∂T

∂t
, v〉+ a

(
T, v

)
+ c

(
~u;T, v

)
= 0 ∀v ∈ H1(Ω) , (2.6)

〈T −Θ, s〉Γ2 = 0 ∀s ∈ H− 1
2 (Γ2) , (2.7)

and the Euler-Bernoulli beam equation over Ωs,

〈ρs δ ẅ, vs〉+ as

(
w, vs

)
= 〈p(~x(ξ,−δ

2
), t)− p(~x(ξ,

δ

2
), t), vs〉 ∀vs,∈ H2(Λ) , (2.8)

w(0, t) = 0 ,
∂w(0, t)

∂ξ
= 0 , ẇ(0, t) = 0 . (2.9)

In (2.2)-(2.3) the continuous bilinear forms are defined as

af (~u,~v) =
∫

Ωf

2µf D(~u) : D(~v) d~x ∀ ~u,~v ∈ H1(Ωf ), (2.10)

bf (~v, r) = −
∫

Ωf

r∇ · ~v d~x ∀ r ∈ L2(Ωf ) , ∀~v ∈ H1(Ωf ) (2.11)

and the trilinear form as

cf (~w; ~u,~v) =
∫

Ωf

ρf (~w · ∇)~u · ~v d~x ∀ ~w, ~u,~v ∈ H1(Ωf ) , (2.12)

where ρf and µf are the density and the viscosity of the fluid. The distributed force
in Eq. (2.2) is the Boussinesq approximation of the buoyancy force, where ~g is the
gravity acceleration, β the volumetric expansion coefficient of the fluid and T0 a
reference temperature. For T > T0 the fluid expands then the density decreases and
the buoyancy force points in the direction opposite to the gravity. When T < T0

both the buoyancy force and the gravity point in the same direction. In (2.6) the
bilinear form is defined as

a(T, v) =
∫

Ω

k∇T · ∇v d~x ∀T, v ∈ H1(Ω) (2.13)

and the trilinear form

c(~u;T, v) =
∫

Ω

ρ cp(~u · ∇T )v d~x ∀ ~u ∈ H1(Ω), T, v ∈ H1(Ω) , (2.14)
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where ρ, cp, and k are the density, the heat capacity and the heat conductivity,
respectively. If the integral is over the subdomain Ωf , the fluid physical properties
ρf , cpf

, and kf are used, otherwise over Ωs the solid properties ρs, cps , and ks are
used. Furthermore in the solid region the trilinear form c(~u, T, v) is identically zero,
since the velocity ~u is zero. In (2.8) the bilinear form is defined as

as(w, v) =
∫

Λ

EI
∂2w

∂ξ2

∂2v

∂ξ2
d~x ∀w, v ∈ H2(Λ) , (2.15)

where EI is the beam stiffness coefficient for unitary deepness. In the right hand
side of Eq. (2.8) the load due to the pressure difference between the two sides of the
beam is given. (2.8) represents the force equilibrium constraint between the two
subdomains Ωf and Ωs on the common boundary Γsf . For details concerning the
function spaces, the bilinear and the trilinear forms and their properties, one may
consult [9, 10, 11]. Equations (2.4), (2.7) and (2.9) represent the exterior Dirichlet
boundary condition for the velocity, the temperature and the displacement, respec-
tively. Eq. (2.5) represents the compatibility constraints between the velocity field
~u and the time derivative of the beam deflection w on Γsf . The unitary normal n̂sf

points in the same direction as the local η-axis. According to Eqs. (2.1) and (2.5),
changes in the fluid and solid subdomains Ωf and Ωs should be also considered.

2.1. Domain decomposition. Let us now introduce a non-conforming formula-
tion of the problem. Let the domain Ω be partitioned into m non-overlapping
sub-domains {Ωi}m

i=1 such that ∂Ωi ∩ ∂Ωj (i 6= j) is either empty, a vertex, or a
collection of edges of Ωi and Ωj . In the latter case, we denote this interface by Γij

which consists of individual common edges from the domains Ωi and Ωj . Let now
the fluid domain Ωf be partitioned into m non-overlapping sub-domains {Ωi

f}m
i=1,

where Ωi
f is given by Ωi ∩ Ωf . The fluid partition {Ωi

f}m
i=1 is obtained from the

domain partition {Ωi}m
i=1, subtracting the solid region from each subdomain Ωi,

then Ωi
f is an empty region if Ωi is a subset of Ωs. The common boundary between

two subregions Ωi
f and Ωj

f is denoted by Γij
f . The velocity, the pressure, the stress

vector, the temperature, the heat flux and the displacement (~ui, pi, ~τ ij , T i, qij , w) ∈
H1(Ωi

f )×L2(Ωi
f )×H−1/2(Γij

f )×H1(Ωi)×H−1/2(Γij)×H2(Λ) satisfy the following
system of equations

〈ρf
∂~ui

∂t
,~vi

f 〉+ af

(
~ui, ~vi

f

)
+ bf

(
~vi

f , pi
)

+ cf

(
~ui; ~ui, ~vi

f

)
+ 〈~τ ij , ~vi

f 〉Γij
f

= −〈ρf ~g β(T i − T0), ~vi
f 〉 ∀~vi

f ∈ H1(Ωi
f ) ,

(2.16)

bf

(
~ui, ri

f

)
= 0 ∀ri

f ∈ L2(Ωi
f ) , (2.17)

〈~ui − ~U,~si
f 〉Γi

1
= 0 ∀~si

f ∈ H−1/2(Γi
1) , (2.18)

〈~ui − ~uj , ~sij
f 〉Γij

f
= 0 ∀~sij

f ∈ H−1/2(Γij
f ) , (2.19)

〈~ui − ẇ · n̂sf , ~si
sf 〉Γi

sf
= 0 ∀~si

sf ∈ H−1/2(Γi
sf ) , (2.20)

〈ρ cp
∂T i

∂t
, vi〉+ a

(
T i, vi

)
+ c

(
~ui;T i, vi

)
+ 〈~qij , ~vi〉Γij = 0 ∀vi ∈ H1(Ωi) , (2.21)

〈T i −Θ, si〉Γi
2

= 0 ∀si ∈ H−1/2(Γi
2) , (2.22)

〈T i − T j , ~sij〉Γij = 0 ∀sij ∈ H−1/2(Γij) , (2.23)
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〈ρs δ ẅ, vs〉+ as

(
w, vs

)
= 〈p(~x(ξ,−δ

2
), t)− p(~x(ξ,

δ

2
), t), vs〉 ∀vs ∈ H2(Λ) ,

(2.24)

w(0, t) = 0 ,
∂w(0, t)

∂ξ
= 0 , ẇ(0, t) = 0 , (2.25)

for i = 1, 2, . . . ,m where Γi
1 = Γ1 ∩ ∂Ωi

f , Γi
2 = Γ2 ∩ ∂Ωi, the stress vector ~τ ij =

−µ∇~ui · n̂ij
f + pi n̂ij

f and the heat flux qij = −k∇T i · n̂ij , with nij
f and nij the

unitary external vectors normal to the subdomains Ωi
f and Ωi, respectively.

Note that in the continuous case, on the boundary Γij
f , the velocity vectors, ~ui

and ~uj are in the same space H1/2(Γij
f ), namely we have ~ui = ~uj pointwise. The

same remark can be applied to the stress vectors ~τ ij and ~τ ji, the temperatures T i

and T j and the heat fluxes qij and qji. In the rest of the paper, the variables ~u,
p and T , without the label i, should be considered as a collection of all the local
variables ~ui, pi and T i, where

~u(~x, t) = ~ui(~x, t) ∀ ~x ∈ Ωi
f ,

p(~x, t) = pi(~x, t) ∀ ~x ∈ Ωi
f ,

T (~x, t) = T i(~x, t) ∀ ~x ∈ Ωi ,

for i = 1, 2, . . . ,m. It is straightforward to prove that the system (2.16)-(2.25)
for the local state variables (~ui, pi, ~τ ij , T i, qij , w), for i = 1, 2, . . . ,m, implies the
system (2.2)-(2.9) for the global state variables (~u, p, ~τ , T, q, w) .

2.2. ALE formulation and time discretization. In order to account for the
changing nature of the fluid and solid subdomains, we wish to define a dynamic
mesh for the space discretization. However, to avoid extreme distortion, we choose
to move the mesh independently of the fluid velocity in the interior of Ωf . Such
a scheme, called arbitrary Lagrangian-Eulerian (ALE) formulation, is commonly
applied when studying fluid-structure interaction [12, 13, 14, 15]. Inside the solid
region each point is moving according to the time derivative of the displacement w.
The grid velocity ~ug can be any velocity satisfying the following constraints

~ug = 0 on Γ , (2.26)

~ug = ~u on Γsf , (2.27)

~ug(~x(ξ, η), t) = ẇ(ξ, t) n̂sf in Ωs . (2.28)

If the grid velocity is known as a function of time, the trajectory inside the domain
Ω of a generic point of coordinate ~x(t) can be traced by solving the integral equation

~x(t1) = ~x(t0) +
∫ t1

t0

~ug(~x(t′), t′) dt′ . (2.29)
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The Lagrangian derivative of the velocity field ~u(~x(t), t), evaluated along the point
trajectory, is given by

D ~u(~x(t), t)
D t

=
∂~u

∂t
+

∂~u

∂x1

dx1

dt
+

∂~u

∂x2

dx2

dt

=
∂~u

∂t
+

∂~u

∂x1
ug1 +

∂~u

∂x2
ug2

=
∂~u

∂t
+ (~ug · ∇) ~u .

(2.30)

Then the Eulerian derivative can be written as the difference between the La-
grangian derivative and the corresponding grid velocity advection term

∂~u

∂t
=

D ~u(~x(t), t)
D t

− (~ug · ∇) ~u . (2.31)

In the same way the Eulerian derivative of the temperature T can be expressed
as the difference between the Lagrangian derivative and the corresponding grid
velocity advection term

∂T

∂t
=

D T (~x(t), t)
D t

− ( ~ug · ∇)T . (2.32)

Using (2.31)-(2.32) in system (2.16)-(2.25), the Navier-Stokes and energy conserva-
tion equations become

〈ρf
D ~ui(~x(t), t)

D t
,~vi

f 〉+ af

(
~ui, ~vi

f

)
+ bf

(
~vi

f , pi
)

+ cf

(
~ui − ~ui

g; ~u
i, ~vi

f

)
+ 〈~τ ij , ~vi

f 〉Γij
f

= −〈ρf ~g β(T i − T0), ~vi
f 〉

(2.33)

〈ρ cp
D T i(~x(t), t)

D t
, vi〉+ a

(
T i, vi

)
+ c

(
~ui − ~ui

g;T
i, vi

)
+〉~qij , ~vi

f 〉Γij = 0 .

Given the initial velocity field ~u0 the Lagrangian derivatives can be discretized in
time using a simple first order integration method.

The structural equation is discretized in time by a using Newmark integration
scheme [9]. In this method the displacement and its time derivative are approxi-
mated according to

wt+1 = wt + ∆t ẇt +
1
2
∆t2 ẅ t+γ , (2.34)

ẇt+1 = ẇt + ∆t ẅ t+α , (2.35)

where

ẅ t+θ = (1− θ)ẅt + θẅt+1 , (2.36)

and α and γ are parameters that determine the stability and accuracy of the
method. We chose α = γ = 0.5, which is known as the constant-average accelera-
tion method. This technique is stable for each time step ∆t and conserves energy
for free vibration problem. The use of (2.34)-(2.36) in (2.24) gives the following
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approximation

〈ρs δ (a3 wt+1), vs〉+ as

(
wt+1, vs

)
− 〈(pt+1(~x(ξ,−δ

2
), t)− pt+1(~x(ξ,

δ

2
), t), vs〉

= 〈ρs δ(a3 wt + a4 ẇt + a5 ẅt), vs〉 ,

a3 =
2

γ ∆t2
, a4 =

2
γ ∆t

, a5 =
1
γ
− 1 ,

(2.37)
where all the terms in the right hand side, wt, ẇt and ẅt, are evaluated at the pre-
vious time step. Note that the calculation of the right hand side requires knowledge
of the initial conditions w0, ẇ0 and ẅ0. In practice, one does not have ẅ0. As an
approximation, it can be calculated from (2.24)

〈ρs δ ẅ0, vs〉 = 〈p0(~x(ξ,−δ

2
), t)− p0(~x(ξ,

δ

2
), t), vs〉 − as

(
w0, vs

)
,

for given initial displacement w0 and initial pressure p0. At the end of each time
step, the new velocity ẇt+1 and acceleration ẅt+1 are computed using

ẅt+1 = a3(wt+1 − ws)− a4 ẇt − a5 ẅt ,

ẇt+1 = ẇt + a2 ẅt + a1 ẅt1 ,

a1 = α ∆t, a2 = (1− α) ∆t .

(2.38)

3. System discretization

3.1. Multilevel domain decomposition. In this section a multilevel domain
decomposition methodology will be described for the whole domain Ω and the
corresponding variable T . The same consideration can be directly extended to the
fluid domain Ωf and the corresponding variables ~u and p.

Let us introduce a finite element discretization in each subdomain Ωi through
the mesh parameter h which tends to zero. Let {Ωi

h}m
i=1 be the partition of the

discretized domain Ωh. Now, by starting at the multigrid coarse level l = 0, we
subdivide each Ωi

h and consequently Ωh into triangles or rectangles by families of
meshes T i,0

h . Based on a simple element midpoint refinement different multigrid
levels can be built to reach the finite element meshes T i,n

h at the top finest multigrid
level l = n. At the coarse level, as at the generic multigrid level l, the triangulation
over two adjacent subdomains, Ωi

h and Ωj
h, obeys the finite element compatibility

constraints along the common interfaces Γij
h . For details on multigrid levels and

their construction one may consult [16, 17, 18].
By using this methodology we have constructed a sequence of meshes for each

multigrid level in a standard finite element fashion with compatibility enforced
across all the element interfaces built over midpoint refinements. In every subdo-
main Ωi

h the energy equations can be solved over a different level mesh, generating
a global solution over Ωh, consisting mesh solutions at different levels over different
subdomains. Let Ωi,l

h be the subdomain i where the solution will be computed at
the multigrid level l. It should be noted that the multigrid levels at which the so-
lution is computed over adjacent subdomains, Ωi,l

h and Ωj,k
h , may be different from

each other (l 6= k), with no compatibility enforced across the common interface Γij
h .

In Figure 3 an example of non-conforming mesh partitioning is given for a square
domain Ωh (Figure 3.a). The square is divided in four subdomains (Figure 3.b) and
3 conforming level meshes are considered (l = 0, 1, 2). The coarse mesh (Figure 3.c)
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Ωh

Ω1,0
h h

2,0Ω

3,2
hΩ Ω4,1

h

h
1Ω Ωh

2

3Ωh Ωh
4

Τ1,0
h

2,0Τ h

h
3,0Τ hΤ4,0

hΤ hΤ

Τ h hΤ

1,2 2,2

3,2 4,2

hΤ

Τ h hΤ

hΤ1,1 2,1

4,13,1

(a) (b)

(d) (e)

(c)

(f)

Figure 3. Domain (a), domain partitioning (b),conforming coarse
level mesh (c), midpoint refinement generation of two finer con-
forming level meshes (d),(e), non-conforming mesh (f).

is given, while the other two (Figures 3.d-e) are generated by successive midpoint
refinements. In Figure 3.f one possible non-conforming mesh configuration is il-
lustrated. Note that in Figure 3.f only across the common boundary Γ1,2

h finite
element compatibility is obtained since the two subdomain meshes Ω1,0

h and Ω2,0
h

are chosen at the same level (l = 0). On the other three common boundaries, Γ1,3
h ,

Γ2,,4
h and Γ3,4

h , compatibility is not enforced since different level meshes are consid-
ered between two adjacent subdomains. It should be noticed that on the common
boundaries the nodes of the coarsest grid are always included in the nodes of the
finest one. This is the key point for discretization and resolution of (2.16)-(2.25) and
it is always true for different level meshes generated by using midpoint refinements.

Finite element approximation spaces can be generated regularly, as function of
the characteristic length h over each multigrid level l resulting in different approxi-
mation spaces over the solution meshes Ωi,l

h . In the rest of the paper we denote with
labels i, l the solution over the corresponding subdomains, i.e., for the temperature
T i,l, and with no labels the extended solution over Ω, i.e. Th for the extended
temperature. Note that the temperature T i,l is computed over each Ωi,l

h at the
corresponding level l, but the extended solution Th on the top level n is defined
over all Ωh in a standard and regular way. There may be parts of the domain where
the solution is not computed at the top level but a projection operator In

l from the
coarse level l to the top level n can always be used to interpolate the solution over
Ωh. The extended temperature is therefore defined by

Th(~x, t) = In
l T i,l(~x, t) ,
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for all ~x ∈ Ωi
h, i = 1, 2, . . . ,m. We can easily generalize the notations and evaluate

the extended velocity and pressure by using the same operator In
l as

~uh(~x, t) = In
l ~ui,l(~x, t), (3.1)

ph(~x, t) = In
l pi,l(~x, t) , (3.2)

for all ~x ∈ Ωi
hf

, i = 1, 2, ..,m, where {Ωi
hf
}m

i=1 is the partition over the discrete
subdomains of Ωhf

. These extended functions take the same values over the coarse
and the top mesh at those nodes included in both meshes.

3.2. Non-conforming finite element discretization. Let Xl
h(Ωf ) ⊂ H1(Ωf ),

Sl
h(Ωf ) ⊂ L2(Ωf ), Rl

h(Γf ) = Xl
h|Γf

⊂ H1/2(Γf ), X l
h(Ω) ⊂ H1(Ω) and Rl

h(Γ) =
X l

h|Γ ⊂ H1/2(Γ) be the approximation spaces. At each level mesh l we chose the
families of finite element spaces to satisfy appropriate stability and approximation
properties [19, 20] that will allow us building a regular conforming approxima-
tion. We indicate with Pl

h(Γf ) ⊂ H−1/2(Γf ) the dual space of Rl
h(Γf ) and with

P l
h(Γ) ⊂ H−1/2(Γ) the dual space of Rl

h(Γ). The beam space discretization is ob-
tain by choosing the family of Hermitian elements, Zh(Λ) ⊂ H2(Λ), for which the
interpolation functions are continuous with non-zero derivatives up to order two.

Let J i be the set of the j-indices of all the neighboring regions Ωj surrounding
the subdomain Ωi and J i

f be the set of the j-indices of all the neighboring regions
Ωj

f surrounding the subdomain Ωi
f . Let (~ui,l, pi,l, ~τ ij,l, T i,l, qij,l, w) be in Xl

h(Ωi
f )×

Sl
h(Ωi

f ) × Pl
h(Γij

f ) × X l
h(Ωi) × P l

h(Γij) × H2(Λ) be the velocity, the pressure, the
stress vector, the temperature, the heat flux and the beam displacement over the
corresponding subdomains. The variable state (~ui,l, pi,l, ~τ ij,l, T i,l, qij,l, w) satisfies
the Navier -Stokes discrete system

〈ρf
D ~ui,l(~xh, t)

D t
,~vi,l

f 〉+ af

(
~ui,l, ~vi,l

f

)
+ bf

(
~vi,l

f , pi,l
)

+ cf

(
~ui,l − ~ui,l

g ; ~ui,l, ~vi,l
f

)
+ 〈~τ ij,l, ~vi,l

f 〉Γij
fh

= −〈ρf ~g β(T i,l − T0), ~v
i,l
f 〉 ∀~vi,l

f ∈ Xl
h(Ωi

f ) ,

(3.3)

bf

(
~ui,l, ri,l

f

)
= 0 ∀ri,l

f ∈ L2(Ωi
f ) , (3.4)

〈~ui,l − ~U,~si,l
f 〉Γi

1h
= 0 ∀~si,l

f ∈ Pl
h(Γi

1) , (3.5)

〈~ui,l − ~uj,k, ~sij,l
f 〉Γij

fh

= 0 ∀~sij,l
f ∈ Pl

h(Γij
f ) , (3.6)

〈~ui,l − ẇh · n̂sf , ~si,l
sf 〉Γi

sfh

= 0 ∀~si,l
sf ∈ Pl

h(Γi
sf ) , (3.7)

over Ωi
f for all j ∈ J i

f and i = 1, 2, . . . ,m, the energy equation

〈ρ cp
D T i,l(~xh, t)

D t
, vi,l〉+ a

(
T i,l, vi,l

)
+ c

(
~ui,l − ~ui,l

g ;T i,l, vi,l
)

+ 〈~qij,l, ~vi,l〉Γij
h

= 0 ∀vi,l ∈ X l
h(Ωi) ,

(3.8)

〈T i,l −Θ, si,l〉Γi
2h

= 0 ∀si,l ∈ P l
h(Γi

2) , (3.9)

〈T i,l − T j,k, ~sij,l〉Γij
h

= 0 ∀sij,l ∈ P l
h(Γij) , (3.10)
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over Ωi for all j ∈ J i
f and i = 1, 2, . . . ,m, and the discrete Euler-Bernoulli beam

equation

〈ρs δ ẅh, vsh
〉+ as

(
wh, vsh

)
= 〈ph(~xh(ξ,−δ

2
), t)− ph(~xh(ξ,

δ

2
), t), vsh

〉 vsh
∈ Z(Λ) ,

(3.11)

wh(0, t) = 0 ,
∂wh(0, t)

∂ξ
= 0 , ẇh(0, t) = 0 . (3.12)

over Λ. On the shared boundaries Γij
fh

the stress vectors, ~τ ij,l and ~τ ji,k, belong to
the two different spaces Pl

h and Pk
h, and their equivalence should be considered in

the weak form by

〈~τ ij,l, ~vi,l〉Γij
fh

= −〈~τ ji,k, ~vi,l〉Γij
fh

. (3.13)

Similarly qij,l and qji,k belong to the two different spaces P l
h and P k

h , and

〈qij,l, vi,l〉Γij
h

= −〈qji,k, vi,l〉Γij
h

. (3.14)

Since different level meshes are generated by using midpoint refinement the bound-
ary vector spaces are nested, with Rl

h ⊆ Rk
h and Rl

h ⊆ Rk
h, assuming l ≤ k. Then

the traces of the test functions ~vi,l and vi,l on the coarsest boundary can be decom-
posed as a linear combination of traces of test functions ~vj,k

a and vj,k
a on the finest

boundary. Under these hypotheses, Eqs. (3.13) and (3.14) become

〈~τ ij,l, ~vi,l〉Γij
f

= −〈~τ ji,k,
∑

a

wa ~vj,k
a 〉Γji

fh

:= −〈~τ ji,k,Rl
k~v

j,k〉Γji
fh

, (3.15)

〈qij,l, vi,l〉Γij
h

= − < qji,k,
∑

a

wa vj,k
a 〉Γji

h
:= −〈qji,k,Rl

kvj,k〉Γji
h

, (3.16)

which means that in (3.3) and (3.8) the Lagrange multipliers 〈~τ ij,l, ~vi,l〉Γij
f

and

〈qij,l, vi,l〉Γij
h

can be always discretized and computed on the finest grid available
on the boundary and then restricted over the coarsest one. Eqs. (3.15) and (3.16),
define the restriction operator Rl

k from the finest to the coarsest vector space.
In (3.6) and (3.10) the equalities between ~ui,l and ~uj,k on the boundary Γij

fh
, and

between T i,l and T j,k on the boundary Γij
h , must be considered in their weak form

since the velocities and the temperatures belong to the two corresponding different
vector spaces Rl

h, Rk
h and Rl

h, Rk
h respectively. Assuming l ≤ k, the spaces are

nested with Rl
h ⊆ Rk

h and Rl
h ⊆ Rk

h. The weak equations may turn into pointwise
equations if the velocities or the temperatures belong to the coarsest spaces Rl

h or
Rl

h, respectively.

3.3. Solution strategy. Although the equation system (3.3)-(3.12) is fully cou-
pled, its solution is achieved with an iterative strategy, where the three systems of
equations are solved separately and in succession, always using the latest informa-
tion, until convergence is reached. An iterative multigrid solver is used for both the
Navier-Stokes and the energy equation systems since the number of unknowns could
be quite large. For the solution of the beam equation a direct LU decomposition is
used.

At each iteration, the linearized Navier-Stokes system is assembled, using the
latest updated value of the temperature T and the latest updated value of the
grid velocity ~ug in the nonlinear term cf

(
~u− ~ug; ~u,~vf

)
. In the nonlinear term, the
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first of the two velocity ~u is considered explicitly. On the boundary Γsf Dirichlet
boundary conditions are imposed according to the latest updated value of the beam
displacement time derivative ẇ. A V-cycle multigrid algorithm is used to obtain a
new update solution for the pressure p and the velocity ~u. Then the energy equation
system is assembled, using the previously evaluated velocity and grid velocity in the
advection term c

(
~u−~ug;T, v

)
. A multigrid V-cycle is solved and updated values of

the temperature T are found. Finally the beam equation system is built, where the
load field is computed using the previous evaluated pressure p. Since the number of
the subdomain unknowns is limited an direct LU decomposition solver can be used
for computing the new displacement w and its time derivatives. The grid velocity
is then computed according to Eqs. (2.26)-(2.28) and the grid nodes are advected
along the corresponding characteristic lines. The whole procedure is repeated until
convergence is finally reached.

The Navier-Stokes system (3.3)-(3.7) is solved using a fully coupled iterative
multigrid solver [21] with a Vanka-type smoother. Multigrid solvers for coupled
velocity/pressure system compute simultaneously the solution for both the pressure
and the velocity field, and they are known to be one of the best class of solvers for
laminar Navier-Stokes equations (see for examples [17, 18]). An iterative coupled
solution for the linearized discretized Navier-Stokes system requires the solution of
a large number of sparse saddle point problems. In order to optimally solve the
equation system (3.3)-(3.7), involving the unknown stress vector ~τ ij , we use the
block Gauss-Seidel method, where each block consists of a small number of degrees
of freedom (for details see [18, 21, 22, 23, 24]). The characteristic feature of this
type of smoother is that in each smoothing step a large number of small linear
systems of equations has to be solved. Each block of equations corresponds to
all the degrees of freedom which are connected to few elements. For example, for
conforming finite elements, the block may consist of all the elements, containing
some pressure vertices. Thus, a smoothing step consists of a loop over all the
blocks, solving only the equations involving the unknowns inside the elements that
are around the considered pressure vertices. The velocity and pressure variables
are updated many times in one smoothing step.

The Vanka smoother employed in our multigrid solver involves the solution of
a small number of degrees of freedom given by the conforming Taylor-Hood finite
element discretization used. For this kind of element the pressure is computed only
at the vertices while the velocity field is computed also at the midpoints. Over the
internal part of the generic subregion Ωi

fh
, where there are no boundary elements,

our Vanka-block consists of an element and all its neighboring elements. We solve
for all the degrees of freedom inside the block, with boundary condition taken on
the external boundaries.

For example, in Figure 4, our block consists of four vertex points and 12 mid-
points to be solved, for a total of 36 unknowns. We have also used different blocks
with different performances but we have found this particular block to be very ro-
bust and reliable even at high Reynolds numbers. Examples of computations with
this kind of solver can be found in [5, 6, 17, 18].

The fact that the solution is searched locally allows us to solve for ~τ ij only near
the common boundary Γij

fh
, where different level meshes are coupled, and to solve

inside the subdomains by using Vanka smoother. When solving block elements near
the common boundary, distinction should be made if the block element is inside
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a b

Figure 4. Unknowns (black circles) and boundary conditions
(white circles) are shown for both the velocity field ~uh (a) and
the pressure ph (b) for our particular Vanka-block smoother.

the coarse or the fine subregion. Let us consider the two adjacent subdomains Ωi,l
fh

and Ωj,k
fh

with l ≤ k. We have already seen, that in our particular discretization,
where the nodes of the coarsest mesh are included in the finest one, the traces of
the two velocities ui,l and uj,k are equal and belong to the coarsest vector spaces
Rl

h. Thus, when solving boundary blocks over the finest subregion Ωj,k
fh

, we can
use the standard solution technique imposing the trace of the coarsest velocity ui,l

as Dirichlet boundary condition for the block equation system. We have also seen
that each Lagrange multiplier in the coarsest system can be represented has a linear
combination of Lagrange multipliers of the finest system, thus when solving over
boundary blocks on the coarsest subregion Ωi,l

fh
, the Lagrange multiplier term in

(3.3) is replaced with (3.15), where the stress tensor vector ~τ ji,k is evaluated over
the finest subdomain, by using the pressure, pj,k, and velocity field, ~vj,k. In this
way a constant and reciprocal exchange of information between the two subdomains
is ensured.

In order to increase the convergence rate, the considered Vanka-type smoother
has been coupled with a standard V-cycle multigrid algorithm. The multigrid does
not change the nature of the solver, but allows the information to travel faster
among different parts of the domain. A rough global solution is evaluated on the
coarsest mesh l = 0 and projected on the finer grid l = 1, where Vanka-loops are
performed improving its details. The updated solution is then projected on the
mesh level l = 2 and improved. The procedure is repeated until the finest mesh
is reached. Solving the equation system in fine meshes improves solution details,
but at the same time reduces the communication speed over the domain. However,
this does not affect the global convergence rate since a considerable information
exchange among different parts of the domain has been already done when solving
in coarser mesh levels. The analysis of the convergence of the Vanka type multigrid
solvers and the associated invertibility of the discrete system for the Navier-Stokes
can be found in [25, 5]. All these considerations can be directly extended to the
energy equation solver, where the same element block is considered. For an interior
block, as in Figure 4-a, the only unknowns are the values of the temperature at
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the vertices and in the midpoints, for a total of 12 variables, while for a boundary
block the heat flux qij,l and qji,k should be also solved over the common boundary
Γij

h .

4. Numerical Experiments

In this section we test the FSTI non-conforming multilevel formulation and its
solution strategy.

Ω s

Ω f

Γsf

_     _      _
Ω = Ω  + Ωf s

fΓ = Γ  + Γ  − Γs sf

x

y

Figure 5. Computational domain.

As shown in Figure 5 let the rectangular region Ω = [4 m] × [2m] be the com-
putational domain with boundary Γ and Ωf and Ωs be the fluid and the solid
subdomain respectively. The solid region Ωs consists of a beam, clamped at the
point (1 m, 0), with length equal to 0.5m and thickness equal to 0.04m. The fluid
and the solid boundaries, Γf and Γs are the contours of the two shaded regions and
their intersection is labeled by Γsf .

On the left side of the domain inflow boundary conditions are imposed for the
velocity field ~u = (u1, u2) with parabolic profile u1 = 0.1 y (2− y)m/s and u2 = 0.
On the right side of the domain outflow boundary conditions are imposed while on
the remaining part of the boundary non-slip conditions are set. The temperature
is set equal to zero in the inlet region and to 100oC on the solid boundary where
the beam is clamped. Adiabatic conditions are imposed on the rest of the domain.
The initial conditions for both the temperature and the velocity field are zero.

The fluid and the solid properties are chosen in order to produce a large defor-
mation of the beam. This choice implies strong interactions among all the parts
of the system and test the reliability of the solver in challenging situations. In
the Navier-Stokes system, the fluid density ρf , the viscosity µf , the volumetric
expansion coefficient β and the reference temperature T0 are equal to 100kg/m3,
0.01Kg/m s, 0.01 K−1 and 0oC, respectively. In the temperature equation the solid
density ρs is 200kg/m3, while the heat capacity cp and the heat conductivity K, are
100 J/Kg K and 10W/m K in the fluid region, and 10 J/Kg K and 400W/m K in
the solid region respectively. The stiffness for unitary length of the beam is equal
to 1kg m2/s2.

In all the simulations the same time step ∆T = 0.01 s is used, for a total of 500
time steps (5 seconds). Only the four level meshes, l0,l1,l2 and l3, are considered
and in Figure 6, the two different level meshes, l0 and l3, are shown.
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Figure 6. The coarse mesh level l0 (left) and finest level mesh l3 (right).

The coarse mesh level l0 has 207 elements, while the mesh level l3 obtained after
three consecutive midpoint refinements has 13248 elements. The one-dimensional
mesh on the beam axis follows the same midpoint refinement algorithm used for the
two-dimensional computational domain Ω. On the coarse level l0 three elements
are available, while on the fine grid l3 after 3 refinements, the number of elements
becomes 24. Since the number of unknowns is quite small, (24 + 1) × 2 = 50, the
solution of the beam equation is always evaluated on the finest mesh using a direct
LU decomposition.

The results obtained with our coupled model (case B) are first compared with
the results obtained for the same geometry with a rigid beam, EI = ∞, and with
zero buoyancy force, β = 0 (case A). All the computations are done at the time
t = 5 s and over the finest level l3.

Figure 7. Beam bending and grid distortion (left); velocity field
map (right).

In Figure 7 on the left, the beam bending and the corresponding grid deformation
are displayed, showing the strong influence of the pressure load on the beam shape.
Figure 7 on the right shows the velocity field map and clearly indicates that the
stationary solution is not reached since new vortices are constantly created and
advected towards the outflow region.

In Figure 8 the velocity field (top), the pressure (bottom-left) and the tempera-
ture (bottom right) profiles, evaluated over the section y = 0.5 for 0 ≤ x ≤ 4, are
shown for the two cases EI = ∞, β = 0 (case A) and EI = 1, β = 0.01 (case B).
The combined effect of the beam deflection and the buoyancy force modify consid-
erably all the profiles, pointing out how sensitive is the interaction among all the
parts of the system.

The number of unknowns (velocity field, pressure, temperature and displace-
ment), involved in the computation at the mesh level l3 is quite large, approxima-
tively 94000. However Figure 7 on the right shows that the only part of the system,
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Figure 8. Velocity field (top), pressure (bottom-left) and temper-
ature (bottom right) profiles evaluated along the section y = 0.5
for 0 ≤ x ≤ 4 at the time t = 5.

subjected to high vorticity is the region downstream of the beam. In the region
upstream of the beam and in the upper part of the domain, the velocity field is
almost stationary.

For this reason we remark that more efficient computations can be obtained if
the solution is evaluated at the mesh levels l2 or l1 in parts of the domain where
the mesh level l3 is not needed. The domain Ω is splitted in three subdomains Ω1,
Ω2, Ω3, and three different non-conforming meshes are built. The subdomains and
the three different non-conforming partitions are shown in Figure 9.

In the subdomain Ω3 which is the solid domain Ωs, the mesh level l1 is always
used. In the first configuration, P1 (top-right), the mesh levels, l2 and l1, are con-
sidered for the subregions Ω2 and Ω1, respectively. The different couplings of level
meshes, l3-l2 and l3-l1 are used in the same subregions for the second configuration
P2 (bottom-left), and the third configuration P3 (bottom-right). The numbers of
nodes is greatly reduced for all the three non-conforming configurations. In partic-
ular approximatively 11000, 39000 and 28000 are the new numbers of unknowns for
the new configurations P1 P2 and P3, respectively. In Figure 10, the oscillation of
the beam extreme point is compared for the three conforming meshes l0, l1 and l3,
and for the 3 non-conforming meshes P1, P2 and P3. The results show clear advan-
tages of the non-conforming discretizations over the conforming ones. Obviously
the path obtained with the finest mesh l3 can be considered the most accurate. The
l2 path is very close to the l3 in the first second but differences appear as soon as
the time increases. The l1 path is always below the l3, showing too much stiffness
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Ω 1

Ω 3 Ω 2

Figure 9. Domain decomposition (top-left) and the different con-
figurations P1 (top-right), P2 (bottom-left) and P3 (bottom right).
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Figure 10. Oscillations of the beam extreme point for different
conforming and non-conforming meshes.

in the beam response. The beam oscillation obtained with the non-conforming con-
figuration P1 perfectly overlaps the result obtained with the conforming mesh l2,
and the result obtained with the configuration P2 perfectly overlaps the result in
l3. It is possible to find very small differences between the path in l3 and the path
in P3, where there are two mesh levels between the two adjacent regions Ω1 and
Ω2. These results clearly indicate how one can use the non-conforming multilevel
partitioning to preserve the same accuracy in regions of interest, reducing at the
same time the degree of freedom in other parts of the domain. It should be noticed
that the comparisons have been tested on a beam displacement oscillation, which
is indirectly related to the multilevel domain partitioning. The sensitivity of the
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beam’s response to the different domain decompositions points out again that the
system is fully coupled.

Conclusions. In this paper a multigrid approach applied to the domain decompo-
sition for solving Fluid-Structure-Thermal interaction problems has been presented
and tested. Our computational results clearly indicate that the domain decomposi-
tion herein used in conjunction with the multigrid method is a robust and reliable
technique for solving FSTI systems. The method developed in this paper leads to
a fast and flexible algorithm to compute solutions in different domains, over differ-
ent multigrid levels efficiently. Moreover in [5], we had tested the performance of
the computational methodology presented in a parallel environment. The results
are very encouraging and the method has prompted us to investigate more open
and challenging questions involving coupled problems with fluid-structure-thermal
interaction that naturally arise in engineering and science.
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