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EXISTENCE OF GLOBAL SOLUTIONS TO CAUCHY
PROBLEMS FOR BIPOLAR NAVIER-STOKES-POISSON
SYSTEMS

JIAN LIU

ABSTRACT. In this article, we consider the Cauchy problem for one-dimensional
compressible bipolar Navier-Stokes-Poisson system with density-dependent vis-
cosities. Under certain assumptions on the initial data, we prove the existence
and uniqueness of a global strong solution.

1. INTRODUCTION

Bipolar Navier-Stokes-Poisson (BNSP) has been used to simulate the transport
of charged particles under the influence of electrostatic force governed by the self-
consistent Poisson equation. In this paper, we consider the Cauchy problem for
one-dimensional isentropic compressible BNSP with density-dependent viscosities,

pr+ (pu>$ =0,
(pu)e + (pu?)s + p(p)s = pPu + (1(p)tis)a,
ny + (nv)y =0, (1.1)
(nv) + (nUQ)z +p(n)e = —n®, + (u(n)ve)a,
Qpp =p—n.
Here p(z,t) > 0, n(x,t) > 0 denote the charge densities, u, v the charge velocities,
® the electrostatic potential, p(p) = p” and p(n) = n?, v > 1 are the pressure of
charge, such as electron and ion, and p(p), pu(n) are the viscosity coefficients.
There have been extensive studies on the existence and asymptotic behavior of
global solutions to the unipolar Navier-Stokes-Poisson system (NSP). The existence
of global weak solutions to NSP with general initial data was proved in [4} [12] 23].
The quasi-neutral and some related asymptotic limits were studied in [3} [5, [10].
When the Poisson equation describes the self-gravitonal force for stellar gases, the
existence of global weak solution and asymptotic behavior were also investigated
together with the stability analysis, we refer the reader to [7] and the references
therein. The results in [6] 19, 21] imply that the electric field affects the large time

behavior of the solution and give rise to different asymptotic behaviors of Navier-
Stokes and NSP. In addition, Hao-Li [§] proved the well-posedness of NSP in the
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Besov space. Li-Matsumura-Zhang [I5] proved the existence and the optimal time
convergence rates of the global classical solution. Recently, Bie-Wang-Yao in [2]
proved optimal decay rate in the critical LP framework.

For bipolar Navier-Stokes-Poisson system , there are also abundant results
concerning the existence and asymptotic behavior of the global weak solution. Li-
Yang-Zou [14] proved optimal L? time convergence rate for the global classical
solution for a small initial perturbation of the constant equilibrium state. The
optimal time decay rate of global strong solution is established in [9, 24]. Liu-
Lian in [I7] proved global existence of solution to free boundary value problem.
Lin-Hao-Li [16] studied the existence and uniqueness of global strong solutions in
hybrid Besov spaces with the initial data close to an equilibrium state. Wu-Wang
[22] proved pointwise estimates for BNSP system. As a continuation of the study
in this direction, in this paper, we will study the Cauchy problem for BNSP in
one-dimension.

The rest of this paper is as follows. In section 2, we state the main results of this
article. In section 3, we give some a-priori estimates for the solution. In section 4,
we prove the existence and uniqueness of global strong solutions.

2. MAIN RESULT

In this article, we consider the existence and uniqueness of global solutions for
the Cauchy problem (1.1) in the whole space R. Assume p(p) = p®, p(n) = n®,
then (|1.1) can be rewritten as

pr + (pu)z =0,
(pu)i + (pu®)e + (P7)x = pPu + (0 s )a
ng + (nv), =0,
(nv) + (nv?) g + () = —n®y + (N%Vy)z, 2.1)
Pow =p—n,
O, (£o0,t) =0,
(p,u,n,v)(x,0) = (po, uo; N0, v0)(2), = € R,
(po, to, no, vo)(+00) = (p,0,7,0).
We assume the initial data satisfy
(po — P> uo,no — M, v) € H'(R),
0<pr<po(x)<p2, 0<ny < ng(x) < ng, (2.2)

Py = /x (po — mo)(y) dy € L*(R),

— 00

where p1,p2,n1,n92,p and 7 are positive constants. We define

1 1 B _
Eo =t 3 / poup dz + —— ((pg —p") =" (po — p)) da,
2 Jr v—1Jr

1 1
Egpy =: = / novg do + 7/ ((ng —7) — " Y (ng — ﬁ)) dz,
2 Jr Y—1Jr

1 11, o \2 1 _ _ _
By =: */PO(UO'F*POI(PO):J:) dr + — ((pg—/ﬂ)—vﬁ’ 1(,Oo—p)) dz,
2 Jr @ vy—1Jr
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1 1 2 1
Eip =: = / ng (vo + —ngl(ng)x) de + —— ((ng)Y —7") — " H(ng — ﬁ)) dz,
2 R « Y — 1 R

1 1
Ep =: §/<I>iodz+E01+E027 E, = §/¢iod$+E11+E12-
R R

Then, the main result of this paper can be stated as follows.

Theorem 2.1. Let v > 1, a > 0 and o # 1/2. Assume that the initial data

1

satisfies for 0 < a < 1/2, and with Ey/*(Ey + Ey)Y? < s P23
for a > 1/2. Then there exist positive constants p+ and ny with p_ < p < p4,
n_ < 7 < ny so that the unique global strong solution (p,n,u,v, ®,,) to erists
and satisfies

O0<p_<p<pr,0<n_<n<nt,
u,v € L([0,T); H' (R)) N L*([0, T]; H*(R)),
Py Uz N, v € L([0,T]; L2(R)) N L2([0, TT; L*(R)),
P ug, g, v, € L2([0,T); HY(R)), ®, € L>([0,T); H*(R)).

3. A-PRIORI ESTIMATES

The proof of Theorem consists of the basic a-priori estimates and regular
analysis. Using arguments similar to those in [I3], we establish the following lem-
mas.

Lemma 3.1. Let T > 0, and (p,n,u,v,®;) with p > 0, n > 0 be a solution to
(2.1) for t € [0, T] under the conditions in Theorem (2.1, Then

1 2 2 2 1 A AN e N
/RQ(pu +nv +<I>z)dx+7_1 IR((p p) =" (p p))dx
1 ¢ :
+ — ((n7 —n") =y Hn - ﬁ)) dz + / / (po‘ui + n"‘vi) dxds (3.1)
o Jr

y—1Jr
= Ep.

Proof. Taking the product of (2.1) with u and integrating on R, and using (2.1));
and integrating by parts, we have

1d
oy pu* dx+/(p7)mudx+/p“ui dxz/ptfbdw, (3.2)
R R R R
where
Y d 1 Y _ Y T v -
R(P )szCE:a R(ﬁ(ﬂ P )*7_117 (p—p))dx, (3.3)

integrating with respect to ¢ € [0, 7], we have
/ (lpu2 R S Y 7)) do + /t / p*ul da ds
R \2 -1 v—1 0 JR ’

t
:/ /psédxds—i—EOl.
o Jr

(3.4)
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Meanwhile, we have

1 5 1 _ Y N1 — /t/ 2
—nv* + n'—n')— ——n"" ' (n—"n ) dz + n“vi dxds
4(2 7—1( ) v-1 ( ) o Jr

t (3.5)
—/ /nstbdxds—l—Eog.
0o JR
Adding (3.4) to (3.5]), we obtain
1d [,
(pr —ny)@dax = | @ppy@dx=— | &P, da = <I> dx. (3.6)
The combination of (3.4]), (3.5) and (3.6) gives rise to (3.1)). O
Lemma 3.2. Under the assumptions in Lemma[3.]], it holds
1 1 -1 2 1 Y _ Y T -1 - )
- il o () — _ _ d
/R(2P(U+aﬂ (P™)z) +7_1(p p') 17 (p—p))da
1 1/, o 2 1 0% y B —=y—1
+ (U—|——n (n%))" + (n?” —=m7) n' " (n—mn))de
2 N1 N1
(3.7)

Proof. Multiplying (2.1); by p®~!, and then differentiting with respect to z, then
using ([2.1)2 and direct computations, we obtain

Mu+$fWWhh+pMu+éfohh+0ﬁh:pﬂw (3:8)

Then multiplying . by u+ = Lp=1(p%),, and integrating over R (by parts), using
1 and the boundary condltlons after direct computations, we obtain

/(; (0t 7 60" +%1( P =) = T (o) de

+7/ / a3 p? Ao ds (3.9
//pﬂ)dxds—l— // 2Py dxds + Eq;.

Similarly, we have

(o Lty Ly

t
+'yA /Rnﬂ*”‘*?’nf, dzds (3.10)

t 1t
—/ /nsq)dxds— f/ /(no‘)x@z drds + Eis.
0 JR @ Jo Jr
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Adding (3.9) to (3.10), we obtain

// )o P drds = — // —n*)P,, dxds

(3.11)
—/ /(p’JZ —n*)(p—n)dzds.
0o Jr

Combining (3.9), (3.10)), (3.11)) and (3.6 gives rise to (3.7). O

Lemma 3.3. Under the assumptions in Lemma we have
0<p_<p<ph, 0<n_<n<nt. (3.12)

Proof. Denote
1 _ Y _
o(p) == 1 (N - =" p - p)), (3.13)
r 1 4 3

¥(p) = / @(n)2n*"2 dn. (3.14)

It is easy to verify that ¢(p) > 0 and 9¥’'(p) > 0. In addition, as p — +o0 it holds

P o
lim ¥(p) — (y—1)"? lim 1n7+22 3d77
P

p—>+oo p—>+oo

(3.15)
= ].lm 2 (p’y+22;171 — p’y+22(171) — +OQ
p—too (v + 20— 1)y/y — 1 ’
and as p — 0,
p
lim ¥(p) — lim [ p2n® % dpy
p—0 p=0J5
X 1 1
oy _a 1 a1
o0 2a71p2(p PP, (3.16)
—00, if0<a<i,
- x 1o,
—52=p2 e ifa> 1

We can choose two constants p > 0 with p_ < p < py and py =~ (—=(p_)) so
that

2B,/ (By + E1)Y/2 < —(p_), a€ (0,
2
200 — 1

) (3.17)

_ 1
P 2, Oé>§,

2By *(Eo + E1)'/? < —(p-) <
which obviously satisfies
w(p ) < 2E1/2(E0 + E)Y? < 2B (Ey + ENY? < (py). (3.18)
From and ( it follows that

W= [ bt ael <] [ o) pup e

= (/]RQP(P) dm)1/2</R (2(1271(9&_%)1)2(1@1/2 (3.19)

< 2E)*(Eo + E1)'/?,

from which we obtain the half of (3.12)) with p_ and p™ determined as above.
Similarly, we have the another half of (3.12)). The proof is complete. (I
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Lemma 3.4. Under the same assumptions as in Lemma[3], it holds that

¢ ¢
/uidm—i—/ /uidmds—i—/ /uizdxds
R 0o JR 0 JR
. . < (7). (3.20)
—l—/vidx—k/ /vf,dxds—i—/ /U?mdxds
R 0o JR 0 Jr

Proof. First we estimate for u. Multiplying (2.1)2 by p~%us, and integrate over R.

With the help of (2.1); and the boundary conditions, after direct computations, we

obtain

d 1
& (iui — pvfo‘uac) dx —i—/ oyl de
R
= —/ Pt Cuuguy dz — a/ P ppug da 4 (7 — @) / P70 puuy, dx
R R R

+('yfo<)/p7 @ 2dx+a/p pmuzutder/ “uy®, dx.
R R
(3.21)

Integrating (3.21)) over ¢t € [0,7T] and direct computations yield

1 t
f/uid:r—l—// =2 de ds
2 Jr 0
t t
:/p'y_o‘uwdx—/ /pl_o‘uuwusdxds—a/ /p’y_o‘_lpxus dz ds
R o Jr 0o Jr

t t
(7—04)/ /p”‘o‘_lupzuxdmds—&—a/ /p_lpmumusdxds
R o Jr
t
// us¢wdxds+('y—a)// T2 do ds
0
+/ (2 Uyo Pg_an) dz.

With the help of (2.2)), Lemmas and and Young’s inequality, direct

computation yield

¢
%/ugdx+g// =2 de ds
R 0 . (3.22)
SC(T)—}—C/ /uzuidmds—l—C/ /pzumdxds
0o Jr 0

Next, we estimate fot Jg u2, dzds. From (2.1); and (2.1))2, we have

=l — o P, — ap T pau,. (3.23)

Upy = pr %y + pt ™ uy +yp~
Combination Lemma and Young’s inequality, we obtain

/u dxgl—o pl 2dx+0/u2u2dx+0/pzuxdm+0. (3.24)
R
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Integrating (3.24) over ¢ € [0, 7], combining (3.22)), Lemmas [3.1] and and using

Gagliardo-Nirenberg-Sobolev inequality, we have

t
1/uid:ﬂ—i—}// 1a2dxds+// u?, dzds
2 Jr 2Jo

t
< C/ /(u2 + p2)ul dzds 4+ C(T)
0 JE (3.25)

t
<C [ sl as+ o)

//u deds + C(T).
/u dm—f—//u dxds+//u dzds < C(T). (3.26)

Applying similar arguments we obtain

¢ ¢
/Ui da:—|—/ /vf dzds—|—/ /vfm dzds < C(T); (3.27)

R o JR o JR
thus (3.20]) follows. O

Lemma 3.5. Under the assumptions in Lemma the solution (p,n,u,v,®,)
satisfies

¢
/ufdx—l—/ /uisdmds—l—/vtdx—l—/ /v dzds < C(T). (3.28)
R o Jr

Proof. Differentiating (2.1)2 with respect to ¢, then multiplying by u; and integrat-
ing over R (by parts), with (2.1)); and Young’s equality, we obtain

1d
ia/Rpu?dx—&—/p u?, dzx

1
— 7/ptu? da:—/(pqu)tut dx—l—/(p”)mm dx
2 Jr R R

—/(po‘)tua:uztdx—i—/(p(l)m)tut dx
R
1
§2/p uztdx—l—C/ —&—ut—l—pw)dx—i-/(p@ )eus da.

Integrating (3 over [0,t], we have

1 1 [
f/pufdz+f/ /p u?,drds < C(T / / pPy)sus dx ds. (3.30)
2 Jr 2 Jo

Next we estimate fot Jz(p®2)sus dads. From (2.1); and (2.1)5, it follows that

Then

(3.29)

(p®Ps)sus = —pruus P, — puusP, — pus(pu — no). (3.31)
Using (2.1)5, (2.1)6, we have

/@xm@z dz = —/ o2 dx = / . (p—n),dr,
R R R
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which implies
/ P2 dr < %/(2@5 + p2 +n2)da.
Combining Lemmas [3.1] and [3.2] and Sobolev embedding theorem yields
||| < C. (3.32)
Then

/(psz)sus dz
R

= —/ (p%.uuSquC + pugusP, + pus(pu — m})) dx
R

IN

\/pxuus‘bx dz| + \/puxuséx dz| —|—|/pus(pu—m}) dz|
R R R
< Clllpelits + i) + €1 [ (w4 i) d
+C(lluellze + llullZe + [lv]1Z:)
< LSl + O (ool + e + ullZe + [ol3 + 19,13 + €

1, o
< lepwmlliz + Cllulz + C.
Therefore,

//p@ )susdeds < C(T //p uswdxds—I—C//u dzds

/ / p*u?, dx ds.
Using (3.33) and ( -, we obtain

¢
/ufdx—l—/ /uzmdxdsgC(T). (3.34)
R o Jr

Applying similar arguments we obtain

/vt dx+/ /v dzds < C(T). (3.35)
Then and - give rise to ([

4. PROOF OF MAIN RESULTS

(3.33)

Proof of Theorem[2.1. We prove only the existence of the solution (p,u); existence
of (n,v) can be proved by the same method.

Let (po, ug) be the initial data as described in the theorem, and let pg = Js5 * po,
ud = js * ug, where js = 6 'j(x/6) is the standard mollifier. Then, for any
0 < B < 1 we have p§ € C**#(R) and u) € C**#(R). This implies pj — po in
WH2(R), and uf — up in L?(R), as § — 0.

Next, we consider the Cauchy problem (2.1} 1 and (| 2 with the initial data
(po,uo) replaced by (p,us), @, be regarded as external force. For this problem
we can apply the standard argument (the energy estimates and the contraction
mapping theorem) to obtain the existence of a unique local solution (p°,u%) with
02, 0, 02, po, ud, uld, ud, ul, € CPBI2(R x [0, T*]) for some T* > 0. Furthermore,
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from Lemmas we see that p° is pointwise bounded from below and above,
w®, ph € L([0,T]; L*(R)), u) € L*([0, T} L*(R)), p°, pl, p2, phes w5 ul, uf,
ul, € CPP/2(R x [0,T]) for any T > 0. Therefore, we can continue the local
solution globally in time and deduce that there exists a unique global solution
(p?,u®) of the Cauchy problem 1 and 2 with (pg,uo) replaced by (pg,ud),
which is carried out as in [IJ.

Thus, we extract a subsequence of (p‘s,u(s)7 still denoted by (p5,u‘5), such that

as d — 0,

uw® —u  weakx in L=([0,T]; L}(R)), (4.1)
P’ — p  weakx in L>([0,T); L*(R)), (4.2)
(o8, 48) = (pruy)  weak in L2([0, T); L*(R)). (4.3)

Moreover, from (3.1)), and 7 the existence of a global weak solution to the
Cauchy problem (2.1]); and (2.1))2 can be proved directly as in [I1]. As a matter of
fact, because of ([3.20) and 3.28: , (p,u) is also a global strong solution. Uniqueness
of this strong solution can be proved as in [11]. We omit the details here. O
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