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EXISTENCE OF INFINITELY MANY SMALL SOLUTIONS
FOR SUBLINEAR FRACTIONAL

KIRCHHOFF-SCHRÖDINGER-POISSON SYSTEMS

JOSÉ CARLOS DE ALBUQUERQUE, RODRIGO CLEMENTE, DIEGO FERRAZ

Abstract. We study the Kirchhoff-Schrödinger-Poisson system

m([u]2α)(−∆)αu+ V (x)u+ k(x)φu = f(x, u), x ∈ R3,

(−∆)βφ = k(x)u2, x ∈ R3,

where [·]α denotes the Gagliardo semi-norm, (−∆)α denotes the fractional
Laplacian operator with α, β ∈ (0, 1], 4α+ 2β ≥ 3 and m : [0,+∞)→ [0,+∞)

is a Kirchhoff function satisfying suitable assumptions. The functions V (x)

and k(x) are nonnegative and the nonlinear term f(x, s) satisfies certain local
conditions. By using a variational approach, we use a Kajikiya’s version of

the symmetric mountain pass lemma and Moser iteration method to prove the

existence of infinitely many small solutions.

1. Introduction

In recent years, systems of the form

−∆u+ V (x)u+ φu = f(x, u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.1)

have been widely studied by many researchers. In system (1.1), the first equation
is a nonlinear Schrödinger equation in which the potential φ satisfies a nonlinear
Poisson equation. In this context, it is well known the study of existence of solu-
tions for system (1.1) by using variational methods, under suitable conditions. For
instance, we refer the readers to [1, 4, 6, 19, 21] and the references given there.
Particularly, we call attention to the work by Bao [4], where it was studied the
existence of infinitely many small solutions for (1.1) with sign-changing potential
V (x) and without require any global growth condition on the nonlinearity f(x, s).

We mention that a great attention has been focused on the study of problems
involving fractional Sobolev spaces and corresponding nonlocal equations, both
from a pure mathematical point of view and their concrete applications. In fact,
fractional Schrödinger equations naturally arise in many different contexts, such as,
obstacle problems, flame propagation, minimal surfaces, conservation laws, financial
market, optimization, crystal dislocation, phase transition and water waves. The
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literature is quite large, here we just refer the reader to the important works [13, 9]
and references therein.

There are some works concerned with the existence of solutions for the following
class of nonlinear fractional Schrödinger-Poisson systems,

(−∆)αu+ V (x)u+ k(x)φu = f(x, u), x ∈ R3,

(−∆)βφ = k(x)u2, x ∈ R3,
(1.2)

where α, β ∈ (0, 1]. For instance, Liu [17] studied the case when α, β ∈ (0, 1),
V (x) ≡ 1, f(x, u) = |u|p−1u, k(x) = V (|x|) and 1 < p < (3 + 2α)/(3 − 2α). The
author obtained the existence of infinitely many nonradial positive solutions for
(1.2), based on Lyapunov-Schmidt reduction. By considering a general nonlinear
term, Li [16], studied the case when k(x), V (x) ≡ 1 and α, β ∈ (0, 1] with 4α +
2β > 3. The author has obtained the existence of non-trivial solutions based on
the perturbation method and the mountain pass theorem, supposing that f(x, s)
is a subcritical nonlinearity satisfying an Ambrosetti-Rabinowitz type condition,
precisely, there exists µ > 4 such that

0 < µF (x, s) := µ

∫ s

0

f(x, τ)dx ≤ f(x, s)s, for all (x, s) ∈ RN × R. (1.3)

In a similar fashion, Duarte et al. [12] studied (1.2) under more general conditions,
where it is assumed a positive potential V (x) is bounded away from zero, and a
general autonomous nonlinearity with 4-superlinear growth, namely infx∈R3 V (x) >
0,

lim
s→∞

F (s)
s4

=∞ and the function s 7→ f(s)
|s|3

is increasing for |s| 6= 0. (1.4)

For more works in this direction, we refer the readers to [25, 22, 27]. To the
best of our knowledge, there are few works concerned with the class of fractional
Schrödinger-Poisson equations (1.2) in the presence of Kirchhoff term with general
α ∈ (0, 1]. Here we cite [2], where the author used a minimax type argument to
prove the existence of a non-trivial solution for a fractional Kirchhoff-Schrödinger-
Poisson system in R3 involving a Berestycki-Lions type nonlinearity.

Motivated by the above discussion, we study the existence of infinitely many
small solutions for the following class of fractional Kirchhoff-Schrödinger-Poisson
equations

m([u]2α)(−∆)αu+ V (x)u+ k(x)φu = f(x, u), x ∈ R3,

(−∆)βφ = k(x)u2, x ∈ R3,
(1.5)

where α, β ∈ (0, 1] such that 4α+ 2β ≥ 3 and (−∆)α denotes the fractional Lapla-
cian operator which can be represented by the singular integral

(−∆)αu(x) = C(α) P.V.
∫

R3

u(x)− u(y)
|x− y|3+2α

dy,

for u sufficiently smooth (see [13]). Henceforth, we omit the normalization constant
C(α). The term

[u]α =
(∫

R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2α
dxdy

)1/2
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is the so-called Gagliardo semi-norm of the function u. In Section 2 we give more
details about the fractional setting. In the present paper, k(x) and V (x) are non-
negative functions, where the potential V (x) is locally integrable. In addition, we
assume the following hypotheses:

(H1) k ∈ Lr(R3) ∪ L∞(R3) such that

r > r∗ :=
6

4α+ 2β − 3
, if 4α+ 2β > 3,

r = r∗ =∞, if 4α+ 2β = 3.

(H2) There exists δ0 > 0 such that for the level set Gδ0 := {x ∈ R3 : V (x) < δ0},
we have 0 < |Gδ0 | <∞, where | · | denotes the Lebesgue measure.

(H3) For each δ > 0 and level set Gδ := {x ∈ R3 : V (x) < δ}, we have 0 ≤ |Gδ| <
∞.

(H4) m(t) ≥ m0 > 0, for all t ∈ [0,+∞).
(H5) There exist constants a1, a2 > 0 and t0 > 0 such that for some σ ≥ 0

M(t) :=
∫ t

0

m(τ) dτ ≤ a1t+
a2

2
tσ+2, for all t ≤ t0.

(H6) f ∈ C(R3 × [−δ1, δ1],R) for some δ1 > 0 and there exist ν ∈ (1, 2), µ ∈
(3/(2α), 2/(2− ν)) and a nonnegative function ξ ∈ Lµ(R3) such that

|f(x, s)| ≤ νξ(x)|s|ν−1, for all (x, s) ∈ R3 × [−δ1, δ1].

(H7) There exist x0 ∈ R3 and a constant r0 > 0 such that

lim inf
s→0

(
inf

x∈Br0 (x0)

F (x, s)
s2

)
> −∞,

lim sup
s→0

(
inf

x∈Br0 (x0)

F (x, s)
s2

)
= +∞,

where F (x, s) :=
∫ s

0
f(x, τ) dτ .

(H8) There exists δ2 > 0 such that f(x,−s) = −f(x, s), for all (x, s) ∈ R3 ×
[−δ2, δ2].

From the nature of the problem, it is well known that system (1.5) can be reduced
to a nonlinear Schrödinger equation with an additional nonlocal term (see Section
2). This new term has forth order homogeneity and it is usual to apply variational
arguments for nonlinearities which behave like |s|p−2s, for 4 < p < 2∗α := 6/(3−2α)
by considering hypothesis (1.3) or (1.4) (see [11, 12, 16, 25] and the references
therein). In order to get the strictly inequality 4 < 2∗α, it is necessary to impose
the lower bound α > 3/4 in the fractional Laplacian operator. Differently from this
case, and similar ones, our assumptions (H6)-(H8) allow the fractional parameter
α to vary in (0, 1] submitted only to condition (H1) (see [12]).

Another interesting feature of our assumptions is that the function ξ(x) in (H6)
may not be bounded (see Remark 1.2 (iii) below). Thus, the nonlinear term f(x, s)
may not be uniformly bounded in x. For this reason, unlike [4], we consider general
nonnegative potentials. However, we mention that our arguments also permit to
consider sign-changing potentials provided that ξ(x) is bounded. In fact, in this
case, under (H2) and(H3), we can assume infx∈R3 V (x) > −∞ and V0 > 0 such that
Ṽ (x) = V (x) + V0 > 0, in order to apply our approach to the equivalent problem

m([u]2α)(−∆)αu+ Ṽ (x)u+ k(x)φu = f(x, u) + V0u, x ∈ R3,
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(−∆)βφ = k(x)u2, x ∈ R3.

In this new framework, it is possible to follow the arguments contained in the proof
of [4, Theorem 1.1] and [28, Lemma 3.3], to get a suitable L∞-estimate, which is an
important part of our main result. To do this, it is crucial the use of a cut-off type
argument and the boundedness of ξ(x) to conclude that the truncated nonlinear
term fh(x, s) := (f(x, s) + V0s)h(s) is uniformly bounded. The main result of this
work can now be stated as follows.

Theorem 1.1. Suppose (H1)–(H8) hold. Then, system (1.5) has infinitely many
non-trivial solutions (un, φn)n∈N such that

1
2
M([un]2α) +

1
2

∫
R3
V (x)u2

n dx+
1
4

∫
R3
k(x)φunu

2
n dx−

∫
R3
F (x, un) dx ≤ 0.

Moreover, un → 0 as n→ +∞.

We mention that our result extends some papers in the literature, since we
are considering a general class of fractional Kirchhoff-Schrödinger-Poisson systems.
Precisely, we deal with a class of potentials V (x) under assumptions which induce
compactness of the corresponding Sobolev embedding, the nonnegative term k(x)
is bounded or belongs to a suitable Lebesgue space and we are assuming that the
nonlinear term f(x, s) satisfies only local conditions. To prove the existence of
infinitely many small solutions to ystem (1.5), we use a Kajikiya’s version of the
symmetric mountain pass lemma (see [14]). One shall also notice that the novelty
of our result also provides a regularity type result for ystem (1.5), showing that
the solutions have a priori L∞-bound (see Lemma 4.1), which is crucial to obtain
more regularity for solutions of elliptic problems involving the fractional Laplacian
(see [8]). For this purpose, we use the α-harmonic extension jointly with a Moser
iteration method. To the best of our knowledge, there seems to be no similar results
in the current literature for the class of equations studied here, even in the local
case α = β = 1.

Remark 1.2. Now we give some remarks and examples of functions which satisfy
our assumptions:

(i) It is important to mention that the potential considered here may null in
nonempty interior sets of R3. This class of potentials is somehow inspired by
[24, 5], where it first appeared for the local case. Examples of potentials which
satisfy (H2) and (H3) are given by V1(x) = |x| + 1/|x| − 2 and V2(x) = |x|, if
|x| > 1, and V2(x) = 0, if |x| ≤ 1. We emphasize that our arguments are general
and thus, it allow many other classes of nonnegative potentials whose may go to
infinity as |x| → ∞ (see the local case [23]).

(ii) A typical example of m : [0,+∞)→ [0,+∞) verifying (H4) and (H5) is given
by m(t) = m0 + a2t, a2 ≥ 0, which is the one considered in the classical Kirchhoff
equation, see [15]. More generally, the following function

m(t) = m0 + a2t+
k∑
i=1

bit
di ,

with bi ≥ 0 and di ∈ (0, 1) for all i ∈ {1, 2, . . . , k} satisfies assumptions (H4) and
(H5).
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(iii) One can see that the following function satisfies conditions (H6)–(H8). More
precisely, consider

F (x, s) =

{
ξ(x)|s|θ sin2(|s|ε), if x = (x1, x2, x3) ∈ R3 and 0 < |s| ≤ 1,
0, if s = 0,

a primitive of the function f(x, s), where ξ(x) = |x|−d for 0 < d < 3/µ if |x| ≤ 1,
and ξ(x) = 0, if |x| > 1. We take ε > 0 small enough, θ ∈ (1 + ε, 2), δ = 1 and
ν = θ − ε. Notice that ξ ∈ Lµ(R3), for µ ∈ (3/2α, 2/(2− ν)).

The remainding of the paper is organized as follows: In the forthcoming section
we present some preliminary results and we set up the variational framework to
our problem. In Section 3, we prove the existence of a sequence of solutions for the
modified problem associated to (1.5). In Section 4, we introduce the α-harmonic
extension and we apply Moser iteration method in order to prove that our sequence
of solutions converges to zero in L∞-norm. Throughout this paper, the symbols C,
C1, C2, . . . represent several (possibly different) positive constants.

2. Preliminary results

In this Section we collect some basic results of fractional Sobolev spaces and we
introduce the variational framework of system (1.5). For 0 < α < 1, the fractional
Sobolev space is defined as

Hα(R3) :=
{
u ∈ L2(R3) :

∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2α
dx dy < +∞

}
.

For u, v ∈ Hα(R3), we define

(u, v)α :=
∫

R3

∫
R3

(u(x)− u(y))(v(x)− v(y))
|x− y|3+2α

dxdy.

It is well known that Hα(R3) is a Hilbert space when endowed with the standard
inner product

〈u, v〉 = (u, v)α +
∫

R3
uv dx,

and the correspondent induced norm

‖u‖Hα(R3) =
(
[u]2α + ‖u‖2L2(R3)

)1/2
.

To introduce a variational approach to our problem we define the suitable subspace
of Hα(R3),

E :=
{
u ∈ Hα(R3) :

∫
R3
V (x)u2 < +∞

}
.

In view of assumptions (H2) and (H3) it is not hard to check that E is a Hilbert
space when endowed with the inner product

〈u, v〉E = (u, v)α +
∫

R3
V (x)uv dx,

and the corresponding induced norm ‖u‖2 = 〈u, v〉E (see Proposition 2.2). For
u ∈ E and a subset Ω ⊂ R3 we denote

‖u‖2Ω :=
∫

Ω

∫
Ω

|u(x)− u(y)|2

|x− y|3+2α
dxdy +

∫
Ω

V (x)u2 dx.
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For any β ∈ (0, 1), we recall the homogeneous fractional Sobolev space Dβ,2(R3) as

Dβ,2(R3) = {u ∈ L2∗β (R3) : [u]β < +∞},

which is the completion of C∞0 (R3) with respect to the norm

‖u‖Dβ,2(R3) =
(∫

R3
|(−∆)β/2u|2 dx

)1/2

.

We recall that 2∗β := 6/(3− 2β) is the critical Sobolev exponent for Hβ(R3).

Lemma 2.1. For any β ∈ (0, 1), the space Dβ,2(R3) is continuously embedded into
L2∗β (R3); that is, there exists Sβ > 0 such that(∫

R3
|u|2

∗
β dx

)2/2∗β
≤ Sβ

∫
R3
|(−∆)β/2u|2 dx, for all u ∈ Dβ,2(R3).

For a more information about fractional Sobolev spaces we refer the readers to
[13]. Next we prove an embedding result involving our space of functions.

Proposition 2.2. If (H2) holds, then E is continuously embeeded into Hα(R3). In
addition, if (H3) holds, then E is compactly embedded into Lp(R3), for p ∈ [2, 2∗α).

Proof. We start by proving that E ↪→ Hα(R3), i.e., there exists C > 0 such that
‖u‖2Hα(R3) ≤ C‖u‖

2, for all u ∈ E. To do that, we use Hölder inequality and Lemma
2.1 to see that ∫

Gδ0
u2 dx ≤ |Gδ0 |

2α
N Sα[u]2α, for all u ∈ Hα(R3).

By using this estimate, assumption (H2) and the fact that V (x) is nonnegative, we
have that

‖u‖2 ≥ 1
2

[u]2α +
1
2
|Gδ0 |−

2α
N S−1

α

∫
Gδ0

u2 dx+ δ0

∫
R3\Gδ0

u2 dx+
∫
Gδ0

V (x)u2 dx

≥ C‖u‖2Hα(R3),

where C = min{1/2, (1/2)|Gδ0 |−2α/NS−1
α , δ0}, which implies the continuous embed-

ding.
Now we prove the compact embedding E ↪� Lp(R3), for 2 ≤ p < 2∗α. Let

(un)n∈N ⊂ E be such that un ⇀ u weakly in E. In view of an interpolation
inequality, it suffices to show that un → u strongly in L2(R3), up to subsequence.
To prove this fact, we claim that for any ε > 0, there exists R > 0 such that∫

R3\BR
u2
n dx < ε, for all n ∈ N (uniformly in n), (2.1)

where BR denotes the open ball with radius R centered at zero. In fact, let us
consider p ∈ (1, 3/(3− 2α)) and constants M, C > 0 satisfying

1
M

sup
n∈N
‖un‖2 <

ε

2
and sup

u∈E\{0}

[‖u‖2L2p(R3)

‖u‖2
]
≤ C.

On the other hand, note that there exits R > 0 such that

|{x ∈ R3 \BR : V (x) < M}| ≤ [
ε

2C supn∈N ‖un‖2
]p
′
, where

1
p

+
1
p′

= 1.
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If A = {x ∈ R3 \ BR : V (x) ≥ M} and B = {x ∈ R3 \ BR : V (x) < M}, then one
has ∫

A

u2
n dx ≤ 1

M

∫
A

V (x)u2
n dx ≤ 1

M
sup
n∈N
‖un‖2 <

ε

2
,∫

B

u2
n dx ≤ |B|

1
p′ ‖un‖2L2p(BR) ≤ C|B|

1
p′ sup
n∈N
‖un‖2 <

ε

2
,

which proves (2.1). Let θ = limn→∞ ‖un‖2L2(R3). By the semicontinuity of the norm
we have ‖u‖2L2(R3) ≤ θ. On the other hand, using (2.1) and the fact that un → u

strongly in L2(BR), we see that

‖u‖2L2(R3) = ‖u‖2L2(BR) + ‖u‖2L2(R3\BR)

≥ lim
n→∞

[
‖un‖2L2(R3) − ‖un‖L2(R3\BR)

]
≥ θ − ε.

Therefore, ‖u‖2L2(R3) ≥ θ, which implies that ‖un‖2L2(R3) → ‖u‖2L2(R3), up to a
subsequence. �

For any u ∈ Hα(R3), let Lu : Dβ,2(R3)→ R be the linear functional defined by

Lu(v) =
∫

R3
k(x)u2v dx.

By using (H1), Lemma 2.1 and Hölder inequality we deduce that

|Lu(v)| ≤

‖k(x)‖L∞(R3)‖u‖2Ll∞ (R3)‖v‖L2∗
β (R3)

, if k ∈ L∞(R3),

‖k(x)‖Lr(R3)‖u‖2Llr (R3)‖v‖L2∗
β (R3)

, if k ∈ Lr(R3),
(2.2)

for all v ∈ Dβ,2(R3), where l∞ = 2 · 2∗α/(2∗α − 1) and lr := 12r/((3 + 2α)r − 6).
Condition 4α + 3β ≥ 3 implies that 2 ≤ l∞, lr ≤ 2∗α. It follows from (2.2) that
Lu is continuous. Thus, in light of Lax-Milgram Theorem, there exists a unique
φu ∈ Dβ,2(R3) such that∫

R3
(−∆)β/2φu(−∆)β/2v dx =

∫
R3
k(x)u2v dx, for all v ∈ Dβ,2(R3), (2.3)

that is, φu is a weak solution of the problem

(−∆)βφu = k(x)u2, x ∈ R3.

It is well known that the following representation formula holds

φu(x) = cβ

∫
R3

k(y)u2(y)
|x− y|3−2β

dy, for allx ∈ R3,

which is called β-Riesz potential, where

cβ =
Γ(3− 2β)
π3/222βΓ(β)

.

Since we only required local assumptions on the nonlinear term f(x, s), we use
a cut-off argument similar to the one introduced in [14]. Let us consider 0 <
r < (1/2) min{δ1, δ2, 1}. We define an even function h ∈ C∞(R,R+) such that
0 ≤ h(t) ≤ 1, h(t) = 1 for |t| ≤ r, h(t) = 0 for |t| ≥ 2r and h is decreasing in
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[r, 2r]. Let fh(x, u) = f(x, u)h(u) and Fh(x, u) =
∫ u

0
fh(x, t) dt. We introduce the

modified problem

m([u]2α)(−∆)αu+ V (x)u+ k(x)φu = fh(x, u), x ∈ R3,

(−∆)βφ = k(x)u2, x ∈ R3.
(2.4)

Replacing φ by φu in the first equation of (2.4), we obtain the fractional Kirchhoff-
Schrödinger equation

m([u]2α)(−∆)αu+ V (x)u+ k(x)φuu = fh(x, u), x ∈ R3. (2.5)

Problem (2.5) admits a variational formulation and its solutions are the critical
points of the energy functional

Ih(u) =
1
2
M([u]2α) +

1
2

∫
R3
V (x)u2 dx+

1
4

∫
R3
k(x)φuu2 dx−

∫
R3
Fh(x, u) dx.

It follows from (H6) that

|fh(x, s)| ≤ νξ(x)|s|ν−1, for all (x, s) ∈ R3 × R, (2.6)

which implies that

|Fh(x, s)| ≤ ξ(x)|s|ν , for all (x, s) ∈ R3 × R. (2.7)

Let us define µ∗ := νµ/(µ−1). Since ν ∈ (1, 2) and µ ∈ (3/(2α), 2/(2−ν)) we have
that µ∗ ∈ (2, 2∗α). Hence, for any u ∈ E, it follows from (2.7), Hölder inequality
and Sobolev embedding that∫

R3
|Fh(x, u)|dx ≤ ‖ξ‖Lµ(R3)‖u‖νLµ∗ (R3) ≤ C(µ∗, ν)‖ξ‖Lµ(R3)‖u‖ν < +∞.

Therefore, Ih is well defined.

Definition 2.3. We say that (u, φu) ∈ Hα(R3)×Dβ,2(R3) is a solution of (2.4) if
u is a weak solution of (2.5); that is,

m([u]2α)(u, v)α +
∫

R3
V (x)uv dx+

∫
R3
k(x)φuuv dx =

∫
R3
fh(x, u)v dx,

for all v ∈ E.

Note that if u is a critical point of the functional Ih and ‖u‖L∞(R3) ≤ r, then u
is a solution of (1.5).

3. Kajikiya symmetric mountain pass lemma

Let X be a Banach space and Γ be the family of sets A ⊂ X \ {0} which are
closed in X and symmetric with respect to the origin, i.e. x ∈ A implies −x ∈ A.
For A ∈ Γ, the genus γ(A) is defined as

γ(A) = inf
{
N ∈ N : ∃ψ ∈ C(A,RN \ {0}) with ψ(−z) = −ψ(z), for all z ∈ A

}
.

If there is no mapping as above for any N ∈ N, then γ(A) = +∞. Here we
summarize the properties of genus whose will be used in the proof of Theorem 1.1.
A detailed proof can be found in [20].

Proposition 3.1. Let A,B ∈ Γ ⊂ X\{0}. Then, the following properties hold:
(a) If there is an odd homeomorphism from A to B, then γ(A) = γ(B).
(b) If SN−1 is the unit sphere in RN , then γ(SN−1) = N .
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Definition 3.2. Let X be a Banach space, (un)n∈N ⊂ X be a sequence and J :
X → R be a C1 functional. We say that (un)n∈N is a Palais-Smale sequence at
level c ∈ R, if

J(un)→ c and J ′(un)→ 0. (3.1)

We say that J satisfies the Palais-Smale condition at level c ∈ R, whenever any
Palais-Smale sequence at level c ∈ R admits a convergent subsequence.

To prove the existence of infinitely many solutions for system (1.5), we use the
following version of the symmetric mountain pass lemma which is due to Kajikiya,
see [14].

Theorem 3.3. Let X be an infinite dimensional Banach space, Γk be the family
of closed symmetric subsets A ⊂ X such that 0 /∈ A and the genus γ(A) ≥ k,
J ∈ C1(X) be an even functional such that J(0) = 0 and

(H9) J is bounded from below and satisfies the Palais-Smale condition;
(H10) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak J(u) < 0.

Then, J admits a sequence of critical points (un)n∈N such that J(un) ≤ 0, un 6= 0
and limn→+∞ un = 0.

In the following, we prove that Palais-Smale sequences for Ih satisfy the proper-
ties (H9) and (H10) required in Theorem 3.3.

Proposition 3.4. Ih is bounded from below.

Proof. For any u ∈ E we introduce the set Ωu := {x ∈ R3 : |u(x)| ≤ 1}. By the
definition of h we have ∫

R3
Fh(x, u) dx =

∫
Ωu

Fh(x, u) dx.

Hence, in view of (H4), (2.3) and (2.7) it follows that

Ih(u) ≥ m0

2
[u]2α +

1
2

∫
R3
V (x)u2 dx−

∫
Ωu

ξ(x)|u|ν dx.

Thus, by using Hölder inequality and Sobolev embedding we obtain

Ih(u) ≥ min
{m0

2
,

1
2
}
‖u‖2Ωu − C(µ∗, ν)‖ξ‖Lµ(R3)‖u‖νΩu . (3.2)

Since ν ∈ (1, 2) we conclude that Ih is bounded from below. �

Lemma 3.5. If (un)n∈N is a Palais-Smale sequence for Ih, then (un)n∈N is bounded
in E.

Proof. It follows from (3.1) and (3.2) that

C ≥ Ih(un) ≥ min
{m0

2
,

1
2
}
‖un‖2Ωun − C(µ∗, ν)‖ξ‖Lµ(R3)‖un‖νΩun ,

where Ωun := {x ∈ R3 : |un(x)| ≤ 1}. Since ν ∈ (1, 2) we conclude that ‖un‖Ωun ≤
C, where C does not depends on n ∈ N. Moreover, by using (2.7) we deduce that

1
2

[
M([un]2α) +

∫
R3
V (x)u2

n dx+
1
2

∫
R3
k(x)φunu

2
n dx

]
≤ Ih(un) + C(µ∗, ν)‖ξ‖Lµ(R3)‖un‖νΩun .
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Since ‖un‖Ωun ≤ C and Ih(un) ≤ C we have

1
2

[
M([un]2α) +

∫
R3
V (x)u2

n dx+
1
2

∫
R3
k(x)φunu

2
n dx

]
≤ C,

where C does not depends on n ∈ N. The above boundedness together with (H4)
implies that

C ≥ 1
2

[
M([un]2α) +

∫
R3
V (x)u2

n dx
]
≥ min

{m0

2
,

1
2
}
‖un‖2,

which implies that (un)n∈N is bounded in E. �

In view of Proposition 2.2 and Lemma 3.5 we may assume, up to a subsequence,
that

un ⇀ u weakly in E;

un → u strongly in Lp(R3), for p ∈ [2, 2∗α);

un(x)→ u(x) almost everywhere in R3.

By using generalized Hölder inequality we deduce the following convergences:∣∣ ∫
R3
k(x)φunun(un − u) dx

∣∣ ≤ {‖k‖L∞‖φun‖L2∗
β
‖un‖Ll∞ ‖un − u‖Ll∞ → 0,

‖k‖Lr‖φun‖L2∗
β
‖un‖Llr ‖un − u‖Llr → 0,

as n→ +∞. Thus, we conclude that

lim
n→+∞

∫
R3
k(x)(φunun − φuu)(un − u) dx = 0. (3.3)

Moreover, by using (2.6) and generalized Hölder inequality we obtain the estimate∣∣∣ ∫
R3

(fh(x, un)− fh(x, u))(un − u) dx
∣∣∣

≤ ν(‖un‖ν−1
Lµ∗ (R3)

+ ‖u‖ν−1
Lµ∗ (R3)

)‖ξ‖Lµ(R3)‖un − u‖Lµ∗ (R3),

which together with the fact that µ∗ ∈ (2, 2∗α) and Proposition 2.2 implies that

lim
n→+∞

∫
R3

(fh(x, un)− fh(x, u))(un − u) dx = 0. (3.4)

Proposition 3.6. Ih satisfies the Palais-Smale condition.

Proof. It follows from (3.1) and the weak convergence that

〈I ′(un)− I ′(u), un − u〉 = on(1), (3.5)

where on denotes the standard “little o notation”. On the other hand we have

〈I ′(un)− I ′(u), un − u〉

= m([un]2α)(un, un − u)α −m([u]2α)(u, un − u)α +
∫

R3
V (x)(un − u)2 dx

+
∫

R3
k(x)(φunun − φuu)(un − u) dx−

∫
R3

(fh(x, un)− fh(x, u))(un − u) dx,

which together with (3.3) and (3.4) implies that

〈I ′(un)− I ′(u), un − u〉 = m([un]2α)(un, un − u)α −m([u]2α)(u, un − u)α

+
∫

R3
V (x)(un − u)2 dx+ on(1).

(3.6)
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Notice that

m([un]2α)(un, un − u)α −m([u]2α)(u, un − u)α

= m([un]2α)[un − u]2α +
(
m([un]2α)−m([u]2α)

)
(u, un − u)α.

(3.7)

Since (un)n∈N is bounded in E and m is a continuous function, there exists A ≥ 0
such that m([un]2α) → m(A). In particular, (m([un]2α))n∈N is bounded. Thus, by
weak convergence one has(

m([un]2α)−m([u]2α)
)

(u, un − u)α = on(1). (3.8)

It follows from (H4), (3.7) and (3.8) that

m([un]2α)(un, un − u)α −m([u]2α)(u, un − u)α ≥ m0[un − u]2α + on(1). (3.9)

Combining (3.5), (3.6) and (3.9) we conclude that

on(1) ≥ min{m0, 1}‖un − u‖2 + on(1).

Therefore, un → u strongly in E which completes the proof. �

Lemma 3.7. There exists a sequence of non-trivial critical points (un)n∈N for Ih.

Proof. The idea is essentially due to [14, Theorem 2] but for the reader’s convenience
we provide the proof here. For simplicity, we assume that x0 = 0 in (H7), that is,
there exists a constant r0 > 0 such that

lim inf
s→0

(
inf

x∈Br0

F (x, s)
s2

)
> −∞ and lim sup

s→0

(
inf

x∈Br0

F (x, s)
s2

)
= +∞.

In the following we denote

C :=
{

(x1, x2, x3) ∈ R3 : −r0

2
≤ xi ≤

r0

2
, where 1 ≤ i ≤ 3

}
.

By (H7), there exist constants ϑ, ε > 0 and two sequences of positive numbers
ϑn → 0 and Mn → +∞ as n→ +∞ such that

F (x, u) ≥ −εu2, for all x ∈ C and |u| ≤ ϑ, (3.10)

F (x, δn)
ϑ2
n

≥Mn, for all x ∈ C and n ∈ N. (3.11)

Fix k ∈ N arbitrarily and let p ∈ N be the smallest integer satisfying p3 ≥ k. We
divide C equally into p3 cubes by planes parallel to each face of C and we denote
them by Ci, with 1 ≤ i ≤ p3. Thus, the edge of each Ci has the length of a = r0/p.
For each 1 ≤ i ≤ k, we make a cube C̃i ⊂ Ci such that C̃i has the same center as
that of Ci, the faces of C̃i and Ci are parallel and the edge of C̃i has the length of
a/2. Now, we define a continuous function ρ : R→ R such that

ρ(t) = 0 for t ∈ R \ [−a
2
,
a

2
],

ρ(t) = 1 for t ∈ [−a
4
,
a

4
],

0 ≤ ρ(t) ≤ 1 for t ∈ (−a
2
,−a

4
) ∪ (

a

4
,
a

2
).

Define η1 : R3 → R such that η1(x) = ρ(x1)ρ(x2)ρ(x3). For each 1 ≤ i ≤ k, let yi
be the center of C̃i and set η1i(x) = η1(x − yi) for all x ∈ R3. It is easy to check
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that, for each 1 ≤ i ≤ k, 0 ≤ η1i(x) ≤ 1 for all x ∈ R3, supp η1i ⊂ Ci and η1i(x) = 1
if x ∈ C̃i. Set

Vk =
{

(t1, . . . , tk) ∈ Rk : max
1≤i≤k

|ti| = 1
}
,

Wk =
{ k∑
i=1

tiη1i : (t1, . . . , tk) ∈ Vk
}
.

Since Vk is the surface of the k-dimensional cube, it is homeomorphic to the sphere
Sk−1 by an odd mapping. By Proposition 3.1 we have γ(Vk) = k. If we define the
mapping ζ : Vk →Wk by

ζ(t1, . . . , tk) =
k∑
i=1

tiη1i ,

then ζ is an odd homeomorphism between Vk and Wk, which implies that γ(Vk) =
γ(Wk). Since Wk is compact, there exists a constant Ck > 0 such that ‖u‖ ≤ Ck
for all u ∈ Wk. Thus, using (H5) and (2.2), for any β ∈ (0,min{ϑ, t0/Ck}) and
u =

∑k
i=1 tiη1i ∈ Wk we have

Ih(βu) =
1
2
M([βu]2α) +

β2

2

∫
R3
V (x)u2 dx

+
β2

4

∫
R3
k(x)φuu2 dx−

∫
R3
Fh

(
x, β

k∑
i=1

tiη1i

)
dx

≤ β2C1‖u‖2 +
a2

2
βσ+2‖u‖σ+2

+ β2C2‖φu‖Dβ,2(R3)‖u‖2 −
k∑
i=1

∫
Ci
Fh(x, βtiη1i) dx.

(3.12)

On the other hand, by the definition of Vk, there exists some integer 1 ≤ iu ≤ k
such that |tiu | = 1. Then

k∑
i=1

∫
Ci
Fh(x, βtiη1i) dx

=
∫
C̃iu

Fh(x, βtiη1i) dx+
∫
Ciu\C̃iu

Fh(x, βtiη1i) dx+
∑
i 6=iu

∫
Ci
Fh(x, βtiη1i) dx.

Observe that by (3.10),∫
Ciu\C̃iu

Fh(x, βtiη1i) dx+
∑
i 6=iu

∫
Ci
Fh(x, βtiη1i) dx ≥ −εr3

0β
2, (3.13)

where we used that the volume of C is r3
0. We have |ϑntiuη1iu

(x)| = ϑn for all
x ∈ C̃iu and the volume of C̃iu is a3/8 . Since ϑn → 0, we assume that there exists
n0 ∈ N such that ϑn < min{ϑ, t0/Ck} for all n ≥ n0. Thus, using (3.11), (3.12)
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and (3.13) with β = ϑn we obtain

I(un) ≤ C3ϑ
2
n

(
‖u‖2 + ϑσn‖u‖σ+2 + ‖φu‖Dβ,2(R3)‖u‖2 + εr3

0ϑ
2
n

)
−
∫
C̃iu

Fh(x, ϑntiη1i) dx

≤ C3ϑ
2
n

(
‖u‖2 + ϑσn‖u‖σ+2 + ‖φu‖Dβ,2(R3)‖u‖2 + εr3

0ϑ
2
n −

a3Mn

8

)
,

(3.14)

where un = ϑnu. Since u ∈Wk, one has

‖φu‖Dβ,2(R3) ≤ C4‖u‖ ≤ C4Ck.

Since ϑn → 0 and Mn → +∞ as n→ +∞, we can choose n ∈ N large enough such
that

C2
k + ϑσnC

σ+2
k + C4C

3
k + εr3

0ϑ
2
n −

a3Mn

8
< 0.

This implies that the right-hand side of (3.14) is negative. To complete the proof,
we define

Ak = {ϑn0u : u ∈ Wk} .
Thus γ(Ak) = γ(Wk) = k and supu∈Ak Ih(u, φu) < 0. Thus, all the conditions of
Theorem 3.3 are satisfied. Therefore, there exists a sequence of non-trivial critical
points (un)n∈N for Ih. �

4. Moser iteration method

In this section, we focus our analysis for the case 0 < α < 1, since the local
case α = 1 can be treated similarly as [4, 28]. For the reader’s convenience, before
we prove our regularity result, we introduce some preliminary concepts about the
α-harmonic extension (see [10]). We point out that our arguments are local and, for
this reason, we are able to apply this technique to transform our nonlocal problem
into a local one.

For 0 < α < 1 we define the space Xα as the completion of C∞0 (R4
+) with respect

to the norm

‖w‖Xα =
[ 1
κα

∫
R4

+

y1−2α|∇w|2 dxdy
]1/2

,

where κα = (21−2αΓ(1 − α))/Γ(α) and Γ is the well known gamma function. By
[26], the space Xα is well defined and there is a continuous trace operator Tr :
Xα → Dα,2(R3); that is, there exists C > 0 such that ‖Tr(w)‖Dα,2(R3) ≤ C‖w‖Xα ,
for all w ∈ Xα. When w ∈ C(R4

+), we have Tr(w)(x) = w(x, 0), and because of
that we also use the notation w(·, 0) = Tr(w). It is also worth to call attention that
considering the continuous Sobolev embedding Dα,2(R3) ↪→ L2∗α(R3), we obtain
that ‖w(·, 0)‖2α∗ ≤ C‖w‖Xα , for all w ∈ Xα.

Given u ∈ Dα,2(R3), we call w = Eα(u) the α-harmonic extension of u, the
unique solution of the minimization problem

min
{ 1
κα

∫
R4

+

y1−2α|∇w|2 dxdy : w ∈ Xα and w(·, 0) = u on R3
}
.

We have that Eα is a well defined operator acting on Dα,2(R3) into Xα. Moreover,
by [7, Lemma A.2], Eα is an isometry, precisely ‖Eα(u)‖Xα = ‖u‖Dα,2(R3), for all
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u ∈ Dα,2(R3). We also have that Eα satisfies

div(y1−2α∇w) = 0 in R4
+,

− 1
κα

lim
y→0+

y1−2αwy(x, y) = (−∆)αu(x) in R3,

in the weak sense, more precisely
1
κα

∫
R4

+

y1−2α〈∇Eα(u),∇ψ〉dxdy =
∫

R3
(−∆)α/2u(−∆)α/2ψ(·, 0) dx,

for all ψ ∈ Xα. Consequently we see that u is a weak solution for (2.5) if, and only
if, w = Eα(u) is a weak solution for the problem

div(y1−2α∇w) = 0 in R4
+,

− 1
κα

lim
y→0+

y1−2αwy(x, y) = g(x, u(x)) in R3,
(4.1)

where g(x, u) = fh(x, u)− V (x)u− k(x)φuu; that is,

1
κα

∫
R4

+

y1−2α〈∇Eα(u),∇ψ〉dxdy =
∫

R3
(fh(x, u)− V (x)u− k(x)φuu)ψ(·, 0) dx,

for all ψ ∈ Xα. In the following lemma, we show that a sequence of critical
points of Problem (4.1) converges to zero in the L∞-norm. Our proof is based
on the Moser iteration method, a delicate estimate which take into account the
α-harmonic extension and a suitable interpolation of Lebesgue spaces.

Lemma 4.1. Let (un)n∈N be a critical point sequence of Ih satisfying un → 0 in
E, as n→ +∞. Then, ‖un‖L∞(R3) → 0 as n→ +∞.

Proof. We first recall that w is a weak solution to (4.1) if w satisfies the equality

m([w(·, 0)]2α)
κα

∫
R4

+

y1−2α〈∇w,∇ψ〉dxdy =
∫

R3
g(x,w(·, 0))ψ dx, (4.2)

for any ψ ∈ Xα. We set w = Eα(un), u = un = w(·, 0) and g(x,w(·, 0)) =
fh(x, u) − V (x)u − k(x)φuu. For each L > 0 we define wL := min {w,L} and
consider ψ := w2θ

L w ∈ Xα, where θ > 0 will be chosen later. By using ψ as test
function in (4.2) we obtain

m([u]2α)
κα

[ ∫
R4

+

y1−2αw2θ
L |∇w|2 dxdy +

∫
{w≤L}

2θy1−2αw2θ
L |∇w|2 dxdy

]
=
∫

R3
fh(x, u)u2θ

L udx−
∫

R3
V (x)u2u2θ

L dx−
∫

R3
k(x)φuu2u2θ

L dx.

(4.3)

Taking into account (2.6), (4.3) and using Hölder inequality we deduce that

m0

κα

∫
R4

+

y1−2αw2θ
L |∇w|2 dxdy ≤ ν

∫
R3
ξ(x)uνu2θ

L dx

≤ ν‖ξ‖Lµ(R3)‖uνu2θ
L ‖2θ+ν

L
µ
µ−1 (R3)

.
(4.4)

Let us denote wL = wwθL. Following [3, Lemma 4.1], one has

‖wL(·, 0)‖2
L2∗α (R3)

≤ 4Sα(θ + 1)2

∫
R4
y1−2αw2θ

L |∇w|2 dxdy. (4.5)
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Using (4.4) and (4.5) we deduce that

‖wL(·, 0)‖2
L2∗α (R3)

≤ C(θ + 1)2‖ξ‖Lµ(R3)‖uνu2θ
L ‖2θ+ν

L
µ
µ−1 (R3)

. (4.6)

Now, by passing to the limit as L→ +∞ in (4.6), Fatou’s Lemma yields

‖u‖L(θ+1)2∗α (R3) ≤ C
1

(θ+1) (θ + 1)
1

(θ+1) ‖u‖
2θ+ν

2(θ+1)

Lα∗ (R3), (4.7)

where α∗ = µ(2θ+ν)/(µ−1). For each n ∈ N, define (θn−1+1)2∗α = µ(2θn+ν)/(µ−
1). Since µ > 3/(2α), it follows that θn is positive, increasing and unbounded. Thus,
set

ζn =
n−1∑
i=0

ln(c0(βi + 1))
βi + 1

and σn =
n−1∏
i=0

2βi + ν

2βi + 2
.

Notice that ζn and σn are convergent sequences (see also [18, Lemma 3.4]) with
ζn → ζ > 0 and σn → σ ∈ (0, 1). We can now iterate (4.7) to obtain

‖u‖Lµ(2βn+ν)/(µ−1)(R3) ≤ eζn‖u‖σn
Lµ∗ (R3)

, for all n ∈ N. (4.8)

Letting n → +∞ in (4.8) follows ‖u‖L∞(R3) ≤ eζ‖u‖σ
Lµ∗ (R3)

. Therefore, un → 0
strongly in L∞(R3) as n→ +∞, which completes the proof. �

Remark 4.2. Note that for the local case α = 1, estimate (4.6) can be directly
obtained by the continous Sobolev embedding H1(R3) ↪→ L6(R3).

Proof of Theorem 1.1. We now look back to the modified problem (2.4). In Section
3, we applied Theorem 3.3 to guarantee the existence of a sequence (un)n∈N of
critical points for the functional Ih. Hence, in view of Lemma 4.1, there exists
n0 ∈ N such that (un, φun) is a solution for (1.5), for all n ≥ n0, from which the
assertions of Theorem 1.1 follows. �
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