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Abstract. In this work, we construct new definitions for a causal terminal
value problem involving Riemann-Liouville fractional derivatives, and study

the unique solution by combining techniques from generalized quasilineariza-
tion.

1. Introduction

It has been shown that causal differential equations [2, 7, 8, 14, 21, 22, 30, 31, 32]
provide excellent models for real world problems [7] and in a variety of disciplines.
This is the main advantage of causal differential equations in comparison with the
traditional models [12]. There has also been a growing interest to study causal
dynamic systems [7, 14]. The theory of terminal value problems [1, 3, 10, 23, 25,
27, 31, 32] for ordinary differential equations is more complicated than that of initial
value problems of ordinary differential equations, and it is such an interesting theory
to study. The study of a terminal value problem for ordinary differential equations
using the method of lower and upper solutions can be found in [12]. The information
is given at the end point of the interval and one has to work backwards to find the
initial value at which the solution must start in order to reach the prescribed value
at the end point of the interval. This problem becomes more interesting in the case
of a fractional differential equation where it closely resembles a boundary value
problem, in the sense that the initial value is inherently involved in the definition
of the differential operator, and the terminal value provides the condition at the
right end point of the interval.

The study of differential equations with causal operators has rapidly developed
in recent years; see for example [7, 14]. The term for causal operators was adopted
from the engineering literature, and the theory these operators have is the powerful
quality of unifying the fractional order differential equations [4, 33], ordinary differ-
ential equations [7], integro-differential equations [26], differential equations with
finite or infinite delay [9], Volterra integral equations [26], and neutral functional
equations [7, 14, 22]. Especially, they are very common equations for modeling
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problems in mechanical engineering, physical engineering, electric and electronics
engineering [11, 19, 20, 24]. Moreover, causality is a basic concept in physical
sciences to describe the process of cause and effect in a particular situation.

The most important application of the quasilinearization method [3, 5, 6, 13,
14, 15, 17, 23, 28, 29, 30, 31, 32, 33, 34] in fractional causal differential equations
has been to obtain a sequence of lower and upper bounds which are the solutions
of linear fractional causal differential equations, that converge quadratically. As
a result, the method has been popular in applied areas. However, the convexity
assumption that is demanded by the method of quasilinearization has been a stum-
bling block for further development of the theory. Recently, this method has been
generalized, refined and extended in several directions so as to be applicable to a
much larger class of nonlinear problems by not demanding convexity and concavity
property. Moreover, other possibilities that have been explored make the method
of generalized quasilinearization universally useful in applications [16].

In a fractional causal terminal value problem (2.2) is used to obtain upper and
lower sequences in terms of the solutions of a linear fractional causal terminal value
problem, and bound the solutions of a given nonlinear fractional causal terminal
value problem. Moreover, we have also shown that these sequences converge to the
unique solution of the nonlinear equation uniformly and quadratically.

2. Preliminaries

In this section, we state some fundamental definitions and useful theorems used
for proving the main result. Let E = C[J,X] where J is an appropriate time
interval, X represents either finite or infinite dimensional space, depending on the
requirement of the context, so that E is a function space.

An operator Q : E → E is said to be a causal operator if, for each couple
of elements x, y in E such that x(s) = y(s) for 0 ≤ t0 ≤ s ≤ t, the equality
(Qx)(s) = (Qy)(s) holds for 0 ≤ t0 ≤ s ≤ t, t < T , T is a given number.

If E is a space of measurable functions on [t0, T ) for t0 ≥ 0, then the definition
needs a slight modification, requiring the property to be valid almost everywhere
on [t0, T ]. One can point out that for causal operators, a notation identical with
what is encountered for a general equation with a memory can be stated as follows.
A representation of the form

x(t) = (Qx)(t)

where for each t ∈ [t0, T ). The functional (Qx)(t) on E which takes values in X,
for each t, while the whole family of functionals, t ∈ [t0, T ), define the operator
from E = C([t0, T ), X) to itself.

For illustration, let us take E = C[[t0, T ),Rn] as the underlying space. Let {Qn}
be a sequence of causal operators on E such that

lim
n→∞

(Qnx)(t) = (Qx)(t) (2.1)

for each (t, x) ∈ [t0, T ) × E. The question is whether we can infer that the limit
Q : E → E is also a causal operator. The answer is yes because the causality of
{Qn} implies

(Qnx)(s) = (Qny)(s), s ∈ E[t0, T ).

If we let n→∞ on both sides, in the above relation and use (2.1) for each fixed
s ∈ [t0, T ), we obtain the causality of Q.
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The Riemann-Liouville Fractional Causal Terminal Value Problem (FCTVP) is
defined as follows,

Dqu(t) = (Qu)(t), u(T ) = uT = u(t)(T − t)1−q∣∣
t=T

(2.2)

where 0 < q < 1 and the terminal value T and the solution u(T, t0, u0) = uT . The
corresponding Volterra fractional integral equation is given by

u(t) = uT (t) +
1

Γ(q)

∫ T

t

(t− τ)q−1(Qu)(τ)dτ (2.3)

where uT (t) = uT (T−t)q−1

Γ(q) and Γ(q) is the standard Gamma function.
Let p = 1− q and

Cp([t0, T ],R) = {u : u ∈ C([t0, T ],R) and (T − t)pu(t) ∈ C([t0, T ],R)}
consider the fractional terminal value problem (FTVP)

Dqu(t) = f (t, u(t)), u(T ) = uT = u(t)(T − t)1−q∣∣
t=T

(2.4)

where f ∈ C[[t0, T ]×R,R] and uT (t) = uT (T−t)q−1

Γ(q) . In fact, the terminal condition
u(T ) = uT and u(t) is a solution of (2.4).

Definition 2.1. A function f : (t0, T ] → R is Hölder continuous if there are
nonnegative real constants C,α such that |f(x) − f(y)| ≤ C|x − y|α for all x, y ∈
(t0, T ].

Lemma 2.2. Let m ∈ Cp[[t0, T ],R] be locally Hölder continuous with exponent
λ > q, and for any t1 ∈ (t0, T ] we have that on (t1, T ]: m(t1) = 0, m(t) ≤ 0 and
m(t)(T − t)1−q

∣∣
t=T
≤ 0 for t0 ≤ t ≤ t1. Then

Dqm(t1) ≤ 0. (2.5)

Proof. By definition of the Riemann-Liouville fractional derivative is

Dqm(t) =
1

Γ(p)
d

dt

∫ T

t

(s− t)p−1m(s)ds.

Let H(t) =
∫ T
t

(s− t)p−1m(s)ds. For small h > 0, consider

H(t1 + h)−H(t1)

=
∫ T

t1+h

(s− t1 − h)p−1m(s)ds−
∫ T

t1

(s− t1)p−1m(s)ds

=
∫ T

t1+h

[(s− t1 − h)p−1 − (s− t1)p−1]m(s)ds−
∫ t1+h

t1

(s− t1)p−1m(s)ds

= I1 − I2
Since [(s− t1−h)p−1− (s− t1)p−1] > 0 for t1 ≤ s ≤ T and m(s) ≤ 0 by hypothesis
one has I1 ≤ 0. This leads to

H(t1 + h)−H(t1) = −
∫ t1+h

t1

(s− t1)p−1m(s)ds = −I2.

Since m(t) is locally Hölder continuous there exists a k(t1) > 0 such that for
t1 − h ≤ s ≤ t1 + h,

−k(t1)(s− t1)λ ≤ m(s)−m(t1) ≤ k(t1)(s− t1)λ
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where 0 < λ < 1 is such that λ > q. By Hölder continuity and from the fact that
m(t1) = 0 we obtain∫ t1+h

t1

(s− t1)p−1m(s)ds ≥
∫ t1+h

t1

(s− t1)p−1[m(t1)− k(t1)(s− t1)λ]ds

= −k(t1)
∫ t1+h

t1

(s− t1)p−1+λds.

Thus

−I2 =
∫ t1+h

t1

(s− t1)p−1m(s)ds ≤ k(t1)
∫ t1+h

t1

(s− t1)p−1+λds = k(t1)
hp+λ

p+ λ
.

Hence

H(t1 + h)−H(t1)− k(t1)
hp+λ

p+ λ
≤ 0

for sufficiently small h > 0. Letting h → 0, we obtain d
dtH(t1) ≤ 0, which implies

that Dqm(t1) ≤ 0 and the proof is complete. �

Lemma 2.3. Let {uε(t)} be a family of continuous functions on [t0, T ], for ε > 0,
such that

Dquε(t) = f(t, uε(t)),

uTε = uε(t)(T − t)1−q∣∣
t=T

, |f(t, uε(t))| ≤M for t0 ≤ t ≤ T.

Then the family of functions {uε(t)} is equicontinuous on [t0, T ].

The proof of the above lemma can be found in [18].

Definition 2.4. Function v, w ∈ Cp[[t0, T ],R] are said to be lower and the upper
solutions of (2.2) if v and w satisfy the differential inequalities, respectively,

Dqv(t) ≥ (Qv)(t), v(T ) ≤ uT

Dqw(t) ≤ (Qw)(t), w(T ) ≥ uT

where the causal operator Q ∈ E = C(R+,R), Q : E → E is continuous.

Definition 2.5. The causal operator Q : E → E is said to be semi nondecreasing
in t for each x if

(Qx)(t1) = (Qy)(t1) and (Qx)(t) ≤ (Qy)(t), 0 ≤ t < t1 < T, T ∈ R+

for
x(t1) = y(t1), x(t) < y(t), 0 ≤ t < t1 < T, T ∈ R+.

Definition 2.6. Let the causal operator Q ∈ C(R+,R). At x ∈ E,

(Q(x+ h))(t) = (Qx)(t) + L(x, h)(t) + ‖h‖η(x, h)(t)

where lim‖h‖→0 ‖η(x, h)(t)‖ = 0 and L(x, ·)(t) is a linear operator. L(x, h)(t) is said
to be Fréchet derivative of Q at x with the increment h for the remainder η(x, h)(t).

Theorem 2.7. Assume that (Qu)(t) ∈ C[R+ × R,R], where the causal operator
Q ∈ E = C(R+,R), Q : E → E is continuous. In addition to v, w ∈ Cp[[t0, T ],R]
be with continuous exponent λ > q, such that

(i) Dqv(t) ≥ (Qv)(t);
(ii) Dqw(t) ≤ (Qw)(t);
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(iii) (Qu)(t) is nondecreasing in u for each t, t0 ≤ t ≤ T with one of the
inequalities (i) or (ii) being strict.

Then v(T ) < w(T ), where v(T ) = vT = v(t)(T − t)1−q
∣∣
t=T
≤ v(t0) and w(T ) =

wT = w(t)(T − t)1−q
∣∣
t=T
≥ w(t0), implies v(t) < w(t), t ∈ [t0, T ].

Proof. Assume that one of the inequalities is strict; let (i) be strict and then set
m(t) = v(t) − w(t). If the conclusion of the theorem is not true, then there exists
t1 ∈ (t0, T ] such that m(t1) = 0, m(t) ≤ 0 for t0 ≤ t ≤ t1.

Consider the case when t1 ∈ (t0, T ], then m(t1) = 0, m(t) ≤ 0 on (t0, t1). By
using Lemma 2.2, we obtain to be Dqm(t1) ≤ 0. Thus

(Qv)(t1) < Dqv(t1) ≤ Dqw(t1) ≤ (Qw)(t1),

(Qv)(t1) < (Qw)(t1)

which is a contradiction. Therefore v(t) < w(t).
We set, for the nonstrict inequality

ṽ(t) = v(t)− ε[(T − t)q−1Eq,q[−2L(t− t0)q]]

for ε, L > 0, where Eq,q is the Mittag-Leffler function that define as Eq,q(z) =∑∞
k=0

zk

Γ((k+1)q) , q > 0. This implies that

ṽ(t)(T − t)1−q∣∣
t=T

= ṽT = v(t)(T − t)1−q∣∣
t=T
− εg(t)(T − t)1−q∣∣

t=T
.

So that ṽT = vT − εgT . Then ṽ(t) < v(t) for t ∈ [t0, T ] and ṽ(T ) < v(T ). Thus, it
follows from (i) and the fact that (Qu)(t) is nondecreasing, that

Dq ṽ(t) = Dqv(t)− εDqg(t) ≥ (Qv)(t) + 2εLg(t)

≥ (Qṽ)(t) + 2εLg(t) > (Qṽ)(t).

It follows by the earlier argument that ṽ(t) < w(t). Finally, letting ε→ 0, we have
v(t) ≤ w(t). The proof is complete. �

Theorem 2.8. Assume that v, w ∈ Cp[[t0, T ],R] such that v(t) ≤ w(t), t ∈ [t0, T ]
and Q : Ω → R is the continuous causal operator where Ω = [(t, u) : v(t) ≤ u ≤
w(t)]. Suppose further that

(i) Dqv(t) ≥ (Qv)(t);
(ii) Dqw(t) ≤ (Qw)(t);

(iii) (Qu)(t) ≤ λ(t) on Ω such that λ ∈ L1[R+,R].
Then (2.2) has a solution which satisfies v(t) ≤ u(t) ≤ w(t) on [t0, T ] provided that
v(T ) ≤ u(T ) ≤ w(T ) for some t0 ≥ 0.

Proof. Consider P : [t0, T ]× R→ R defined by

(Pu)(t) = max{v(t),min{u,w(t)}}. (2.6)

Then Q is a continuous causal operators and by the assumption (iii), we have
(Qu)(t) ≤ λ(t). So that Q(t, (Pu)(t)) defines a continuous extension of Q to [t0, T ]×
R which is also bounded. Therefore, the FCTVP

Dqu = Q(t, (Pu)(t)), u(T ) = uT (2.7)

has a solution u(t) on [t0, T ]. We show v(t) ≤ u(t) ≤ w(t) for t ∈ [t0, T ] and
therefore u(t) is a solution of (2.2).
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For ε, L > 0, consider

ṽ(t)(T − t)1−q∣∣
t=T

= v(t)(T − t)1−q∣∣
t=T
− εg(t)(T − t)1−q∣∣

t=T

w̃(t)(T − t)1−q∣∣
t=T

= w(t)(T − t)1−q∣∣
t=T

+ εg(t)(T − t)1−q∣∣
t=T

(2.8)

where g(t) = (T − t)q−1Eq,q[−2L(t− t0)q].
Then w̃(t) > w(t), ṽ(t) < v(t) and ṽ(T ) < u(T ) < w̃(T ). We claim that

ṽ(t) < u(t) < w̃(t) on [t0, T ]. Suppose that it is not true and thus there exists
t1 ∈ [t0, T ] such that u(t1) = w̃(t1) and ṽ(t) < u(t) < w̃(t), t0 ≤ t ≤ t1.

Then u(t1) > w(t1) and hence (Pu)(t1) = w(t1). Also v(t1) ≤ (Pu)(t1) ≤ w(t1).
Setting m(t) = u(t) − w̃(t), we have m(t1) = 0 and m(t) ≤ 0, t0 ≤ t ≤ t1. Hence
by Lemma 2.2, we obtain Dqm(t1) ≤ 0 that yields

Q(t1, (Pu)(t1)) = Dqu(t1) ≤ Dqw̃(t1) = Dqw(t1)− 2εLg(t1)

≤ Q(t1, wt1)− 2εLg(t1) = Q(t1, (Pu)(t1))− 2εLg(t1)

< Q(t1, (Pu)(t1))

which is a contradiction. Then, we have u(t) < w̃(t) on [t0, T ] provided that
u(T ) ≤ w(T ) for some t0 ≥ 0. Similarly, the other case ṽ(t) < u(t) for t0 ≤ t ≤ T
can be proved.

Consequently, combining the proved results, we have ṽ(t) < u(t) < w̃(t) on
t ∈ [t0, T ]. Letting ε → 0, we obtain v(t) ≤ u(t) ≤ w(t), on [0, T ]. The proof is
complete. �

3. Quasilinearization Method

In this section, we extend the generalized quasilinearization method for nonlinear
terminal value problems in [3]. We prove the main theorem that gives several con-
ditions to apply the method of quasilinearization to the nonlinear causal terminal
value problem involving Riemann-Liouville fractional derivatives.

Theorem 3.1. Assume that Q, Φ : C[R+,R] → C[R+,R] are continuous causal
operator such that (Qu)(t), (Φu)(t) ∈ C[R+ × R,R] and

(M1) |(Qu)(t)| ≤ λ(t)|u(t)| on Ω = [(t, u) ∈ [t0, T ] × Cq[[t0, T ],R] : v(t) ≤ u ≤
w(t)], where λ ∈ L1[0,∞);

(M2) v, w ∈ Cq[[t0, T ],R] are the lower and upper solutions of (2.2) such that
v(t) ≤ w(t), t ∈ [t0, T ];

(M3) v0, w0 ∈ Cq[[t0, T ],R] with v0(t) ≤ w0(t) on [t0, T ], v0(T ), w0(T ) exist and
(a) Dqv0(t) ≥ (Qv0)(t), v0(T ) ≤ uT for t ∈ [t0, T ];
(b) Dqw0(t) ≤ (Qw0)(t), w0(T ) ≥ uT for t ∈ [t0, T ];

(M4) Q,Φ ∈ Cq[R+,R] and for (t, u) ∈ Ω the Fréchet derivatives (Quu)(t),
(Φuu)(t), (Quuu)(t) and (Φuuu)(t) exists and are continuous on [0,∞) such
that (Quu)(t) ≤ B, (Quuu)(t)+ (Φuuu)(t) ≤ 0 for some function Φ with
|(Φu)(t)| ≤ λ1(t)|u(t)|, |(Φuu)(t)| ≤ F and (Quuu)(t) ≥ 0, (Φuuu)(t) ≤ 0
on R+ × R, where B,F, λ1 ∈ L1[0,∞).

Then there exist the monotone sequences {vn} and {wn} which converge uniformly
to the unique solution u(t) = uT (t) + 1

Γ(q)

∫ T
t

(t − τ)q−1(Qu)(τ)dτ that satisfy
u(T, t0, u0) = uT of (2.2) on [t0, T ]. Moreover, the convergence is quadratic.
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Proof. Let us initially define a continuous causal operator Ψ : C[R+,R]→ C[R+,R]
and (Ψu)(t) ∈ C[R+ × R,R], such that

(Ψu)(t) = (Qu)(t) + (Φu)(t). (3.1)

In view of (M4), we see that (Ψuuu)(t) ≤ 0, and |(Ψu)(t)| ≤ (λ(t)+λ1(t))|u(t)| =
P |u(t)|, where P = (λ(t) + λ1(t)) ∈ L1[0,∞). Also, |(Ψuu)(t)| ≤ B + F = P1 ∈
L1[0,∞). Using the generalized mean value theorem and (3.1), we have

(Qu)(t) ≤ (Ψα)(t) + (Ψuα)(t)(u− α)− (Φu)(t)

where u, α ∈ Cq[[t0, T ],R] such that α(t) ≤ u(t), t ∈ [t0, T ]. Get

(Guα)(t) = (Ψα)(t) + (Ψuα)(t)(u− α)− (Φu)(t) (3.2)

and observe that
(Guα)(t) ≥ (Qu)(t)

(Guu)(t) = (Qu)(t).
(3.3)

Further, in view of the nonincreasing property of (Φuu)(t), we obtain

(Guuα)(t) = (Ψuα)(t)− (Φuu)(t) ≥ (Ψuα)(t)− (Φuα)(t) ≥ (Quα)(t) ≥ 0.

Thus, (Guα)(t) is nondecreasing in u for each fixed (t, α) ∈ [t0, T ] × Cq[[t0, T ],R].
Further,

(Guα)(t) = (Ψα)(t) + (Ψuu)(t)(u− α)− (Φu)(t),
which, together with (M1), (M4) and (3.2) implies that

(Guα)(t) = P |α|+B(|u|+ |α|) + λ1|u| = P2(t)|α|+ P3(t)|u| = (H|u|)(t), (3.4)

where P2 = P + B, P3 = λ1 + B ∈ L1[0,∞). Now, using the mean value theorem
and the nonincreasing nature of (Ψuu)(t), we obtain

(Guα1)(t)− (Guα2)(t) ≤ (Ψuµ1)(t)(α1 − α2) + (Ψuα2)(t)(α2 − α1)

= (Ψuuµ2)(t)(µ1 − α2)(α1 − α2) ≤ 0
(3.5)

where α2 ≤ µ2 ≤ µ1 ≤ α1. Expression (3.5) implies that (Guα)(t) is nonincreasing
in α for each fixed (t, u) ∈ [t0, T ] × Cq[[t0, T ],R]. Set v = β0 and consider the
FCTVP

Dqu(t) = (Guβ0)(t), u(T ) = γT (3.6)
Because of expression (3.4), the problem (3.6) has a unique solution β1(t) on [a,∞),
a > 0 satisfying u1(T ) = uT . Also, in view of (M2) and (3.3), we have

Dqβ0 ≥ (Qβ0)(t) = (Gβ0β0)(t), β0(T ) ≤ γT ,
Dqw(t) ≤ (Qw)(t) ≤ (Gwβ0)(t), w(T ) ≥ γT

which imply
v(t) ≤ u1(t) ≤ w(t) for some a ≥ 0.

Next, we consider the FCTVP

Dqu(t) = (Guβ1)(t), u(T ) = γT (3.7)

As above, we can show that (3.7) has a unique solution β2(t) satisfying β2(T ) = γT .
Using (3.3) and the nonincreasing property of (Guα)(t) in α, we have

Dqβ1(t) = (Gβ1β0)(t) ≥ (Gβ1β1)(t), β1(T ) = γT

which implies that β1(t) is a lower solution of (3.7) and

Dqw(t) ≤ (Qw)(t) ≤ (Gwβ1)(t), β(T ) ≥ γT
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implies that w(t) is an upper solution of (3.7). Further, β1(T ) ≤ β2(T ) ≤ w(T ).
Again, by Theorem 2.8, we obtain

β1(t) ≤ β2(t) ≤ w(t), t ∈ [a, T )

for some a ≥ 0. Continuing this process successively, we obtain

v ≤ β1 ≤ β2 ≤ β3 ≤ · · · ≤ βn−1 ≤ βn ≤ w on [t0, T ]

where the elements of the monotone sequence {βn} are the solutions of the problem

Dqu(t) = (Guβ(n−1))(t), u(T ) = γT .

Since the sequence {βn} is monotone, it follows that it has a pointwise limit β(t).
To show that β(t) is in fact a solution of (2.2), we observe that βn is a solution of
the linear FCTVP

Dqu(t) = (Gβnβ(n−1))(t) = Fn(t), βn(T ) = γT (3.8)

where

Fn(t) = (Ψβ(n−1))(t) + (Ψuβ(n−1))(t)(βn − βn−1)− (Φβn)(t).

Since G is continuous on R+, therefore, in view of (3.4), it follows that for each
n ∈ N, the sequence {Fn(t)} is a sequence of continuous functions and is bounded
by (Hβn)(t) ∈ L1[0,∞). Consequently,

∫∞
t
Fn(s)ds < ∞. Now, taking the limits

both side as n→∞, we have

lim
n→∞

Fn(t) = lim
n→∞

(Gβnβ(n−1))(t) = (Qβ)(t).

Now, by using the Lebesque dominated convergence theorem, we obtain

lim
n→∞

∫ ∞
t

Fn(s)ds =
∫ ∞
t

(Qu)(s)ds

which implies
∫∞
t

(Qu)(s)ds <∞. Now, the solution of (3.8) is

βn(t) = γT −
∫ ∞
t

Fn(s)ds

which, by taking the limit n→∞, yields

β(t) = γT −
∫ ∞
t

(Qu)(s)ds.

This shows that β(t) is solution of the (2.2).
To prove the quadratic convergence of {αn} and {βn} to the unique solution, we

consider

σn(t) = β(t)− βn(t), n = 1, 2, 3, . . .
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Observe that σn(t) ≥ 0 and σn(∞) = 0. Here we use the mean value theorem and
assumption (M4), to obtain

Dqσn+1(t)

= Dqβ(t)−Dqβn+1(t)

= (Qβ)(t)− [(Ψβn)(t) + (Ψuβn)(t)(βn+1 − βn)− (Φβ(n+1))(t)]

= (Ψuβn)(t)(β − βn) + (Ψuuξ)(t)
(β − βn)2

2!
− (Ψuβn)(t)(βn+1 − βn)− ((Φβ)(t)− (Φβ(n+1))(t))

= (Ψuβn)(t)(β − βn+1) + (Ψuuξ)(t)
(β − βn)2

2!
− (Ψuξ1)(t)(β − βn+1)

≥ (Quβn)(t)σn+1(t) + (Ψuuζ1)(t)
(σn(t))2

2!

≥ −B(t)σn+1(t)− DqP (t)
2

(σn(t))2,

(3.9)

σn+1(∞) = 0, where βn ≤ ζ ≤ β. From (3.9) and using the definition of lower
solution and Theorem 2.8, we have σn+1(t) ≤ r(t) for some t ≥ a > 0, where

r(t) = exp
(∫ ∞

t

B(s)ds
)[ ∫ ∞

t

DqP (s)
2

(σn(s))2 exp
(
−
∫ ∞
t

B(l)dl
)
ds
]
,

which is a unique solution of the nonhomogeneous linear problem

Dqr(t) = −B(t)r(t)− DqP (t)
2

(σn(t))2, β(∞) = 0.

Thus,

σn+1(t) ≤ exp
(∫ ∞

t

B(s)ds
)[ ∫ ∞

t

DqP (s)
2

(σn(s))2 exp(−
∫ ∞
t

B(l)dl)ds
]
.

Hence,

|σn+1(t)| ≤ | exp(
∫ ∞
t

B(s)ds)|
∣∣∣ ∫ ∞
t

DqP (s)
2

(σn(s))2 exp(−
∫ ∞
t

B(l)dl)ds
∣∣∣

≤ K|σn(s)|2T = A|σn(s)|2,

where | exp(
∫∞
t
B(s)ds)| ≤ K,∣∣ ∫ ∞

t

DqP (s)
2

(σn(s))2 exp(−
∫ ∞
t

B(l)dl)ds
∣∣ ≤ 2T

and A = KT . This establishes the quadratic convergence and therefore completes
the proof. �
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