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EXISTENCE AND PROPERTIES OF TRAVELING WAVES FOR
DOUBLY NONLOCAL FISHER-KPP EQUATIONS

DMITRI FINKELSHTEIN, YURI KONDRATIEV, PASHA TKACHOV

Abstract. We consider a reaction-diffusion equation with nonlocal anisotropic

diffusion and a linear combination of local and nonlocal monostable-type re-
actions in a space of bounded functions on Rd. Using the properties of the

corresponding semiflow, we prove the existence of monotone traveling waves

along those directions where the diffusion kernel is exponentially integrable.
Among other properties, we prove continuity, strict monotonicity and expo-

nential integrability of the traveling wave profiles.

1. Introduction

1.1. Description of equation. We study the initial value problem
∂u

∂t
(x, t) = κ+(a+ ∗ u)(x, t)−mu(x, t)− u(x, t)(Gu)(x, t), t > 0,

u(x, 0) = u0(x),
(1.1)

where
(Gu)(x, t) := κ`u(x, t) + κn`(a− ∗ u)(x, t), (1.2)

which generates a semi-flow u(·, 0) 7→ u(·, t), t > 0, in a class of bounded nonneg-
ative functions on Rd, d ≥ 1. Here κ+,m > 0 and κ`, κn` ≥ 0 are constants, such
that

κ− := κ` + κn` > 0; (1.3)
and the functions 0 ≤ a± ∈ L1(Rd) are probability densities, i.e.∫

Rd

a+(y)dy =
∫

Rd

a−(y)dy = 1. (1.4)

The symbol ∗ denotes the convolution with respect to the space variable, i.e.

(a± ∗ u)(x, t) :=
∫

Rd

a±(x− y)u(y, t)dy.

The solution u = u(x, t) describes the local density of a species at the point
x ∈ Rd at the moment of time t ≥ 0. The individuals of the species spread over
the space Rd according to the dispersion kernel a+ and the fecundity rate κ+.
The individuals may die according to both constant mortality rate m and density
dependent competition, described by the rate κ−. The competition may be local,
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when the density u(x, t) at a point x is influenced by itself only, with the rate κ`,
or nonlocal, when the density u(x, t) is influenced by all values u(y, t), y ∈ Rd,
averaged over Rd according to the competition kernel a− with the rate κn`.

For the case β := κ+ −m > 0, equation (1.1) can be rewritten in the reaction-
diffusion form

∂u

∂t
(x, t) = κ+

∫
Rd

a+(x− y)
(
u(y, t)− u(x, t)

)
dy

+ u(x, t)
(
β − (Gu)(x, t)

)
.

(1.5)

The first summand here describes a non-local diffusion generator, see e.g. [2] (also
known as the generator of a continuous time random walk in Rd or of a compound
Poisson process on Rd). As a result, the solution u to (1.5) may be interpreted as
a density of a species which invades according to a nonlocal diffusion within the
space Rd meeting a reaction Fu := u(β −Gu); see e.g. [12, 29, 34].

The non-local diffusion in reaction-diffusion equations first appeared (for the
case d = 1) in the seminal paper [24] by Kolmogorov, Petrovsky and Piskunov,
to describe a dynamics where individuals move during the time between birth and
reproduction meeting a local reaction Fu = f(u) = u(1 − u)2. Using a diffusive
scaling, the equation in [24] was informally transformed to

∂u

∂t
(x, t) = α∆u(x, t) + f

(
u(x, t)

)
, (1.6)

where ∆ denotes the Laplace operator, α > 0. The choice of the local reaction
f(u) = u(1 − u)2 was motivated by a discrete genetic model. Equation (1.6) was
studied in [24], for a class of reactions which includes also, in particular,

f(u) = u(1− u)

that corresponds to κn` = 0, κ` = 1, β = 1 in (1.2) and (1.5). The latter reaction
was early considered by Fisher in [20] for another genetic model. The Fisher-
KPP equation (1.6) has been actively studied and generalized since then, see e.g.
[3, 23, 38] and references therein.

Later, equation (1.5) with local G, i.e. with κn` = 0 in (1.2), was considered in
[31] (motivated by an analogy to Kendall’s epidemic model) and has been actively
studied in the last decade, see e.g. [1, 5, 6, 8, 22, 25, 36, 41] for d = 1 and [7, 33]
for d ≥ 1.

Equation (1.5) with pure nonlocal G, i.e. with κ` = 0, κ− = κn` in (1.2), first
appeared, for the case κ+a+ = κ−a−, m = 0, in [27, 28]. Next, it was derived from
a lattice ‘crabgrass model’, for the case κ+a+ = κ−a−, m > 0 in [10] and latter
considered in [30].

Note also that, in the pure nonlocal case κ` = 0, the microscopic (individual-
based) model of spatial ecology corresponding to equation (1.1) was proposed by
Bolker and Pacala in [4]. In this case, equation (1.1) can be rigorously derived
in a proper scaling limit of the corresponding multi-particle evolution; see [21] for
integrable species densities and [13, 14] for bounded ones.

In this article, we consider a unified approach to both local and nonlocal com-
petition terms in (1.1).

1.2. Description of results. Clearly, u ≡ 0 is a constant stationary solution to
(1.1). We will assume in the sequel that

κ+ > m. (1.7)
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Then equation (1.1) has the unique positive constant stationary solution u ≡ θ,
where

θ :=
κ+ −m
κ−

> 0. (1.8)

Our primary object of investigation are monotone traveling waves, which connect
0 and θ. LetMθ(R) denote the set of all decreasing and right-continuous functions
f : R → [0, θ]. By a (monotone) traveling wave solution to (1.1) in a direction
ξ ∈ Sd−1 (the unit sphere in Rd), we will understand a solution of the form

u(x, t) = ψ(x · ξ − ct), t ≥ 0, a.a. x ∈ Rd,
ψ(−∞) = θ, ψ(+∞) = 0,

(1.9)

where c ∈ R is called the speed of the wave and the function ψ ∈ Mθ(R) is called
the profile of the wave. Here and below x ·ξ denotes the scalar product in Rd. Such
solutions are also called in literature as traveling planes, see e.g. [11].

Define the function

Jθ(x) := κ+a+(x)− κn`θa−(x), x ∈ Rd. (1.10)

For a fixed ξ ∈ Sd−1, we introduce the following assumptions:∫
{x·ξ=s}

Jθ(x) dx ≥ 0 for a.a. s ∈ R, (1.11)

cf. (3.6), (3.9) below, and

there exists µ = µ(ξ) > 0 such that
∫

Rd

a+(x)eµx·ξ dx <∞. (1.12)

Stress that assumption (1.11) is redundant for the case of the local G, when κn` = 0,
i.e. for the case of the local reaction Fu = f(u) = u(β − κ`u).

We will also use the following counterpart of (1.11): there exist ρ, δ > 0 (de-
pending on ξ), such that∫

{x·ξ=s}
Jθ(x) dx ≥ ρ for a.a. |s| ≤ δ. (1.13)

The following theorem is the main result of this article.

Theorem 1.1. Let ξ ∈ Sd−1 be fixed, and suppose that (1.7), (1.11), (1.12) hold.
Then there exists c∗(ξ) ∈ R, such that for any c < c∗(ξ), a traveling wave solution to
(1.1) of the form (1.9) with ψ ∈Mθ(R) does not exist; whereas, for any c ≥ c∗(ξ),

(1) there exists a traveling wave solution to (1.1) with the speed c and a profile
ψ ∈Mθ(R) such that (1.9) holds;

(2) if c 6= 0, then the profile ψ ∈ C∞b (R) (the class of infinitely many times
differentiable functions on R with bounded derivatives); if c = 0 (in the case
c∗(ξ) ≤ 0), then ψ ∈ C(R);

(3) there exists µ = µ(c, a+, κ−, θ) > 0 such that∫
R
ψ(s)eµs ds <∞; (1.14)

(4) let (1.13) hold, then the profile ψ is a strictly decreasing function on R;
(5) let (1.13) hold, then, for any c 6= 0, there exists ν > 0, such that ψ(t)eνt is

a strictly increasing function.
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Remark 1.2. The last two items of Theorem 1.1 will be proven in Propositions 3.14
and 3.15 below under assumptions weaker than (1.13).

Remark 1.3. The results of [17, 18] show that the assumption (1.12) is ‘almost’
necessary to have traveling wave solutions in equation (1.1).

By a solution to (1.1) on [0, T ), T ≤ ∞, we will understand the so-called classical
solution, that is a mapping from [0, T ) to a Banach space E of bounded functions
on Rd which is continuous in t ∈ [0, T ), continuously differentiable (in the sense of
the norm in E) in t ∈ (0, T ), and satisfies (1.1). The space E is either the space
L∞(Rd) of essentially bounded (with respect to the Lebesgue measure) functions
on Rd with ess sup-norm, or its Banach subspaces Cb(Rd) or Cub(Rd) of bounded
continuous or, respectively, bounded uniformly continuous functions on Rd with
sup-norm.

According to (1.2), we consider the mapping

Gu := κ`u+ κn`a
− ∗ u, u ∈ E. (1.15)

Clearly, G maps E to E and preserves the cone {0 ≤ u ∈ E}. Here and below, all
point-wise inequalities for functions from E we consider, for the case E = L∞(Rd),
almost everywhere only. Moreover, the mapping G is globally Lipschitz on E. In
particular, it satisfies the conditions of [19, Theorem 2.2] that can be read, in our
case, as follows.

Theorem 1.4 ([19, Theorems 2.2, 3.3]). Let 0 ≤ a± ∈ L1(Rd), m > 0, κ`, κn` ≥ 0
be such that (1.3) and (1.4) hold. Then, for any 0 ≤ u0 ∈ E and for any T > 0,
there exists a unique classical solution u to (1.1) on [0, T ). In particular, u is a
unique classical solution to (1.1) on [0,∞).

For any t ≥ 0 and 0 ≤ f ∈ L∞(Rd), we define

(Qtf)(x) := u(x, t), a.a. x ∈ Rd, (1.16)

where u(x, t) is the solution to (1.1) with the initial condition u(x, 0) = f(x). From
the uniqueness arguments and the proof of [19, Theorems 2.2, 3.3], we immediately
get that (Qt)t≥0 constitutes a continuous semi-flow on the cone {0 ≤ f ∈ L∞(Rd)},
i.e. Qt is continuous at t = 0 and

Qt+sf = Qt(Qsf), t, s ≥ 0,

for each 0 ≤ f ∈ L∞(Rd).
It can be checked (see Proposition 2.13 below) that u ≡ 0 is an unstable solution

to (1.1) and that the following reinforced version of (1.11),

Jθ(x) ≥ 0, a.a. x ∈ Rd, (1.17)

is a sufficient condition to that u ≡ θ is a uniformly and asymptotically stable
solution, in the sense of Lyapunov.

Similarly to above, the assumption (1.17) is redundant for the case of the local
G, when κn` = 0, Fu = f(u) = u(β − κ`u).

In [19, Proposition 5.4], we considered properties of the semi-flow Qt generated
by equation (1.1), cf. (1.16), with a general G which satisfies a list of conditions. We
will show in Subsection 2.1 below, that G given by (1.15) fulfills these conditions,
that will imply the items (Q1)–(Q5) of the following statement. We define the tube

E+
θ := {u ∈ E | 0 ≤ u ≤ θ}. (1.18)
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For the case d = 1, we recall also thatMθ(R) denotes the set of all decreasing and
right-continuous functions f : R→ [0, θ], cf. Remark 3.1 below.

Theorem 1.5 ([19, Proposition 5.4]). Let (1.7) and (1.17) hold. Let E = L∞(Rd)
and (Qt)t≥0 be the semi-flow (1.16) on the cone {0 ≤ f ∈ L∞(Rd)}. Then, for
each t > 0, Q = Qt satisfies the following properties:

(Q1) Q maps each of sets E+
θ , E+

θ ∩ Cb(Rd), E
+
θ ∩ Cub(Rd) into itself;

(Q2) let Ty, y ∈ Rd, be a translation operator, given by

(Tyf)(x) = f(x− y), x ∈ Rd, (1.19)

then

(QTyf)(x) = (TyQf)(x), x, y ∈ Rd, f ∈ E+
θ ; (1.20)

(Q3) Q0 = 0, Qθ = θ, and Qr > r, for any constant r ∈ (0, θ);
(Q4) if f, g ∈ E+

θ , f ≤ g, then Qf ≤ Qg;

(Q5) if fn, f ∈ E+
θ , fn

loc=⇒ f , then (Qfn)(x)→ (Qf)(x) for (a.a.) x ∈ Rd;
(Q6) if d = 1, then Q :Mθ(R)→Mθ(R).

Here and below loc=⇒ denotes the locally uniform convergence of functions on Rd
(in other words, fn11Λ converge to f11Λ in E, for each compact Λ ⊂ Rd).

The property (Q1) states that the solution u(·, t) remains in the tube E+
θ for all

t > 0 if only u(·, 0) is in this tube. In Remark 2.6 below, we will show that, under
(1.7), the assumption (1.17) is necessary to the fact that the set E+

θ is invariant for
Qt, t > 0.

The property (Q4) means that the comparison principle holds for the solutions
to (1.1). Namely, if u1, u2 are classical solutions to (1.1) on R+ and 0 ≤ u1(x, 0) ≤
u2(x, 0) ≤ θ, x ∈ Rd, then, for all t ∈ R+, (a.a.) x ∈ Rd,

0 ≤ u1(x, t) ≤ u2(x, t) ≤ θ. (1.21)

See also Proposition 2.8 below.
Our proof for the first part of Theorem 1.1 is based on an abstract result, for the

case d = 1, by Yagisita [41] for a continuous semi-flow which satisfies (Q2)–(Q6)
on Mθ(R) and has an appropriate super-solution (see Proposition 3.8 below for
details). As an application, Yagisita considered a generalization of equation (1.1)
with a local G in (1.2), i.e. with κn` = 0 (and for d = 1).

Early, in [7], it was shown how to reduce the study of traveling waves of the form
(1.9) for the case d > 1 to the study of the case d = 1, cf. Proposition 3.3 below;
and, for a continuous anisotropic kernel a+ and for also a generalization of a local
G in (1.2), the traveling waves for (1.1) were studied using the technique of sub-
and super-solutions; see also [36]. For generalizations in the case of local reaction
depending on space variable (i.e. κn` = 0 and κ`,m depend on x), see e.g. [26, 32]

The case of a nonlocal G in (1.1)–(1.2) appeared more difficult for analysis. The
only known results for the case κn` 6= 0 in (1.2) were obtained in [42, 40] for the
case of a symmetric quickly decaying kernel a+, the latter mean that the integral
in (1.12) is finite for all µ > 0.

In this paper, we find an upper estimate for c∗(ξ), see (3.19) and (3.10) below.
Note that the present and forthcoming papers [16, 17] are based on our unpublished
preprint [15] and thesis [37]. In particular, in [16], we will prove that the estimate
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(3.19) is, as a matter of fact, equality, namely,

c∗(ξ) = min
λ>0

1
λ

(
κ+

∫
Rd

a+(x)eλx·ξ dx−m
)
.

(that coincides with the result in [7] for κn` = 0). We will find also in [16] the exact
asymptotic of the profile ψ at ∞, that implies, in particular, (1.14). Note that, the
quite technical result (1.14) is crucial for the analysis of traveling waves used in [16]
which is based on the usage of the Laplace transform.

It is worth noting also that, in [39], Weinberger considered spreading speeds of
a discrete-time dynamical system un = Qun−1 constructed by a mapping Q on
E = Cb(Rd) which satisfies the properties (Q1)–(Q5). He has also obtained results
about a traveling wave solution (in discrete time), however, under an additional
assumption that Q is a compact mapping on E = Cb(Rd) in the topology of the
locally uniform convergence. The traveling wave appeared the limit of a subse-
quence of appropriately chosen sequence (un)n∈N. However, for equation (1.1), it
is unclear how to check whether the operator Q = Qt, given by (1.16), is compact
on E = Cb(Rd) even for the local G in (1.2) (κn` = 0); and hence we can’t apply
Weinberger’s results. On the other hand, Yagisita in [41] has pointed out that, con-
sidering traveling waves (1.9) with monotone profiles ψ, the existence of the limit
above follows from Helly’s theorem, which implies that Q is compact onMθ(R) in
the topology of the locally uniform convergence. Note also that a modification of
Weinberger’s results about spreading speeds for continuous time for equation (1.1)
with an arbitrary u0 ∈ E+

θ will be considered in [17].
This paper is organized as follows. In Section 2, we check properties (Q1)–(Q5)

of Theorem 1.5, and prove the strong maximum principle for the case E = Cub(Rd)
(see Theorem 2.15, cf. e.g. [7] for κn` = 0). In Section 3, we prove (Q6) (see
Proposition 3.7) and Theorem 1.1.

2. Properties of semi-flow

2.1. Verification of properties (Q1)–(Q5). to this end we to use [19, Proposition
5.4], and check the assumptions of the latter statement. Let the mapping G be given
by (1.15). Then, under (1.7), by (1.8), we have

0 = G0 ≤ Gv ≤ Gθ = κ+ −m, v ∈ E+
θ , (2.1)

cf. (1.18). Moreover, it is easy to see that

Gr < κ+ −m, r ∈ (0, θ). (2.2)

Note also, that, for Ty, t ∈ Rd given by (1.19), we evidently have

(TyGv)(x) = (GTyv)(x), x ∈ Rd, v ∈ E+
θ . (2.3)

We denote also by
Hu := κ+a+ ∗ u−mu− uGu (2.4)

the right-hand side of (1.1).
Let (1.17) hold. Then, for u, v ∈ E+

θ with u ≤ v, we have, by (1.8), (1.15), that
0 ≤ Gv ≤ κ+ −m and Gv −Gu = κ`(v − u) + κn`a

− ∗ (v − u), and hence

Hv −Hu = κ+a+ ∗ (v − u)−m(v − u)− (v − u)Gv − u(Gv −Gu)

≥ Jθ ∗ (v − u)− (κ+ + θκ`)(v − u).
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Therefore, there exists p = κ+ + θκ` > 0, such that the operator H is quasi-
monotone on E+

θ , namely,

Hu+ pu ≤ Hv + pv, u, v ∈ E+
θ , u ≤ v. (2.5)

We will use also the following simple lemmas in the sequel.

Lemma 2.1. Let a ∈ L1(Rd), f ∈ E. Then a ∗ f ∈ Cub(Rd). Moreover, if
v ∈ Cb(I → E), I ⊂ R+, then a ∗ v ∈ Cb(I → Cub(Rd)).

Proof. The convolution is a bounded function, as

|(a ∗ f)(x)| ≤ ‖f‖E ‖a‖L1(Rd), a ∈ L1(Rd), f ∈ E. (2.6)

Next, let an ∈ C0(Rd), n ∈ N, be such that ‖a − an‖L1(Rd) → 0, n → ∞. For
any n ≥ 1, the proof of that an ∗ f ∈ Cub(Rd) is straightforward. Next, by (2.6),
‖a∗f−an∗f‖E → 0, n→∞. Hence a∗u is a uniform limit of uniformly continuous
functions that fulfills the proof of the first statement. The second statement is
followed from the first one and the inequality (2.6). �

Lemma 2.2. Let a ∈ L1(Rd), {fn, f} ⊂ L∞(Rd), ‖fn‖ ≤ C, for some C > 0, and
fn

loc=⇒ f . Then a ∗ fn
loc=⇒ a ∗ f .

Proof. Let {am} ⊂ C0(Rd) be such that ‖am − a‖L1(Rd) → 0, m→∞, and denote
Am := supp am. Note that, there exists D > 0, such that ‖am‖L1(Rd) ≤ D, m ∈ N.
Next, for any compact Λ ⊂ Rd,

|11Λ(x)(am ∗ (fn − f))(x)| ≤
∫

Rd

11Am
(y)11Λ(x)|am(y)||fn(x− y)− f(x− y)| dy

≤ ‖am‖L1(Rd)‖11Λm
(fn − f)‖ → 0, n→∞, (2.7)

for some compact Λm ⊂ Rd. Next,

‖11Λ(a ∗ (fn − f))‖ ≤ ‖11Λ(am ∗ (fn − f))‖+ ‖11Λ((a− am) ∗ (fn − f))‖
≤ D‖11Λm

(fn − f)‖+ (C + ‖f‖)‖a− am‖L1(Rd),

and the second term may be arbitrary small by a choice of m. �

Remark 2.3. By the first inequality in (2.7) and the dominated convergence the-
orem, we can conclude that fn(x)→ f(x) a.e. implies that (a ∗ fn)(x)→ (a ∗ f)(x)
a.e.

By Lemma 2.2, both operators Av = κ+a+ ∗ v and Gv = κ`v + κn`a
− ∗ v are

continuous in the topology of the locally uniformly convergence.
Because of (2.1), (2.2), (2.3), (2.5), and the continuity of G in both uniform and

locally uniform convergences inside the tube E+
θ , one can apply [19, Proposition

5.4] to get the properties (Q1)–(Q5) of Theorem 1.5.

Remark 2.4. We assumed in [19] also that the condition (3.47′) below holds, how-
ever, it is straightforward to check that this was not used to prove [19, Proposition
5.4].
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2.2. The comparison principle. For each 0 ≤ T1 < T2 < ∞, let XT1,T2 denote
the Banach space of all continuous mappings from [T1, T2] to E with the norm

‖u‖T1,T2 := sup
t∈[T1,T2]

‖u(·, t)‖E .

For any T > 0, we set also XT := X0,T and consider the subset UT ⊂ XT of
all mappings which are continuously differentiable on (0, T ]. Here and below, we
consider the left derivative at t = T only. We consider also the vector space X∞ of
all continuous mappings from R+ to E.

Note that, by (2.5), we can apply [19, Theorem 2.3] to get the following state-
ment, which is nothing but the combination of (Q1) and (Q4).

Proposition 2.5. Let (1.7) and (1.17) hold. Let functions u1, u2 be classical
solutions to (1.1) on R+ with the corresponding initial conditions which satisfy
0 ≤ u1(x, 0) ≤ u2(x, 0) ≤ θ for (a.a.) x ∈ Rd. Then (1.21) holds. In particular,
0 ≤ u(·, 0) ≤ θ for (a.a.) x ∈ Rd implies that 0 ≤ u(x, t) ≤ θ for t > 0 and (a.a.)
x ∈ Rd.

Remark 2.6. Condition (1.17) is a necessary one for Proposition 2.5. Indeed,
let condition (1.17) fail in a ball Br(y0) only, r > 0, y0 ∈ Rd, i.e. Jθ(x) < 0,
for a.a. x ∈ Br(y0), where Jθ is given by (1.10). Take any y ∈ Br(y0) with
r
4 < |y − y0| < 3r

4 , then y0 /∈ B r
4
(y) whereas B r

4
(y) ⊂ Br(y0). Take u0 ∈ Cub(Rd)

such that u0(x) = θ, x ∈ Rd \ B r
4
(y0 − y), and u0(x) < θ, x ∈ B r

4
(y0 − y). Since∫

Rd Jθ(x) dx = κ+ − κn`θ = m+ κ`θ, one has

∂u

∂t
(y0, 0) = −(m+ κ`θ)θ + κ+(a+ ∗ u)(y0, 0)− κn`θ(a− ∗ u)(y0, 0)

= (Jθ ∗ u)(y0, 0)− (κ+ − κn`θ)θ = (Jθ ∗ (u0 − θ))(y0)

=
∫
B r

4
(y)

Jθ(x)(u0(y0 − x)− θ) dx > 0,

Therefore, u(y0, t) > u(y0, 0) = θ, for small enough t > 0, and hence, the statement
of Proposition 2.5 does not hold in this case.

As a simple corollary of (Q1)–(Q5), we will show that the semi-flow (Qt)t≥0

preserves functions which are monotone along a given direction. More precisely, a
function f ∈ L∞(Rd) is said to be increasing (decreasing, constant) along the vector
ξ ∈ Sd−1 (recall that Sd−1 denotes a unit sphere in Rd centered at the origin) if,
for a.a. x ∈ Rd, the function f(x + sξ) = (T−sξf)(x) is increasing (decreasing,
constant) in s ∈ R, respectively.

Proposition 2.7. Let (1.7) and (1.17) hold. Let u0 ∈ E+
θ be the initial condition

for equation (1.1) which is increasing (decreasing, constant) along a vector ξ ∈
Sd−1; and u(·, t) ∈ E+

θ , t ≥ 0, be the corresponding solution (cf. Proposition 2.5).
Then, for any t > 0, u(·, t) is increasing (decreasing, constant, respectively) along
the ξ.

Proof. Let u0 be decreasing along a ξ ∈ Sd−1. Take any s1 ≤ s2 and consider two
initial conditions to (1.1): ui0(x) = u0(x+ siξ) = (T−siξu0)(x), i = 1, 2. Since u0 is
decreasing, u1

0(x) ≥ u2
0(x), x ∈ Rd. Then, by Theorem 1.5,

T−s1ξQtu0 = QtT−s1ξu0 = Qtu
1
0 ≥ Qtu2

0 = QtT−s2ξu0 = T−s2ξQtu0,
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that proves the statement. The cases of a increasing u0 can be considered in
the same way. The constant function along a vector is increasing and decreasing
simultaneously. �

For each T > 0 and u ∈ UT , one can define

(Fu)(x, t) :=
∂u

∂t
(x, t)− κ+(a+ ∗ u)(x, t) +mu(x, t) + u(x, t)

(
Gu
)
(x, t) (2.8)

for all t ∈ (0, T ] and x ∈ Rd (a.a. x ∈ Rd in the case E = L∞(Rd)).
By [19, Theorem 2.3], we will also get the following counterpart of Proposi-

tion 2.5.

Proposition 2.8. Let (1.7) and (1.17) hold. Let T > 0 be fixed and u1, u2 ∈ UT
be such that, for all t ∈ (0, T ], x ∈ Rd,

(Fu1)(x, t) ≤ (Fu2)(x, t), (2.9)

0 ≤ u1(x, t) ≤ θ, 0 ≤ u2(x, t) ≤ θ,
0 ≤ u1(x, 0) ≤ u2(x, 0) ≤ θ.

Then (1.21) holds for all t ∈ [0, T ], x ∈ Rd.

Below, for technical reasons, we will need to extend the result of Proposition 2.8
to a wider class of functions in the case E = Cub(Rd). Namely, the expression (2.8)
is well-defined for a.a. t if the function u is absolutely continuous in t only. In view
of this, for any T ∈ (0,∞], we define the set DT of all functions u : Rd × R+ → R,
such that, for all t ∈ [0, T ), u(·, t) ∈ Cub(Rd), and, for all x ∈ Rd, the function
f(x, t) is absolutely continuous in t on [0, T ). Then, for any u ∈ DT , one can define
the function (2.8), for all x ∈ Rd and a.a. t ∈ [0, T ).

Proposition 2.9. The statement of Proposition 2.8 remains true, if we assume
that u1, u2 ∈ DT and, for any x ∈ Rd, the inequality (2.9) holds for a.a. t ∈ (0, T )
only.

Proof. One can literally follow the proof of [19, Theorem 4.2]: the auxiliary function
v(x, t) := eKt(u2(x, t) − u1(x, t)) with large enough K > 0 will satisfy a proper
differential equation d

dtv(x, t) = Θ(t, v(x, t)), see [19, (4.12)], for a.a. t ∈ [0, T ].
However, the corresponding integral equation v(x, t) = v(x, 0) +

∫ t
0

Θ(s, v(x, s)) ds
holds still for all t ∈ [0, T ], since v is continuous in t. Hence, the rest of the proof
remains the same. �

We are going to show now that any solution to (1.1) is bounded from below
by a solution to the corresponding equation with ‘truncated’ kernels a±. Namely,
suppose that the conditions (1.7), (1.17) hold. Consider a family of Borel sets
{∆R | R > 0}, such that ∆R ↗ Rd, R → ∞. Define, for any R > 0, the following
kernels:

a±R(x) = 11∆R
(x)a±(x), x ∈ Rd, (2.10)

and the corresponding ‘truncated’ equation, cf. (1.1),

∂w

∂t
(x, t) = κ+(a+

R ∗ w)(x, t)−mw(x, t)− κ`w2(x, t)

− κn`w(x, t)(a−R ∗ w)(x, t), x ∈ Rd, t > 0,

w(x, 0) = w0(x), x ∈ Rd.

(2.11)



10 D. FINKELSHTEIN, Y. KONDRATIEV, P. TKACHOV EJDE-2019/10

We set
A±R :=

∫
∆R

a±(x) dx↗ 1, R→∞, (2.12)

by (1.4). Then the non-zero constant solution to (2.11) is equal to

θR =
κ+A+

R −m
κn`A

−
R + κ`

→ θ, R→∞, (2.13)

however, the convergence θR to θ is, in general, not monotonic. Clearly, by (1.7),
θR > 0 if only

A+
R >

m

κ+
∈ (0, 1). (2.14)

Proposition 2.10. Let (1.7) and (1.17) hold, and let R > 0 be such that (2.14)
holds, cf. (2.12). Let w0 ∈ E be such that 0 ≤ w0 ≤ θR, x ∈ Rd. Then there exists
the unique solution w ∈ X∞ to (2.11), such that

0 ≤ w(x, t) ≤ θR, x ∈ Rd, t > 0. (2.15)

Let u0 ∈ E+
θ and u ∈ X∞ be the corresponding solution to (1.1). If w0(x) ≤

u0(x), x ∈ Rd, then
w(x, t) ≤ u(x, t), x ∈ Rd, t > 0. (2.16)

Proof. Denote ∆c
R := Rd \∆R. We have

θ − θR =
κn`θA

−
R + κ`θ − κ+A+

R +m

κ−(κn`A−R + κ`)
=
κ+(1−A+

R)− κn`θ(1−A−R)
κ−(κn`A−R + κ`)

=
1

κ−(κn`A−R + κ`)

∫
∆c

R

(
κ+a+(x)− κn`θa−(x)

)
dx ≥ 0,

by (1.17). Therefore,
0 < θR ≤ θ. (2.17)

Clearly, (1.17) and (2.17) yield

κ+a+
R(x) ≥ θRκ−a−R(x), x ∈ Rd. (2.18)

Thus one can apply Proposition 2.5 to (2.11) using trivial equalities a±R(x) =
A±Rã

±
R(x), where the kernels ã±R(x) = (A±R)−1a±R(x) are normalized, cf. (1.4); and

the inequality (2.18) is the corresponding analog of (1.17), according to (2.13). This
proves the existence and uniqueness of the solution to (2.11) and the bound (2.15).

Next, for F given by (2.8), one gets from (2.10) and (2.11), that the solution w
to (2.11) satisfies the equality

(Fw)(x, t) =− κ+

∫
∆c

R

a+(y)w(x− y, t) dy

+ κn`w(x, t)
∫

∆c
R

a−(y)w(x− y, t) dy.
(2.19)

By (2.15), (2.17), (1.17), one gets from (2.19) that

(Fw)(x, t) ≤ −κ+

∫
∆c

R

a+(y)w(x− y, t) dy + κn`θ

∫
∆c

R

a−(y)w(x− y, t) dy

≤ 0 = (Fu)(x, t),

where u is the solution to (1.1). Therefore, we may apply Proposition 2.8 to get
the statement. �
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In the following two propositions we consider results about stability of stationary
solutions to (1.1).

According to the proof of [19, Theorems 2.2, 3.4], which implies Theorem 1.4,
the solution u(x, t) to (1.1) may be obtained on an arbitrary time interval [0, T ] as
follows. There exist m ∈ N and 0 =: τ0 < τ1 < · · · < τm with τm ≥ T , such that for
each [τ, τ̂ ] := [τk−1, τk], 1 ≤ k ≤ m, there exists rk > 0, such that, for any v ∈ Xτ,bτ
with 0 ≤ v ≤ rk, u = limn→∞ Φnτ v in Xτ,bτ , where

(Φτv)(x, t) := (Bv)(x, τ, t)uτ (x) +
∫ t

τ

(Bv)(x, s, t)κ+(a+ ∗ v)(x, s) ds, (2.20)

(Bv)(x, s, t) := exp
(
−
∫ t

s

(
m+ (Gv)(x, p)

)
dp
)
, (2.21)

for x ∈ Rd, t, s ∈ [τ, T ], and G is given by (1.2). By the uniqueness arguments, we
will immediately get the following proposition.

Proposition 2.11. Let t0 ≥ 0 be such that the solution u to (1.1) is a constant in
space at the moment of time t0, namely, u(x, t0) ≡ u(t0) ≥ 0, x ∈ Rd. Then this
solution will be a constant in space for all further moments of time. In particular,
if (1.7) holds (and hence β = κ+ −m > 0), then

u(x, t) = u(t) =
θu(t0)

u(t0)(1− e−βt) + θe−βt
≥ 0, x ∈ Rd, t ≥ t0, (2.22)

and u(t)→ θ, t→∞.

Remark 2.12. Note that (2.22) solves the classical logistic equation

d

dt
u(t) = κ−u(t)(θ − u(t)), t > t0, u(t0) ≥ 0. (2.23)

We are going to study stability of constant stationary solutions to (1.1).

Proposition 2.13. Let (1.7) and (1.17) hold. Then u∗ ≡ θ is a uniformly and
asymptoticaly stable solution to (1.1), whereas u∗ ≡ 0 is an unstable solution
to (1.1).

Proof. Let H and Jθ be given by (2.4) and (1.10), correspondingly. Find the linear
operator H ′(u) on E: namely, for v ∈ E,

H ′(u)v = κ+(a+ ∗ v)−mv − κn`v(a− ∗ u)− κn`u(a− ∗ v)− 2κ`uv. (2.24)

Therefore, by (1.10),
H ′(θ)v = Jθ ∗ v − (κ+ + κ`θ)v.

By (1.10),
∫

Rd Jθ(x) dx = κ+−κn`θ, thus, the spectrum σ(A) of the operator Av :=
Jθ ∗ v on Cub(Rd) is a subset of {|z| ≤ κ+−κn`θ} ⊂ C. Therefore,

σ(H ′(θ)) ⊂
{
z ∈ C : |z + κ+ + κ`θ| ≤ κ+−κn`θ

}
.

Therefore, σ(H ′(θ)) ⊂ {z ∈ C | Re z < 0}. Hence, by e.g. [9, Chapter VII], u∗ ≡ θ
is uniformly and asymptotically stable solution in the sense of Lyapunov.

Next, by (2.24), H ′(0)v = κ+(a+ ∗ v) − mv. If (1.7) holds, then the operator
H ′(0) has an eigenvalue κ+ − m > 0 whose corresponding eigenfunctions will be
constants on Rd. Therefore σ(H ′(0)) has points in the right half-plane and since
H ′′(0) exists, one has, again by [9, Chapter VII], that u∗ ≡ 0 is unstable. �
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2.3. Strong maximum principle. Now we are going to study the maximum
principle for solutions to (1.1) in the space E = Cub(Rd). For this case, we denote
Uθ := E+

θ .
We introduce also the following assumption: there exist ρ, δ > 0 such that, cf.

(1.10),
Jθ(x) = κ+a+(x)− κn`θa−(x) ≥ ρ for a.a. |x| ≤ δ. (2.25)

Clearly, (2.25) implies (1.13) and implies also that the following condition holds:
there exist ρ, δ > 0, such that

a+(x) ≥ ρ for a.a. |x| ≤ δ. (3.47′)

It is straightforward to check that, under assumptions (1.7), (1.17), (3.47′), one
can apply [19, Proposition 5.2], that yields the following statement about strict
positivity of solutions to (1.1).

Proposition 2.14. Let E = Cub(Rd) and (1.7), (1.17), (3.47′) hold. Let u0 ∈ Uθ,
u0 6≡ 0, u0 6≡ θ, be the initial condition to (1.1), and u ∈ X∞ be the corresponding
solution. Then

u(x, t) > inf
y∈Rd

s>0

u(y, s) ≥ 0, x ∈ Rd, t > 0.

In contrast to the case of the infimum, the solution to (1.1) may attain its
supremum but not the value θ. As a matter of fact, under (2.25), a much stronger
statement than unattainability of θ does hold.

Theorem 2.15. Let E = Cub(Rd) and (1.7), (1.17), (2.25) hold. Let u1, u2 ∈ X∞
be two solutions to (1.1), such that 0 ≤ u1(x, t) ≤ u2(x, t) ≤ θ, x ∈ Rd, t ≥ 0. Then
either u1(x, t) = u2(x, t), x ∈ Rd, t ≥ 0 or u1(x, t) < u2(x, t), x ∈ Rd, t > 0.

Proof. Let u1(x, t) ≤ u2(x, t), x ∈ Rd, t ≥ 0, and suppose that there exist t0 > 0,
x0 ∈ Rd, such that u1(x0, t0) = u2(x0, t0). Define w := u2 − u1 ∈ X∞. Then
w(x, t) ≥ 0 and w(x0, t0) = 0, hence ∂

∂tw(x0, t0) = 0. Since both u1 and u2 solve
(1.1), one easily gets that w satisfies the following linear equation

∂

∂t
w(x, t) = (Jθ ∗ w)(x, t) + κn`(θ − u1(x, t))(a− ∗ w)(x, t)

− w(x, t)
(
κ`
(
u2(x, t) + u1(x, t)

)
+κn`(a− ∗ u2)(x, t) +m

)
;

(2.26)

or, at the point (x0, t0), we will have

0 = (Jθ ∗ w)(x0, t0) + κn`(θ − u1(x0, t0))(a− ∗ w)(x0, t0). (2.27)

Since the both summands in (2.27) are nonnegative, one has (Jθ ∗ w)(x0, t0) = 0.
Then, by (2.25), we have that w(x, t0) = 0, for all x ∈ Bδ(x0). Using the same
arguments as in the proof of [19, Proposition 5.2], one gets that w(x, t0) = 0,
x ∈ Rd. Then, by Proposition 2.11, w(x, t) = 0, x ∈ Rd, t ≥ t0. Finally, one can
reverse the time in the linear equation (2.26) (cf. the proof of [19, Proposition 5.2]),
and the uniqueness arguments imply that w ≡ 0, i.e. u1(x, t) = u2(x, t), x ∈ Rd,
t ≥ 0. The statement is proved. �

By choosing u2 ≡ θ in Theorem 2.15, we immediately get the following result.

Corollary 2.16. Let E = Cub(Rd) and (1.7), (1.17), (2.25) hold. Let u0 ∈ Uθ,
u0 6≡ θ, be the initial condition to (1.1), and u ∈ X∞ be the corresponding solution.
Then u(x, t) < θ, x ∈ Rd, t > 0.
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3. Traveling waves

Through this section, E = L∞(Rd). Similarly to the above, we denote by U∞
the subset of X∞ of all continuously differentiable mappings from (0,∞) to E.
Recall thatMθ(R) denotes the set of all decreasing and right-continuous functions
f : R→ [0, θ].

Remark 3.1. There is a natural embedding of Mθ(R) into L∞(R). According to
this, for a function f ∈ L∞(R), the inclusion f ∈ Mθ(R) means that there exists
g ∈Mθ(R), such that f = g a.s. on R.

Recall also the definition of a traveling wave solution.

Definition 3.2. A function u ∈ U∞ is said to be a traveling wave solution to (1.1)
with a speed c ∈ R and in a direction ξ ∈ Sd−1 if there exists a profile ψ ∈Mθ(R),
such that (1.9) holds.

We will use some ideas and results from [41]. To study traveling wave solutions
to (1.1), it is natural to consider the corresponding initial conditions of the form

u0(x) = ψ(x · ξ), (3.1)

for some ξ ∈ Sd−1, ψ ∈ Mθ(R). Then the solutions will have a special form as
well, namely, the following proposition holds.

Proposition 3.3. Let ξ ∈ Sd−1, ψ ∈ Mθ(R), and an initial condition to (1.1)
be given by u0(x) = ψ(x · ξ), a.a. x ∈ Rd; let also u ∈ X∞ be the corresponding
solution. Then there exist a function φ : R×R+ → [0, θ], such that φ(·, t) ∈Mθ(R),
for any t ≥ 0, and

u(x, t) = φ(x · ξ, t), t ≥ 0, a.a. x ∈ Rd. (3.2)

Moreover, there exist functions ǎ± (depending on ξ) on R with 0 ≤ ǎ± ∈ L1(R),∫
R ǎ
±(s) ds = 1, such that φ is a solution to the following one-dimensional version

of (1.1):

∂φ

∂t
(s, t) = κ+(ǎ+ ∗ φ)(s, t)−mφ(s, t)− κ`φ2(s, t)

− κn`φ(s, t)(ǎ− ∗ φ)(s, t), t > 0, a.a. s ∈ R,
φ(s, 0) = ψ(s), a.a. s ∈ R.

(3.3)

Proof. Choose any η ∈ Sd−1 which is orthogonal to the ξ. Then the initial condition
u0 is constant along η, indeed, for any s ∈ R,

u0(x+ sη) = ψ((x+ sη) · ξ) = ψ(x · ξ) = u0(x), a.a. x ∈ Rd.

Then, by Proposition 2.7, for any fixed t > 0, the solution u(·, t) is constant along
η as well. Next, for any τ ∈ R, there exists x ∈ Rd such that x · ξ = τ ; and, clearly,
if y · ξ = τ then y = x+ sη, for some s ∈ R and some η as above. Therefore, if we
just set, for a.a. x ∈ Rd, φ(τ, t) := u(x, t), t ≥ 0, this definition will be correct a.e.
in τ ∈ R; and it will give (3.2). Next, for a.a. fixed x ∈ Rd, u0(x+ sξ) = ψ(x · ξ+ s)
is decreasing in s, therefore, u0 is decreasing along the ξ, and by Proposition 2.7,
u(·, t), t ≥ 0, will be decreasing along the ξ as well. The latter means that, for any
s1 ≤ s2, we have, by (3.2),

φ(x · ξ + s1, t) = u(x+ s1ξ, t) ≥ u(x+ s2ξ, t) = φ(x · ξ + s2, t),
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and one can choose in the previous any x which is orthogonal to ξ to prove that φ
is decreasing in the first coordinate.

To prove the second statement, for d ≥ 2, choose any {η1, η2, . . . , ηd−1} ⊂ Sd−1

which form a complement of ξ ∈ Sd−1 to an orthonormal basis in Rd. Then, for a.a.
x ∈ Rd, with x =

∑d−1
j=1 τjηj + sξ, τ1, . . . , τd−1, s ∈ R, we have (using an analogous

expansion of y inside the integral below an taking into account that any linear
transformation of orthonormal bases preserves volumes)

(a± ∗ u)(x, t) (3.4)

=
∫

Rd

a±(y)u(x− y, t)dy

=
∫

Rd

a±
( d−1∑
j=1

τ ′jηj + s′ξ
)
u
( d−1∑
j=1

(τj − τ ′j)ηj + (s− s′)ξ, t
)
dτ ′1 . . . dτ

′
d−1ds

′

=
∫

R

(∫
Rd−1

a±
( d−1∑
j=1

τ ′jηj + s′ξ
)
dτ ′1 . . . dτ

′
d−1

)
u
(
(s− s′)ξ, t

)
ds′, (3.5)

where we used again Proposition 2.7 to show that u is constant along the vector
η =

∑d−1
j=1(τj − τ ′j)ηj which is orthogonal to the ξ.

Therefore, one can set

ǎ±(s) :=

{∫
Rd−1 a

±(τ1η1 + · · ·+ τd−1ηd−1 + sξ) dτ1 . . . dτd−1, d ≥ 2,
a±(sξ), d = 1.

(3.6)

It is easily seen that ǎ± = ǎ±ξ does not depend on the choice of η1, . . . , ηd−1, which
constitute a basis in the space Hξ := {x ∈ Rd | x · ξ = 0} = {ξ}⊥. Note that,
clearly, ∫

R
ǎ±(s) ds =

∫
Rd

a±(y) dy = 1. (3.7)

Next, by (3.2), u
(
(s− s′)ξ, t

)
= φ(s− s′, t); therefore, (3.5) may be rewritten as

(a± ∗ u)(x, t) =
∫

R
ǎ±(s′)φ(s− s′, t

)
ds′ =: (ǎ± ∗ φ)(s, t),

where s = x · ξ. The rest of the proof is obvious now. �

Remark 3.4. Let ξ ∈ Sd−1 be fixed and ǎ± be defined by (3.6). Let φ be a
traveling wave solution to (3.3) (in the sense of Definition 3.2, for d = 1) in the
direction 1 ∈ S0 = {−1, 1}, with a profile ψ ∈ Mθ(R) and a speed c ∈ R. Then
the function u given by

u(x, t) = ψ(x · ξ − ct) = ψ(s− ct) = φ(s, t), (3.8)

for x ∈ Rd, t ≥ 0, s = x · ξ ∈ R, is a traveling wave solution to (1.1) in the direction
ξ, with the profile ψ and the speed c.

Remark 3.5. One can realize all previous considerations for increasing traveling
wave, increasing solution along a vector ξ etc. Indeed, it is easily seen that the
function ũ(x, t) = u(−x, t) with the initial condition ũ0(x) = u0(−x) is a solution to
(1.1) with a± replaced by ã±(x) = a±(−x); note that (a±∗u)(−x, t) = (ã±∗ũ)(x, t).
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Remark 3.6. It is a straightforward application of (1.20), that if ψ ∈ Mθ(R),
c ∈ R gets (1.9) then, for any s ∈ R, ψ(·+ s) is a traveling wave to (1.1) with the
same c.

We can prove now the following simple statement, which implies, in particular,
the property (Q6) in Theorem 1.5. Consider one-dimensional equation (3.3), where
ǎ± are given by (3.6). The latter equality together with (1.17) imply (1.11) that is
equivalent to

κ+ǎ+(s) ≥ κn`θǎ−(s), a.a. s ∈ R. (3.9)

Proposition 3.7. Let (1.7) and (1.11) hold, and let ξ ∈ Sd−1 be fixed. Define, for
an arbitrary t > 0, the mapping Q̃t : L∞(R)→ L∞(R) as follows: Q̃tψ(s) = φ(s, t),
s ∈ R, where φ : R × R+ → [0, θ] solves (3.3) with 0 ≤ ψ ∈ L∞+ (R). Then such a
Q̃t is well-defined and satisfies all properties of Theorem 1.5 (with d = 1).

Proof. Note that all previous results (e.g. Theorem 1.4) hold for the solution to
(3.3) as well. In particular, properties (Q1)–(Q5) of Theorem 1.5 hold true, for
Q = Q̃t, d = 1. Moreover (see the proof of [19, Theorems 2.2, 3.4] for E = L∞(Rd),
which implies Theorem 1.4), the mappings B and Φτ , cf. (2.21), (2.20), map the
set Mθ(R) into itself; as a result, we have that Q̃t has this property as well, cf.
Remark 3.1. �

Now we prove the existence of the traveling wave solution to (1.1). Denote, for
any λ > 0, ξ ∈ Sd−1,

aξ(λ) :=
∫

Rd

a+(x)eλx·ξ dx ∈ [0,∞]. (3.10)

Therefore, for a ξ ∈ Sd−1, the assumption (1.12) means that aξ(µ) < ∞ for some
µ = µ(ξ) > 0. We will prove now the first statement of Theorem 1.1.

Proposition 3.8. Let ξ ∈ Sd−1 and assumptions (1.7), (1.11), (1.12) hold. Then
there exists c∗(ξ) ∈ R such that

(1) for any c ≥ c∗(ξ), there exists a traveling wave solution, in the sense of
Definition 3.2, with a profile ψ ∈Mθ(R) and the speed c,

(2) for any c < c∗(ξ), such a traveling wave does not exist.

Proof. Let µ > 0 be such that (1.12) holds. Then, by (3.6),∫
R
ǎ+(s)eµsds =

∫
R

∫
Rd−1

a±(τ1η1 + · · ·+ τd−1ηd−1 + sξ)eµs dτ1 . . . dτd−1ds

= aξ(µ) <∞. (3.11)

Clearly, the integral equality in (3.11) holds true for any λ ∈ R as well, with
aξ(λ) ∈ [0,∞].

Let µ > 0 be such that (1.12) holds. Define a function from Mθ(R) by

ϕ(s) := θmin{e−µs, 1}. (3.12)

Let us prove that there exists c ∈ R such that φ̄(s, t) := ϕ(s−ct) is a super-solution
to (3.3), i.e.

F φ̄(s, t) ≥ 0, s ∈ R, t ≥ 0, (3.13)
where F is given by (2.8) (in the case d = 1). We have

(F φ̄)(s, t) = −cϕ′(s− ct)− κ+(ǎ+ ∗ ϕ)(s− ct) +mϕ(s− ct)
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+ κn`ϕ(s− ct)(ǎ− ∗ ϕ)(s− ct) + κ`ϕ
2(s− ct),

hence, to prove (3.13), it is enough to show that, for all s ∈ R,

Jc(s) := cϕ′(s) + κ+(ǎ+ ∗ ϕ)(s)−mϕ(s)

− κn`ϕ(s)(ǎ− ∗ ϕ)(s)− κ`ϕ2(s)
≤ 0.

(3.14)

By (3.12), (3.9), for s < 0, we have

Jc(s) = κ+(ǎ+ ∗ ϕ)(s)−mθ − κn`θ(ǎ− ∗ ϕ)(s)− κ`θ2

≤
(
(κ+ǎ− κn`θǎ−) ∗ θ

)
(s)−mθ − κ`θ2 = 0.

Next, by (3.12),

(ǎ+ ∗ ϕ)(s) ≤ θ
∫

R
ǎ+(τ)e−µ(s−τ) dτ = θe−µsaξ(µ),

therefore, for s ≥ 0, we have

Jc(s) ≤ −µcθe−µs + κ+θe−µsaξ(µ)−mθe−µs;
and to get (3.14) it is enough to demand that κ+aξ(µ)−m−µc ≤ 0, in particular,

c =
κ+aξ(µ)−m

µ
. (3.15)

As a result, for φ̄(s, t) = ϕ(s− ct) with c given by (3.15), we have

F φ̄ ≥ 0 = F(Q̃tϕ), (3.16)

as Q̃tϕ is a solution to (3.3). Then, by (1.17) and the inequality φ̄ ≤ θ, one can
apply Proposition 2.9 and obtain

Q̃tϕ(s′) ≤ φ̄(t, s′) = ϕ(s′ − ct), a.a. s′ ∈ R,
where c is given by (3.15); note that, by (3.12), for any s ∈ R, the function φ̄(s, t)
is absolutely continuous in t. In particular, for t = 1, s′ = s+ c, we obtain

Q̃1ϕ(s+ c) ≤ ϕ(s), a.a. s ∈ R. (3.17)

And now one can apply [41, Theorem 5] which states that, if there exists a flow
of abstract mappings Q̃t, each of them maps Mθ(R) into itself and has properties
(Q1)–(Q5) of Theorem 1.5, and if, for some t (e.g. t = 1), for some c ∈ R, and for
some ϕ ∈ Mθ(R), the inequality (3.17) holds, then there exists ψ ∈ Mθ(R) such
that, for any t ≥ 0,

(Q̃tψ)(s+ ct) = ψ(s), a.a. s ∈ R, (3.18)
that yields the solution to (3.3) in the form (3.8), and hence, by Remark 3.4, we
will get the existence of a solution to (1.1) in the form (1.9). It is worth noting
that, in [41], the results were obtained for increasing functions. By Remark 3.5,
the same results do hold for decreasing functions needed for our settings.

Next, by [41, Theorem 6], there exists c∗ = c∗(ξ) ∈ (−∞,∞] such that, for any
c ≥ c∗, there exists ψ = ψc ∈ Mθ(R) such that (3.18) holds, and for any c < c∗
such a ψ does not exist. Since for c given by (3.15) such a ψ exists, we have that
c∗ ≤ c <∞, moreover, one can take any µ in (3.15) for that (1.12) holds. Therefore,

c∗ ≤ inf
λ>0

κ+aξ(λ)−m
λ

. (3.19)



EJDE-2019/10 DOUBLY NONLOCAL FISHER-KPP EQUATIONS 17

The statement is proved. �

Remark 3.9. It can be seen from the proof above that we did not use the special
form (3.12) of the function ϕ after the inequality (3.16). Therefore, if a function
ϕ1 ∈Mθ(R) is such that the function φ̄(s, t) := ϕ1(s− ct), s ∈ R, t ≥ 0, is a super-
solution to (3.3), for some c ∈ R, i.e. if (3.13) holds, then there exists a traveling
wave solution to (3.3), and hence to (1.1), with some profile ψ ∈ Mθ(R) and the
same speed c.

Now we prove the second item of Theorem 1.1.

Proposition 3.10. Let ψ ∈Mθ(R) and c ∈ R be such that there exists a solution
u ∈ U∞ to (1.1) such that (1.9) holds, for some ξ ∈ Sd−1. Then ψ ∈ C1(R→ [0, θ]),
for c 6= 0, and ψ ∈ C(R→ [0, θ]), otherwise.

Proof. The condition (1.9) implies (3.1) for the ξ ∈ Sd−1. Then, by Proposition 3.3,
there exists φ given by (3.2) which solves (3.3); moreover, by Remark 3.4, (3.8)
holds.

Let c 6= 0. It is well-known that any monotone function is differentiable almost
everywhere. Prove first that ψ is differentiable everywhere on R. Fix any s0 ∈ R.
It follows directly from Proposition 3.3, that φ ∈ C1((0,∞)→ L∞(R)). Therefore,
for any t0 > 0 and for any ε > 0, there exists δ = δ(t0, ε) > 0 such that, for all
t ∈ R with |ct| < δ and t0 + t > 0, the following inequalities hold, for a.a. s ∈ R,

∂φ

∂t
(s, t0)− ε < φ(s, t0 + t)− φ(s, t0)

t
<
∂φ

∂t
(s, t0) + ε, (3.20)

∂φ

∂t
(s, t0)− ε < ∂φ

∂t
(s, t0 + t) <

∂φ

∂t
(s, t0) + ε. (3.21)

For simplicity of notation, set x0 = s0 + ct0. Take any 0 < h < 1 with 2h <
min

{
δ, |c|t0, |c|δ

}
. Since ψ is a decreasing function, one has, for almost all s ∈

(x0, x0 + h2),

ψ(s0 + h)− ψ(s0)
h

≤ ψ(s− ct0 + h− h2)− ψ(s− ct0)
h

=
φ(s, t0 + h2−h

c )− φ(s, t0)
h2−h
c

h2 − h
ch

≤
(∂φ
∂t

(s, t0)∓ ε
)h− 1

c
,

(3.22)

by (3.20) with t = h2−h
c ; note that |ct| = h− h2 < h < δ, and t0 + t > 0 (the latter

holds, for c < 0, because of t0 + t > t0 then; and, for c > 0, it is equivalent to
ct0 > −ct = h−h2, that follows from h < ct0). Stress, that, in (3.22), one needs to
choose −ε, for c > 0, and +ε, for c < 0, according to the left and right inequalities
in (3.20), correspondingly.

Similarly, for almost all s ∈ (x0 − h2, x0), one has

ψ(s0 + h)− ψ(s0)
h

≥ ψ(s− ct0 + h+ h2)− ψ(s− ct0)
h

=
φ(s, t0 − h2+h

c )− φ(s, t0)

−h2+h
c

h2 + h

−ch

≥
(∂φ
∂t

(s, t0)± ε
)h+ 1
−c

,

(3.23)
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where we take again the upper sign, for c > 0, and the lower sign, for c < 0; note
also that h + h2 < 2h < δ. Next, one needs to ‘shift’ values of s in (3.23) to get
them the same as in (3.22). To do this note that, by (3.8),

φ
(
s+ h2, t0 +

h2

c

)
= φ(s, t0), a.a. s ∈ Rd. (3.24)

As a result,

(ǎ± ∗ φ)
(
s+ h2, t0 +

h2

c

)
=
∫

R
ǎ±(s′)φ

(
s− s′ + h2, t0 +

h2

c

)
ds

= (ǎ± ∗ φ)(s, t0), a.a. s ∈ Rd.
(3.25)

Then, by (3.3), (3.24), (3.25), one gets

∂

∂t
φ
(
s+ h2, t0 +

h2

c

)
=

∂

∂t
φ(s, t0), a.a. s ∈ Rd. (3.26)

Therefore, by (3.26), one gets from (3.23) that, for almost all s ∈ (x0, x0 + h2), cf.
(3.22),

ψ(s0 + h)− ψ(s0)
h

≥
(∂φ
∂t

(
s, t0 +

h2

c

)
± ε
)h+ 1
−c

≥
(∂φ
∂t

(s, t0)± 2ε
)h+ 1
−c

,

(3.27)

since
∣∣h2

c

∣∣ < δ, one can apply the right and left inequalities in (3.21), for c > 0 and
c < 0. Combining (3.22) and (3.27), we obtain(

ess sups∈(x0,x0+h2)

∂φ

∂t
(s, t0)± 2ε

)h+ 1
−c

≤ ψ(s0 + h)− ψ(s0)
h

≤
(

ess sups∈(x0,x0+h2)

∂φ

∂t
(s, t0)∓ ε

)h− 1
c

.

(3.28)

For fixed s0 ∈ R, t0 > 0 and for x0 = s0 + ct0, the function

f(h) := ess sups∈(x0,x0+h2)

∂φ

∂t
(s, t0), h ∈ (0, 1),

is bounded, as |f(h)| ≤ ‖∂φ∂t (·, t0)‖∞ < ∞, and monotone; hence there exists f̄ =
limh→0+ f(h). As a result, for small enough h, (3.28) yields

(f̄ ± 2ε)
1
−c
− ε ≤ ψ(s0 + h)− ψ(s0)

h
≤ (f̄ ∓ ε)−1

c
+ ε,

and, therefore, there exists ∂ψ
∂s (s0+) = −f̄

c . In the same way, one can prove that
there exists ∂ψ

∂s (s0−) = −f̄
c , and, therefore, ψ is differentiable at s0. As a result, ψ

is differentiable (and hence continuous) on the whole R.
Next, for any s1, s2, h ∈ R, we have∣∣ψ(s1 + h)− ψ(s1)

h
− ψ(s2 + h)− ψ(s2)

h

∣∣
=

1
|c|

∣∣∣φ(s1 + ct0, t0 − h
c

)
− φ(s1 + ct0, t0)

−hc

−
φ
(
s1 + ct0, t0 + s1−s2

c − h
c

)
− φ

(
s1 + ct0, t0 + s1−s2

c

)
−hc

∣∣∣;
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and if we pass h to 0, we obtain

|ψ′(s1)− ψ′(s2)| = 1
|c|

∣∣∣ ∂
∂t
φ(s1 + ct0, t0)− ∂

∂t
φ
(
s1 + ct0, t0 +

s1 − s2

c

)∣∣∣
≤ 1
|c|

∥∥∥ ∂
∂t
φ(·, t0)− ∂

∂t
φ
(
·, t0 +

s1 − s2

c

)∥∥∥. (3.29)

And now, by the continuity of ∂
∂tφ(·, t) in t in the sense of the norm in L∞(R),

we have that, by (3.21), the inequality |s1 − s2| ≤ |c|δ implies that, by (3.29),
|ψ′(s1)− ψ′(s2)| ≤ 1

|c|ε. As a result, ψ′(s) is uniformly continuous on R and hence
continuous.

Finally, consider the case c = 0. Then (3.8) implies that φ(s, t) must be constant
in time, i.e. φ(s, t) = ψ(s), for a.a. s ∈ R. Thus one can rewrite (3.3) as follows

0 = −κ+(ǎ+ ∗ ψ)(s) +mψ(s) + κn`ψ(s)(ǎ− ∗ ψ)(s) + κ`ψ
2(s)

= κ`ψ
2(s) +A(s)ψ(s)−B(s),

(3.30)

where A(s) = m+ κn`(ǎ− ∗ ψ)(s) and B(s) = κ+(ǎ+ ∗ ψ)(s). Equivalently,

ψ(s) =

√
A2(s) + 4κ`B(s)−A(s)

4κ`
. (3.31)

Since ψ ∈ L∞(R), then, by Lemma 2.1, the right-hand side of (3.31) is a continuous
in s function, and hence ψ ∈ C(R). �

Proposition 3.11. Let ψ ∈ Mθ(R), c ∈ R, ξ ∈ Sd−1 be such that there exists a
solution u ∈ U∞ to (1.1) such that (1.9) holds. Then, for each s ∈ R,

cψ′(s) + κ+(ǎ+ ∗ ψ)(s)−mψ(s)− κn`ψ(s)(ǎ− ∗ ψ)(s)− κ`ψ2(s) = 0. (3.32)

Proof. Let c 6= 0. Then, by Remark 3.4 and Proposition 3.10, one can differentiate
ψ(s−ct) in t ≥ 0. By this and Lemma 2.1 we obtain (3.32) for all s ∈ R. For c = 0,
one has (3.30), i.e. (3.32) holds in this case as well. �

Let k ∈ N ∪ {∞} and Ckb (R) denote the class of all functions on R which are k
times differentiable and whose derivatives (up to the order k) are continuous and
bounded on R. The following corollary finishes the proof of the second item of
Theorem 1.1.

Corollary 3.12. Let ψ ∈Mθ(R), c ∈ R, c 6= 0, ξ ∈ Sd−1 be such that there exists
a solution u ∈ U∞ to (1.1) such that (1.9) holds. Then ψ ∈ C∞b (R).

Proof. By Lemma 2.1, ǎ± ∗ ψ ∈ Cb(R). Then (3.32) yields ψ′ ∈ Cb(R), i.e. ψ ∈
C1
b (R). By e.g. [35, Proposition 5.4.1], ǎ± ∗ ψ ∈ C1

b (R) and (ǎ± ∗ ψ)′ = ǎ± ∗ ψ′,
therefore, the equality (3.32) holds with ψ′ replaced by ψ′′ and ψ replaced by ψ′.
Then, by the same arguments ψ ∈ C2

b (R), and so on. The statement is proved. �

Now we prove the third item of Theorem 1.1. We follow ideas of [8].

Proposition 3.13. Let (1.7) and (1.11) hold. Let ψ ∈Mθ(R), c ∈ R, ξ ∈ Sd−1 be
such that there exists a solution u ∈ U∞ to (1.1) such that (1.9) holds. Then there
exists µ = µ(c, a+, κ−, θ) > 0 such that

∫
R ψ(s)eµs ds <∞.
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Proof. At first, we prove that ψ ∈ L1(R+). Under assumptions (1.7) and (1.11),
define the function

J̌υ(s) := κ+ǎ+(s)− υκn`ǎ−(s), s ∈ R, υ ∈ (0, θ]. (3.33)

Then, by (3.9), J̌υ(s) ≥ J̌θ(s) ≥ 0 for s ∈ R, υ ∈ (0, θ]. Since
∫

R J̌υ(s) ds =
κ+ − υκn` > m+ κ`υ, one can choose R0 > 0, such that∫ R0

−R0

J̌υ(s) ds = m+ κ`υ. (3.34)

We rewrite (3.32) as follows

cψ′(s) + (J̌υ ∗ ψ)(s) +
(
υ − ψ(s)

)(
κ`ψ(s)

+ κn`(ǎ− ∗ ψ)(s)
)
− (m+ κ`υ)ψ(s) = 0, s ∈ R.

(3.35)

Fix arbitrary r0 > 0, such that
ψ(r0) < υ. (3.36)

Let r > r0 +R0. Integrate (3.35) over [r0, r]; one gets

c(ψ(r)− ψ(r0)) +A+B = 0, (3.37)

where

A :=
∫ r

r0

(J̌υ ∗ ψ)(s) ds− (m+ κ`υ)
∫ r

r0

ψ(s)ds,

B :=
∫ r

r0

(υ − ψ(s))
(
κ`ψ(s) + κn`(ǎ− ∗ ψ)(s)

)
ds.

By (3.33) and (3.34), one has

A ≥
∫ r

r0

∫ R0

−R0

J̌υ(τ)ψ(s− τ)dτds− (m+ κ`υ)
∫ r

r0

ψ(s) ds

=
∫ R0

−R0

J̌υ(τ)
(∫ r−τ

r0−τ
ψ(s) ds−

∫ r

r0

ψ(s) ds
)
dτ

=
∫ R0

0

J̌υ(τ)
(∫ r0

r0−τ
ψ(s) ds−

∫ r

r−τ
ψ(s) ds

)
dτ

+
∫ 0

−R0

J̌υ(τ)
(∫ r−τ

r

ψ(s) ds−
∫ r0−τ

r0

ψ(s) ds
)
dτ ;

(3.38)

and since ψ is a decreasing function and r −R0 > r0, from (3.38), we have

A ≥ (ψ(r0)− ψ(r −R0))
∫ R0

0

τ J̌υ(τ) dτ + (ψ(r +R0)− ψ(r0))
∫ 0

−R0

(−τ)Jυ(τ) dτ

≥ −θ
∫ 0

−R0

(−τ)Jυ(τ) dτ =: −θJ̄υ,R0 . (3.39)

Next, (3.36) and monotonicity of ψ imply

B ≥ (υ − ψ(r0))
∫ r

r0

(
κ`ψ(s) + κn`(ǎ− ∗ ψ)(s)

)
ds. (3.40)

Then, by (3.37), (3.39), (3.40), (3.36), one gets

0 ≤ (υ − ψ(r0))
∫ r

r0

(
κ`ψ(s) + κn`(ǎ− ∗ ψ)(s)

)
ds
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≤ θJ̄υ,R0 + c(ψ(r0)− ψ(r))→ θJ̄υ,R0 + cψ(r0) <∞, r →∞,

therefore, κ`ψ + κn`ǎ
− ∗ ψ ∈ L1(R+). Finally, (3.7) implies that there exist a

measurable bounded set ∆ ⊂ R, with m(∆) :=
∫

∆
ds ∈ (0,∞), and a constant

µ > 0, such that ǎ−(τ) ≥ µ, for a.a. τ ∈ ∆. Let δ = inf ∆ ∈ R. Then, for any
s ∈ R, one has

(ǎ− ∗ ψ)(s) ≥
∫

∆

ǎ−(τ)ψ(s− τ) dτ ≥ µψ(s− δ)m(∆).

Therefore ψ ∈ L1(R+).
For any N ∈ N, we define ϕN (s) := 11(−∞,N)(s) + e−λ(s−N)11[N,∞)(s), where

λ > 0. By the proved above, ψ, ǎ± ∗ ψ ∈ L1(R+) ∩ L∞(R) hence, by (3.32),
cψ′ ∈ L1(R+)∩L∞(R). Therefore, all terms of (3.32) being multiplied on eλsϕN (s)
are integrable over R. After this integration, (3.32) will be read as follows

I1 + I2 + I3 = 0, (3.41)

where (recall that κ−θ − κ+ = −m)

I1 := c

∫
R
ψ′(s)eλsϕN (s) ds,

I2 := κ+

∫
R

(
(ǎ+ ∗ ψ)(s)− ψ(s)

)
eλsϕN (s) ds,

I3 :=
∫

R
ψ(s)

(
κ+ −m− κ`ψ(s)− κn`(ǎ− ∗ ψ)(s)

)
eλsϕN (s) ds

We estimate now I1, I2, I3 from below.
We start with I2. One can write∫
R
(ǎ+ ∗ ψ)(s)eλsϕN (s) ds =

∫
R

∫
R
ǎ+(s− τ)ψ(τ)eλsϕN (s) dτds

=
∫

R

∫
R
ǎ+(s)eλsϕN (τ + s) ds eλτψ(τ) dτ

≥
∫

R

(∫ R

−∞
ǎ+(s)eλs ds

)
ϕN (τ +R)eλτψ(τ) dτ,

(3.42)

for any R > 0, as ϕ is nonincreasing. By (3.7), one can choose R > 0 such that∫ R

−∞
ǎ+(τ) dτ > 1− κ−θ

4
.

By continuity arguments, there exists ν > 0 such that, for any 0 < λ < ν,∫ R

−∞
ǎ+(τ)eλτ dτ ≥

(
1− κ−θ

4

)
eλR. (3.43)

Therefore, combining (3.42) and (3.43), we obtain

I2 ≥
∫

R

(
1− κ−θ

4

)
eλRϕN (τ +R)eλτψ(τ) dτ −

∫
R
ψ(s)eλsϕN (s) ds

=
∫

R

(
1− κ−θ

4

)
ϕN (τ)eλτψ(τ −R) dτ −

∫
R
ψ(s)eλsϕN (s) ds

≥ −κ
−θ

4

∫
R
ψ(s)eλsϕN (s) ds,

(3.44)
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as ψ(τ −R) ≥ ψ(τ), τ ∈ R, R > 0.
Now we estimate I3. By (1.9), it is easily seen that the function (ǎ− ∗ ψ)(s)

decreases monotonically to 0 as s→∞. Suppose additionally that R > 0 above is
such that

κ`ψ(s) + κn`(ǎ− ∗ ψ)(s) <
κ−θ

2
, s > R.

Then, one gets

I3 ≥
κ−θ

2

∫ ∞
R

ψ(s)eλsϕN (s) ds

+
∫ R

−∞
ψ(s)

(
κ−θ − κ`ψ(s)− κn`(ǎ− ∗ ψ)(s)

)
eλsϕN (s) ds

≥ κ−θ

2

∫ ∞
R

ψ(s)eλsϕN (s) ds,

as 0 ≤ ψ ≤ θ, ϕN ≥ 0, (ǎ− ∗ ψ)(s) ≤ θ.
It remains to estimate I1 (in the case c 6= 0). Since lims→±∞ ψ(s)eλsϕN (s) = 0,

we have from the integration by parts formula, that

I1 = −c
∫

R
ψ(s)(λϕN (s) + ϕ′N (s))eλs ds.

For c > 0, one can use that ϕ′N (s) ≤ 0, s ∈ R, and hence

I1 ≥ −cλ
∫

R
ψ(s)ϕN (s)eλs ds.

For c < 0, we use that, by the definition of ϕN , λϕN (s) + ϕ′N (s) = 0, s ≥ N ;
therefore,

I1 = −cλ
∫ N

−∞
ψ(s) ds > 0. (3.45)

Therefore, combining (3.44)–(3.45), from (3.41), we obtain

0 ≥ −λc̄
∫

R
ψ(s)ϕN (s)eλs ds−κ

−θ

4

∫
R
ψ(s)eλsϕN (s) ds+

κ−θ

2

∫ ∞
R

ψ(s)eλsϕN (s) ds,

where c̄ = max{c, 0}.
The latter inequality can be easily rewritten as(κ−θ

4
− λc̄

)∫ ∞
R

ψ(s)eλsϕN (s) ds ≤
(κ−θ

4
+ λc̄

)∫ R

−∞
ψ(s)ϕN (s)eλs ds

≤
(κ−θ

4
+ λc̄

)
θ

∫ R

−∞
eλs ds =: Iλ,R <∞, 0 < λ < ν. (3.46)

Take now µ < min
{
ν, κ

−θ
4c

}
, for c > 0, and µ < ν, otherwise. Then, by (3.46),

for any N > R, one obtains

∞ >
(κ−θ

4
− µc̄

)−1

Iµ,R >

∫ ∞
R

ψ(s)eµsϕN (s) ds ≥
∫ N

R

ψ(s)eµs ds,

thus, ∫
R
ψ(s)eµs ds =

∫ R

−∞
ψ(s)eµs ds+

∫ ∞
R

ψ(s)eµs ds
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≤ θ
∫ R

−∞
eµs ds+ Iµ,R

(κ−θ
4
− µc̄

)−1

<∞,

that implies the dsired the statement. �

By Proposition 3.10, a traveling wave solution to (1.1) is continuous in space
as well. Because of this, to prove the fourth item of Theorem 1.1, we can use the
strong maximum principle. We suppose that a+ is not degenerated in the direction
ξ at the origin, namely, there exist r ≥ 0, ρ, δ > 0 (depending on ξ), such that∫

{x·ξ=s}
a+(x) dx ≥ ρ for a.a. |s| ≤ δ. (3.47)

Clearly, either of (1.13), (2.25) or (3.47′) implies (3.47).

Proposition 3.14. Let (1.7), (1.11) and (3.47) hold. Let ψ ∈ Mθ(R), c ∈ R,
ξ ∈ Sd−1 be such that there exists a solution u ∈ U∞ to (1.1) such that (1.9) holds.
Then ψ is a strictly decaying function, for any speed c.

Proof. By Remark 3.4, there exists a traveling wave solution φ(s, t) = ψ(s− ct) to
(3.3). By Proposition 3.10, ψ ∈ C(R) and hence φ(s, t) = ψ(s − ct) is continuous
in s as well. Suppose that ψ is not strictly decaying, then there exists δ0 > 0 and
s0 ∈ R, such that ψ(s) = ψ(s0), for all |s − s0| ≤ δ0. Take any δ ∈

(
0, δ02

)
, and

consider the function ψδ(s) := ψ(s+ δ). Clearly, ψδ(s) ≤ ψ(s), s ∈ R. By Remarks
3.6, 3.4, ψδ is a profile for a traveling wave solution to (3.3) with the same speed c.
Therefore, one has two solutions to (3.3): φ(s, t) = ψ(s−ct) and φδ(s, t) = ψδ(s−ct)
and hence φδ(s, t) ≤ φ(s, t), s ∈ R, t ≥ 0. By the maximum principle for (3.3), see
Theorem 2.15 with d = 1, either φ ≡ φδ, that contradicts δ > 0 or φδ(s, t) < φ(s, t),
s ∈ R, t > 0. The latter, however, contradicts the equality φδ(s, t) = φ(s, t), which
holds e.g. for s = s0 + ct, ct < δ0. Hence ψ is a strictly decaying function. �

To prove the last item of Theorem 1.1, one can weaken the assumption (3.47),
assuming that a+ is not degenerated in the direction ξ (not necessarily at the
origin). Namely, we assume that there exist r ≥ 0, ρ, δ > 0 (depending on ξ), such
that ∫

{x·ξ=s}
a+(x) dx ≥ ρ for a.a. s ∈ [r − δ, r + δ]. (3.48)

Proposition 3.15. Let (1.7), (1.11) and (3.48) hold. Let ψ ∈ Mθ(R), c ∈ R,
c 6= 0, ξ ∈ Sd−1 be such that there exists a solution u ∈ U∞ to (1.1) such that (1.9)
holds. Then there exists ν > 0, such that ψ(t)eνt is a strictly increasing function.

Proof. We start from the case c > 0. Since ψ(t) > 0 for t ∈ R, it is sufficient to
prove that

ψ′(t)
ψ(t)

> −ν, t ∈ R. (3.49)

Fix any µ ≥ κ+

c > 0. Then, clearly,

κ`ψ
2(t) + κn`(ǎ− ∗ ψ)(t) +m ≤ κ−θ +m = κ+ ≤ cµ,

and from (3.32), we obtain

0 ≥ cψ′(s) + κ+(ǎ+ ∗ ψ)(s)− cµψ(s), s ∈ R. (3.50)

Multiply both parts of (3.50) on e−µs > 0 and set

w(s) := ψ(s)e−µs > 0, s ∈ R.
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Then w′(s) = ψ′(s)e−µs − µw(s) and one can rewrite (3.50) as follows

0 ≥ cw′(s) + κ+(ǎ+ ∗ ψ)(s)e−µs

= cw′(s) + κ+

∫
R
ǎ+(τ)w(s− τ)e−µτdτ, s ∈ R.

(3.51)

By (3.48), there exists % := r
2 + δ

4 > 0, such that∫ ∞
2%

ǎ+(s)e−µsds > 0. (3.52)

Integrating (3.51) over s ∈ [t, t+ %], one gets

0 ≥ c(w(t+ %)− w(t)) + κ+

∫ t+%

t

∫
R
ǎ+(τ)w(s− τ)e−µτdτds. (3.53)

Since w(t) is a monotonically decreasing function, we have∫ t+%

t

∫
R
ǎ+(τ)w(s− τ)e−µτdτds ≥ %

∫
R
ǎ+(τ)w(t+ %− τ)e−µτdτ

≥ %
∫ ∞

2%

ǎ+(τ)w(t+ %− τ)e−µτdτ

≥ %w(t− %)
∫ ∞

2%

ǎ+(τ)e−µτdτ.

(3.54)

We set, cf. (3.52),

C(µ, ρ) :=
κ+

c

∫ ∞
2%

ǎ+(s)e−µsds > 0.

Then (3.53) and (3.54) yield

w(t)− %C(µ, ρ)w(t− %) ≥ w(t+ %) > 0, t ∈ R. (3.55)

Now we integrate (3.51) over s ∈ [t− %, t]. Similarly to above, one gets

0 ≥ c(w(t)− w(t− %)) + κ+

∫ t

t−%

∫
R
ǎ+(τ)w(s− τ)e−µτdτds

≥ c(w(t)− w(t− %)) + %κ+

∫
R
ǎ+(τ)w(t− τ)e−µτdτ.

(3.56)

By (3.55) and (3.56), we have

1
%C(µ, ρ)

≥ w(t− %)
w(t)

≥ 1 +
%κ+

c

∫
R
ǎ+(τ)

w(t− τ)
w(t)

e−µτdτ. (3.57)

On the other hand, (3.32) implies that

− ψ′(t)
ψ(t)

≤ κ+

c

(ǎ+ ∗ ψ)(t)
ψ(t)

=
κ+

c

∫
R
ǎ+(τ)

w(t− τ)
w(t)

e−µτdτ, t ∈ R. (3.58)

Finally, (3.57) and (3.58) yield (3.49) with ν = 1
ρ2C(µ,ρ) > 0.

Let now c < 0. For any ν ∈ R, one has

ψ′(s) = e−νs(ψ(s)eνs)′ − νψ(s), s ∈ R.
Hence, by (3.32), (1.11),

0 = ce−νs(ψ(s)eνs)′ − cνψ(s) + κ+(ǎ+ ∗ ψ)(s)

− κ`ψ2(s)− κn`ψ(s)(ǎ− ∗ ψ)(s)−mψ(s)
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≥ ce−νs(ψ(s)eνs)′ − cνψ(s) + κ+(ǎ+ ∗ ψ)(s)

− κ`θψ(s)− κn`θ(ǎ− ∗ ψ)(s)−mψ(s)

≥ ce−νs(ψ(s)eνs)′ − cνψ(s)− κ`θψ(s)−mψ(s), s ∈ R.

As a result, choosing ν > m+κ`θ
−c , one gets

−ce−νs(ψ(s)eνs)′ ≥ (−cν − κ`θ −m)ψ(s) > 0, s ∈ R,
i.e. ψ(s)eνs is an increasing function. �

Combining Propositions 3.8, 3.10, 3.13–3.15 and Corolalry 3.12, we prove The-
orem 1.1.

Acknowledgments. The authors gratefully acknowledge the financial support by
the DFG through CRC 701 “Stochastic Dynamics: Mathematical Theory and
Applications” (DF, YK, PT), by the European Commission under the project
STREVCOMS PIRSES-2013-612669 (DF, YK), and by the “Bielefeld Young Re-
searchers” Fund through the Funding Line Postdocs: “Career Bridge Doctorate –
Postdoc” (PT).

References

[1] M. Aguerrea, C. Gomez, S. Trofimchuk; On uniqueness of semi-wavefronts Math. Ann., 354

(1) (2012), 73–109. DOI: 10.1007/s00208-011-0722-8.

[2] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, J. J. Toledo-Melero; Nonlocal diffusion problems,
volume 165 of Mathematical Surveys and Monographs. AMS Providence, RI, 2010. ISBN 978-

0-8218-5230-9. xvi+256 pp.
[3] D. G. Aronson, H. F. Weinberger; Multidimensional nonlinear diffusion arising in population

genetics. Adv. in Math., 30 (1) (1978), 33–76. DOI 10.1016/0001-8708(78)90130-5

[4] B. Bolker, S. W. Pacala; Using moment equations to understand stochastically driven spatial
pattern formation in ecological systems. Theor. Popul. Biol., 52 (3) (1997), 179–197, 1997.

DOI 10.1006/tpbi.1997.1331

[5] H. Cheng, R. Yuan; Existence and asymptotic stability of traveling fronts for nonlocal monos-
table evolution equations. Discrete Contin. Dyn. Syst. Ser. B, 22 (7), 3007–3022, 2017. DOI

10.3934/dcds.2010.26.551

[6] J. Coville, J. Dávila, S. Mart́ınez; Existence and uniqueness of solutions to a nonlocal equa-
tion with monostable nonlinearity. SIAM J. Math. Anal., 39 (5) (2008), 1693–1709. DOI

10.1137/060676854

[7] J. Coville, J. Dávila, S. Mart́ınez; Nonlocal anisotropic dispersal with monostable nonlinear-
ity. J. Differential Equations, 244 (12) (2008), 3080–3118. DOI 10.1016/j.jde.2007.11.002

[8] J. Coville, L. Dupaigne; On a non-local equation arising in population dynamics. Proc. Roy.

Soc. Edinburgh Sect. A, 137 (4) (2007), 727–755. DOI 10.1017/S0308210504000721
[9] J. L. Daletskii, M. G. Krein; Stability of solutions of differential equations in Banach space.

American Mathematical Society, Providence, R.I., 1974. vi+386 pp. Translated from the
Russian by S. Smith, Translations of Mathematical Monographs, Vol. 43.

[10] R. Durrett; Crabgrass, measles and gypsy moths: An introduction to modern probability.
Bulletin (New Series) of the American Mathematical Society, 18 (2) (1988), 117–143.

[11] L. C. Evans; Partial differential equations. American Mathematical Society, Providence, R.I.,
2010. xxii+749 pp.

[12] P. C. Fife; Mathematical aspects of reacting and diffusing systems, volume 28 of Lecture Notes
in Biomathematics. Springer-Verlag, Berlin-New York, 1979. ISBN 3-540-09117-3. iv+185 pp.

[13] D. Finkelshtein, Y. Kondratiev, Y. Kozitsky, O. Kutoviy; The statistical dynamics of a
spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci., 25
(2) (2015), 343–370. DOI 10.1142/S0218202515500128

[14] D. Finkelshtein, Y. Kondratiev, O. Kutoviy; Semigroup approach to birth-and-death

stochastic dynamics in continuum. J. Funct. Anal., 262 (3) (2012), 1274–1308. DOI
10.1016/j.jfa.2011.11.005



26 D. FINKELSHTEIN, Y. KONDRATIEV, P. TKACHOV EJDE-2019/10

[15] D. Finkelshtein, Y. Kondratiev, P. Tkachov; Traveling waves and long-time behavior in a

doubly nonlocal Fisher-KPP equation. arXiv:1508.02215 (100 pages), 2015.

[16] D. Finkelshtein, Y. Kondratiev, P. Tkachov; Doubly nonlocal Fisher-KPP equation: Speeds
and uniqueness of traveling waves. arXiv:1804.10259, 2018.

[17] D. Finkelshtein, Y. Kondratiev, P. Tkachov; Doubly nonlocal Fisher-KPP equation: Front

propagation. arXiv:1804.10262, 2018.
[18] D. Finkelshtein, P. Tkachov; Accelerated nonlocal nonsymmetric dispersion for

monostable equations on the real line. Applicable Analysis, 2017 (25 pages). DOI

10.1080/00036811.2017.1400537
[19] D. Finkelshtein, P. Tkachov; The hair-trigger effect for a class of non-

local nonlinear equations. Nonlinearity, 31 (6) (2018), 2442–2479. http:

//iopscience.iop.org/article/10.1088/1361-6544/aab1cb/meta
[20] R. Fisher; The wave of advance of advantageous genes. Ann. Eugenics, 7: 335–369, 1937.
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