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INTEGRABILITY OF VERY WEAK SOLUTION TO THE
DIRICHLET PROBLEM OF NONLINEAR ELLIPTIC SYSTEM

YUXIA TONG, SHUANG LIANG, SHENZHOU ZHENG

Abstract. This article concerns the higher integrability of a very weak solu-

tion u ∈ θ +W 1,r
0 (Ω) for max{1, p− 1} < r < p < n to the Dirichlet problem

of the nonlinear elliptic system

−DαAα
i (x,Du) = Bi(x,Du) in Ω,

u = θ on ∂Ω,

where A(x,Du) =
`
Aα
i (x,Du)

´
for α = 1, . . . , n and i = 1, . . . ,m, and each

entry of B(x,Du) =
`
Bi(x,Du)

´
for i = 1, . . . ,m satisfies the monotonicity

and controllable growth. If θ ∈ W 1,q(Ω) for q > r, then we derive that the

very weak solution u of above-mentioned problem is integrable with

u ∈

8><>:
θ + Lq

∗

weak(Ω) for 1 ≤ q < n,

θ + Lτ (Ω) for q = n and 1 < τ <∞,
θ + L∞(Ω) for q > n,

provided that r is sufficiently close to p, where q∗ = qn/(n− q).

1. Introduction

Let Ω ⊂ Rn for n ≥ 2 be a bounded regular domain. By regular domain we
understand the domain with a finite measure for which the Hodge decomposition
Lemma 2.1 below is satisfied. The domains with Lipschitz and A-type boundary, for
example, always are regular. The purpose of this present article is to study a global
higher integrability of very weak solution to the Dirichlet problem of nonlinear
elliptic system:

−DαAα
i (x,Du) = Bi(x,Du) in Ω,

u = θ on ∂Ω,
(1.1)

where m ≥ 2 and θ(x) ∈ W 1,q(Ω,Rm) for q > r with r determined later. In
the context, we let 1 < p < n, and assume that A(x,Du) =

(
Aα
i (x,Du)

)
with

α = 1, . . . , n and i = 1, . . . ,m satisfies the following monotonicity and controllable
growth: there exist positive constants 0 < λ ≤ Λ1,Λ2 such that

|Aα
i (x, ξ)| ≤ Λ1(|ξ|p−1 + a(x)),

〈A(x, ξ1)−A(x, ξ2), ξ1 − ξ2〉 ≥ λ|ξ1 − ξ2|p ∀ξ1, ξ2 ∈ Rn \ {0};
(1.2)
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and B(x,Du) =
(
Bi(x,Du)

)
for i = 1, . . . ,m satisfies

|Bi(x, ξ)| ≤ Λ2(|ξ|p−δ + b(x)) (1.3)

with 1 < δ < p, a(x) ∈ L
q
p−1 (Ω,Rm) and b(x) ∈ L

nq
q+np−n (Ω,Rm).

First of all, let us recall the notation of very weak solutions to the Dirichlet
problem of (1.1). A mapping u ∈ θ + W 1,r

0 (Ω,Rm) with max{1, p − 1} < r < p is
called a very weak solution to the Dirichlet problem (1.1) if∫

Ω

〈A(x,Du), Dϕ〉dx =
∫

Ω

B(x,Du) · ϕdx (1.4)

holds for all ϕ ∈W 1,r/(r−p+1)
0 (Ω,Rm).

On the basis of the above definition, a crucial fact is that the integrable exponent
r of u can be smaller than the natural index p, which is different from the usual
hypothesis of classical weak solution u ∈ θ +W 1,p

0 (Ω,Rm). Here, we would like to
recall recent progresses involving the topic of very weak solution. Iwaniec [18] first
put forward the concept of the so-called very weak solutions for p-harmonic tensors
and weakly quasiregular mappings with the integrability of their weak derivatives
being below natural exponent. Furthermore, Iwaniec-Sbordone [19] and Iwaniec-
Scott-Stroffolini [20] considered a self-improving regularity for weak minima of vari-
ational integrals and weakly p-harmonic type equations with r sufficiently close to
p from lower side, respectively; and got that such very weak solution for variational
integrals and p-harmonic type equations is actually a weak solution in the classical
sense by way of the so-called Hodge decomposition argument concerning distur-
bance vector field. On the other hand, Lewis [13] also obtained a self-improving
integrability for the derivatives of very weak solutions to certain nonlinear elliptic
systems by way of the technique of harmonic analysis which is rather different from
Iwaniec’s argument. Later, Lewis’ harmonic technique was extended to the set-
tings of parabolic systems of p-Laplacian [9, 10], and various elliptic and parabolic
systems with non-standard growths [1, 2, 3, 14], respectively. This essentially is at-
tained by a self-improving integrability of the weak derivatives based on the validity
of the generalized reverse Hölder inequality [5]. In the following, we would like to
mention that Greco and Iwaniec in [8] dealt with the nonhomogeneous p-harmonic
equation

−div(|∇u(x)|p−2∇u(x)) = −div f,

and obtained an estimate for the operator H which carries given vector function
f into the gradient field ∇u. Later, Zheng-Fang [21] further considered a local
very weak solutions for nonlinear elliptic systems (1.1) with that B satisfies (1.3),
A(x,Du) satisfies (1.2) and∑

1≤i≤m, 1≤α≤n

Aα
i (x, ξ)ξαi ≥ λ|ξ|p ∀ξ ∈ Rn \ {0},

and obtained a self-improving integrability for the derivatives of very weak solutions
on the basis of the so-called Hodge decomposition of perturbation vector fields. For
more results for very weak solutions, see [4, 8, 13, 18].

The problem under consideration in this paper is global integrability property in
line with the regularity of boundary data, which is important among the regularity
theories of nonlinear elliptic PDEs and systems. In [6], Gao-Liang-Cui studied very
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weak solution to the following boundary value problems of p-Laplacian

−div(|∇u(x)|p−2∇u(x)) = 0 x ∈ Ω,

u(x) = θ(x) x ∈ ∂Ω,

and obtained a global integrability result, which shows that higher integrability of
the a boundary datum θ forces the very weak solution u to have a higher integra-
bility. For more information on this topic, we refer the readers to [11, 12].

To this end, let us recall some related notations and basic facts. The weak Lt-
spaces or Marcinkiewicz spaces (see [6]) for open subset Ω ⊂ Rn with parameter
t > 0 is the set of all measurable functions f by requiring

|{x ∈ Ω : |f(x)| > s}| ≤ k

st

for some positive constant k = k(f) and every s > 0, where |E| is the n-dimensional
Lebesgue measure of E. We can denoted it by the weak Lt-space or Ltweak(Ω).
Note that if f ∈ Ltweak(Ω) for some t > 1 and |Ω| < ∞, then f ∈ Lτ (Ω) for every
1 ≤ τ < t. Now we are ready to state the main result of this paper.

Theorem 1.1. Let θ ∈W 1,q(Ω,Rm) for q > r. Suppose that the operator A(x,Du)
and B(x,Du) satisfy the structural conditions (1.2) and (1.3). Then there exists
a constant ε0 = ε0(n,m, p,Λ1,Λ2, λ) > 0, such that for every very weak solution
u ∈ θ+W 1,r

0 (Ω,Rm) for max{1, p− 1} < r < p < n, to the boundary value problem
(1.1), we have

u ∈


θ + Lq

∗

weak(Ω) for 1 ≤ q < n,

θ + Lτ (Ω) for q = n and 1 ≤ τ <∞,
θ + L∞(Ω) for q > n,

(1.5)

provided that |p− r| < ε0, where q∗ = qn
n−q .

This article proposes a new way to obtain more properties for general elliptic
problems, that than those in [21, 22]. We have restricted ourselves to the case
max{1, p− 1} < r < n, otherwise any function in W 1,r(Ω) for r ≥ n is in the space
Lt(Ω) for any 1 ≤ t < ∞ by Sobolev embedding theorem. As above-mentioned,
our proof is inspired by Gao et al and Zheng et al [6, 7, 21, 22]. Since for very
weak solution one cannot take a test function by using a usual weak formulation
in the boundary value problem (1.4). For this, we have to construct a suitable
test function by the argument of Hodge decomposition. That is to say, a main key
ingredient is based on choosing an appropriate test functions by the so-called Hodge
decomposition [19, 21]; then we attain our aim in line with Stampacchia lemma [7].

The rest of the paper is organized as follows. In section 2, we are devoted to
presenting some useful lemmas. In section 3, we focus on proving our main theorem.

2. Technical tools

In this section, we introduce some useful lemmas, which will play essential roles
in proving our main result. Let us denote by c(n,m, p, λ,Λ1,Λ2, . . . ) a universal
constant depending only on prescribed quantities and possibly varying from line
to line in the following context. We first give a technical lemma called Hodge
decomposition involved vector fields, see [21, Lemma 2.2].
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Lemma 2.1. Assume v ∈ W 1,r
0 (Ω,Rm) with max{1, p − 1} < r < p. Then there

exist ϕ ∈ W 1, r
r−p+1 (Ω,Rm) and divergence free matrix field h ∈ L

r
r−p+1 (Ω,Rn×m)

such that
|∇v|r−p∇v = ∇ϕ+ h;

moreover,
‖h‖

L
r

r−p+1 (Ω)
≤ c|p− r|‖∇v‖r−p+1

Lr(Ω) ,

where c = c(n, r,Ω).

An efficient tool is the well-known Stampacchia Lemma, which is presented in
the following lemma, see [17, Lemma 4.1] or [7].

Lemma 2.2. Let α, β be two positive constants. Let φ : [s0,+∞) → [0,+∞) be
decreasing and such that

φ(r) ≤ c

(r − s)α
[φ(s)]β

with constants c > 0 and r > s ≥ s0. Then, it leads to the following conclusions:
(i) if β > 1, we have φ(s0 + d) = 0 with

d =
(
c2

αβ
β−1 (φ(s0))β−1

)1/α

.

(ii) if β = 1, for any s ≥ s0 we have

φ(s) ≤ φ(s0)e1−(ce)−
1
α (s−s0).

(iii) if β < 1, for any s ≥ s0 > 0 we have

φ(s) ≤ 2
α

(1−β)2
(
c

1
1−β + (2s0)

α
1−β φ(s0)

)(1
s

) α
1−β

.

3. Proof of Theorem 1.1

Proof. For any L > 0, we take

v =


u− θ + L for u− θ < −L,
0 for − L ≤ u− θ ≤ L,
u− θ − L for u− θ > L,

(3.1)

such that, by our assumptions we have v ∈W 1,r
0 (E) with E = {|u− θ| > L} and

∇v = (∇u−∇θ) · 1{|u−θ|>L} in E. (3.2)

Now we introduce the Hodge decomposition involving disturbance vector field
|∇v|p−2∇v ∈ Lr/(r−p+1)(E) shown in Lemma 2.1. Accordingly,

|∇v|r−p∇v = ∇ϕ+ h (3.3)

with ϕ ∈W 1,r/(r−p+1)
0 (E) and divergence free matrix field h ∈ Lr/(r−p+1)(E,Rn×m).

Then we have

‖∇ϕ‖Lr/(r−p+1)(E) ≤ C(n, p)‖∇v‖r−p+1
Lr(E) , (3.4)

‖h‖Lr/(r−p+1)(E) ≤ C(n, p)|p− r|‖∇v‖r−p+1
Lr(E) . (3.5)
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Extending ϕ by zero value from E to Ω, then the above-mentioned term ϕ ∈
W

1,r/(r−p+1)
0 (Ω) can be used as a test function for the integral identity (1.4), which

yields that ∫
Ω

〈A(x,Du), Dϕ〉dx =
∫

Ω

B(x,Du) · ϕdx.

By (1.2) and Hodge decomposition (3.3) we conclude that∫
Ω

〈A(x,Du), Dϕ〉dx

=
∫
E

〈A(x,Du), |Dv|r−pDv − h〉dx

=
∫
E

〈A(x,Du), |Du−Dθ|r−p(Du−Dθ)〉dx−
∫
E

〈A(x,Du), h〉dx

=
∫
E

〈A(x,Du)−A(x,Dθ), (Du−Dθ)〉|Du−Dθ|r−pdx

+
∫
E

〈A(x,Dθ), (Du−Dθ)〉|Du−Dθ|r−pdx−
∫
E

〈A(x,Du), h〉dx

≥ λ
∫
E

|Du−Dθ|rdx+
∫
E

〈A(x,Dθ), (Du−Dθ)〉|Du−Dθ|r−pdx

−
∫
E

〈A(x,Du), h〉dx,

which implies∫
E

|Du−Dθ|rdx ≤ c
∫
E

|A(x,Dθ)||Du−Dθ|r−p+1dx

+
∫
E

〈A(x,Du), h〉dx+
∫

Ω

B(x,Du) · ϕdx

:= c(I1 + I2 + I3).

(3.6)

Using (1.2), (1.3), (3.5), Hölder inequality and Young inequality we deduce that
I1, I2, I3 can be estimated as follows:

I1 ≤
∫
E

|A(x,Dθ)||Du−Dθ|r−p+1dx

≤ Λ1

∫
E

(
|Dθ|p−1 + a(x)

)
|Du−Dθ|r−p+1dx

≤ ε · c
∫
E

|Du−Dθ|rdx+ c(ε)
∫
E

|Dθ|rdx+ c(ε)
∫
E

|a(x)|
r
p−1 dx

(3.7)

with small ε > 0 determined later. For the estimate of I2, we derive that

I2 ≤
∫
E

|A(x,Du)||h|dx

≤ Λ1

∫
E

(
|Du|p−1 + a(x)

)
|h|dx

≤ 2p−2Λ1

(∫
E

|Du−Dθ|p−1|h|dx+
∫
E

|Dθ|p−1|h|dx
)

+ Λ1

∫
E

a(x)|h|dx

≤ c
(∫

E

|Du−Dθ|rdx
) p−1

r
(∫

E

|h|
r

r−p+1 dx
) r−p+1

r
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+ c
(∫

E

|Dθ|rdx
) p−1

r
(∫

E

|h|
r

r−p+1 dx
) r−p+1

r

+ c
(∫

E

|a(x)|
r
p−1 dx

) p−1
r
(∫

E

|h|
r

r−p+1 dx
) r−p+1

r

≤ c|p− r|
(∫

E

|Du−Dθ|rdx
) p−1

r
(∫

E

|Du−Dθ|rdx
) r−p+1

r

+ c|p− r|
(∫

E

|Dθ|rdx
) p−1

r
(∫

E

|Du−Dθ|rdx
) r−p+1

r

+ c|p− r|
(∫

E

|a(x)|
r
p−1 dx

) p−1
r
(∫

E

|Du−Dθ|rdx
) r−p+1

r

≤ c(ε)|p− r|
∫
E

|Du−Dθ|rdx+ c(ε)|p− r|
∫
E

|Dθ|rdx

+ c(ε)|p− r|
∫
E

|a(x)|
r
p−1 dx, (3.8)

where 0 < |p− r| < ε0. For the estimate of I3, we have

I3 ≤
∫
E

|B(x,Du)||ϕ|dx

≤ Λ2

∫
E

(
|Du|p−δ + b(x)

)
|ϕ|dx

≤ Λ2

(∫
E

(
|Du|p−δ + b(x)

)q0
dx
) 1
q0
(∫

E

|ϕ|
nr

nr−r−np+n dx
)nr−r−np+n

nr

≤ c
((∫

E

|Du|(p−δ)q0dx
) 1
q0 +

(∫
E

|b(x)|q0dx
) 1
q0
)(∫

E

|Dϕ|
r

r−p+1 dx
) r−p+1

r

≤ c
(∫

E

|Du|(p−δ)q0dx
) 1
q0
(∫

E

|Du−Dθ|rdx
) r−p+1

r

+ c
(∫

E

|b(x)|q0dx
) 1
q0
(∫

E

|Du−Dθ|rdx
) r−p+1

r

:= c(J1 + J2),

where q0 = nr/(r + np − n). A direct calculation shows that (p − δ) nr
r+np−n < r

with δ ∈ (1, p), then one gets that

J1 ≤ c|E|
1
q0
− p−δr

(∫
E

|Du|rdx
) p−δ

r
(∫

E

|Du−Dθ|rdx
) r−p+1

r

≤ c|E|
1
q0
− p−δr

((∫
E

|Du−Dθ|rdx
) p−δ

r

+
(∫

E

|Dθ|rdx
) p−δ

r

)(∫
E

|Du−Dθ|rdx
) r−p+1

r

= c|E|
1
q0
− p−δr

((∫
E

|Du−Dθ|rdx
) r−δ+1

r

+
(∫

E

|Dθ|rdx
) p−δ

r
(∫

E

|Du−Dθ|rdx
) r−p+1

r

)



EJDE-2019/01 VERY WEAK SOLUTION FOR NONLINEAR ELLIPTIC SYSTEM 7

≤ c · ε
∫
E

|Du−Dθ|rdx+ c(ε)|E|(
1
q0
− p−δr ) r

δ−1

+ c(ε)|E|(
1
q0
− p−δr ) r

p−1

(∫
E

|Dθ|rdx
) p−δ
p−1

,

and

J2 ≤ ε
∫
E

|Du−Dθ|rdx+ c(ε)
(∫

E

|b(x)|q0dx
) r
q0(p−1)

.

Putting estimations of J1 and J2 together, we have

I3 ≤ c · ε
∫
E

|Du−Dθ|rdx+ c(ε)|E|(
1
q0
− p−δr ) r

δ−1

+ c(ε)|E|(
1
q0
− p−δr ) r

p−1

(∫
E

|Dθ|rdx
) p−δ
p−1

+ c(ε)
(∫

E

|b(x)|q0dx
) r
q0(p−1)

.

(3.9)

Therefore, by combining (3.7), (3.8) and (3.9) we obtain∫
E

|Du−Dθ|rdx

≤ c · (ε+ |p− r|)
∫
E

|Du−Dθ|rdx+ c(ε)(1 + |p− r|)
∫
E

|Dθ|rdx

+ c(ε)|E|(
1
q0
− p−δr ) r

p−1

(∫
E

|Dθ|rdx
) p−δ
p−1

+ c(ε)
∫
E

|a(x)|
r
p−1 dx

+ c(ε)
(∫

E

|b(x)|q0dx
) r
q0(p−1)

+ c(ε)|E|(
1
q0
− p−δr ) r

δ−1 .

(3.10)

Since |p− r| < ε0, we can take the positive constants ε > 0 and ε0 sufficiently small
such that c · (ε+ |p− r|) ≤ 1

2 . Then, the first term in the right-hand side of (3.10)
can be absorbed by the left-hand side, and we obtain∫

E

|Du−Dθ|rdx

≤ c
∫
E

|Dθ|rdx+ c|E|(
1
q0
− p−δr ) r

p−1

(∫
E

|Dθ|rdx
) p−δ
p−1

+ c

∫
E

|a(x)|
r
p−1 dx

+ c
(∫

E

|b(x)|q0dx
) r
q0(p−1)

+ c|E|(
1
q0
− p−δr ) r

δ−1

:= c(K1 +K2 +K3 +K4 +K5).

(3.11)

Note that θ ∈W 1,q(Ω) for q > r, then by the Hölder inequality to have

K1 ≤
(∫

E

|Dθ|qdx
) r
q |E|1−

r
q ≤ ‖Dθ‖rLq(Ω)|E|

1− rq (3.12)

and

K2 ≤ |E|(
1
q0
− p−δr ) r

p−1

(∫
E

|Dθ|qdx
) r
q
p−δ
p−1 |E|(1−

r
q ) p−δp−1

≤ ‖Dθ‖r
p−δ
p−1

Lq(Ω)|E|
( 1
q0
− p−δr ) r

p−1 +(1− rq ) p−δp−1 .

By considering q0 = nr
r+np−n for δ ∈ (1, p), we get( 1

q0
− p− δ

r

) r

p− 1
+
(

1− r

q

)p− δ
p− 1
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=
r

p− 1

(r + np− n
nr

− p− δ
r

)
+ 1− r

q
+
(

1− r

q

)(p− δ
p− 1

− 1
)

= 1− r

q
+

1
p− 1

(r − n+ nδ

n
+
q − r
q

(1− δ)
)

= 1− r

q
+

1
p− 1

(δ − 1)rn+ rq

nq
> 1− r

q
,

which implies

K2 ≤ ‖Dθ‖
r p−δp−1

Lq(Ω)|E|
1− rq |Ω|

(δ−1)rn+rq
nq(p−1) ≤ ‖Dθ‖r

p−δ
p−1

Lq(Ω)|E|
1− rq (|Ω|+ 1)

(δ−1)pn+pq
nq(p−1) . (3.13)

Note that a(x) ∈ L
q
p−1 (Ω) and b(x) ∈ L

nq
q+np−n (Ω), we have

K3 ≤
(∫

E

|a(x)|
q
p−1 dx

) r
q |E|1−

r
q ≤ ‖a(x)‖r(p−1)

L
q
p−1 (Ω)

|E|1−
r
q (3.14)

and

K4 ≤
(∫

E

|b(x)|
nq

q+np−n dx
) (q+np−n)r

nq(p−1) |E|
r

(p−1)q0
− (q+np−n)r

nq(p−1)

≤ ‖b(x)‖
r
p−1

L
nq

q+np−n (Ω)
|E|

r
(p−1)q0

− (q+np−n)r
nq(p−1)

= ‖b(x)‖
r
p−1

L
nq

q+np−n (Ω)
|E|1−

r
q

(3.15)

with r
(p−1)q0

− (q+np−n)r
nq(p−1) = 1− r

q . Similarly, thanks to

( 1
q0
− p− δ

r

) r

δ − 1
=
r + (δ − 1)n

(δ − 1)n
> 1 > 1− r

q
,

we obtain

K5 ≤ |E|1−
r
q |Ω|

r
(δ−1)n+ r

q ≤ |E|1−
r
q (|Ω|+ 1)

p
(δ−1)n+ p

q . (3.16)

Putting the estimates of K1,K2,K3,K4 and K5 into (3.11), it follows that∫
E

|Du−Dθ|rdx ≤ c
(
‖Dθ‖rLq(Ω) + ‖Dθ‖r

p−δ
p−1

Lq(Ω)

+ ‖a(x)‖r(p−1)

L
q
p−1 (Ω)

+ ‖b(x)‖
r
p−1

L
nq

q+np−n (Ω)
+ 1
)
|E|1−

r
q ,

(3.17)

where c = c(n,m, p, q, λ,Λ1,Λ2, δ).
We now turn our attention to the function v ∈W 1,r

0 (E). Since |v| = (|u−θ|−L)
in E, then by Sobolev embedding theorem and (3.2), we have(∫

E

(|u− θ| − L)r
∗
dx
)1/r∗

=
(∫

E

|v|r
∗
dx
)1/r∗

≤ C(n, r)
(∫

E

|Dv|rdx
)1/r

= C(n, r)
(∫

E

|Du−Dθ|rdx
)1/r

.

(3.18)
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Hence, considering L̃ > L yields(
L̃− L

)r∗
|{|u− θ| > L̃}| =

∫
{|u−θ|>L̃}

(
L̃− L

)r∗
dx

≤
∫
{|u−θ|>L̃}

(
|u− θ| − L

)r∗
dx

≤
∫
{|u−θ|>L}

(
|u− θ| − L

)r∗
dx.

(3.19)

By collecting (3.17), (3.18) and (3.19) with E = {|u− θ| > L}, we deduce that(
(L̃− L)r

∗
|{|u− θ| > L̃}|

)1/r∗

≤ c∗
(
‖Dθ‖Lq(Ω) + ‖Dθ‖

p−δ
p−1

Lq(Ω) + ‖a(x)‖p−1

L
q
p−1 (Ω)

+ ‖b(x)‖
1
p−1

L
nq

q+np−n (Ω)
+ 1
)

× |{|u− θ| > L}|
1
r−

1
q .

where c∗ = c∗(n,m, p, q, λ,Λ1,Λ2, δ). It actually means that

|{|u− θ| > L̃}| ≤ 1
(L̃− L)r∗

cr
∗

∗

(
‖Dθ‖Lq(Ω) + ‖Dθ‖

p−δ
p−1

Lq(Ω) + ‖a(x)‖p−1

L
q
p−1 (Ω)

+ ‖b(x)‖
1
p−1

L
nq

q+np−n (Ω)
+ 1
)r∗
|{|u− θ| > L}|r

∗
(

1
r−

1
q

)
.

(3.20)

Let φ(s) = |{|u− θ| > s}|, α = r∗, β = r∗
(

1
r −

1
q

)
,

C = cr
∗

∗

(
‖Dθ‖Lq(Ω) + ‖Dθ‖

p−δ
p−1

Lq(Ω) + ‖a(x)‖p−1

L
q
p−1 (Ω)

+ ‖b(x)‖
1
p−1

L
nq

q+np−n (Ω)
+ 1
)r∗

and s0 > 0. Then, the above estimation (3.20) becomes

φ(L̃) ≤ C

(L̃− L)α
φ(L)β , (3.21)

for L̃ > L > 0. Now we are in a position to discuss settings in the three cases due
to Stampacchia Lemma.
Case (i) If 1 ≤ q < n, one has β < 1. In this case, if s ≥ 1, we then get from
Lemma 2.2 that

|{|u− θ| > s}| ≤ C(α, β, s0)s−t,
where t = α

1−β = q∗. If 0 < s < 1, one has

|{|u− θ| > s}| ≤ |Ω| = |Ω|sq
∗
s−q

∗
≤ |Ω|s−q

∗
.

In summary, we conclude that u ∈ θ + Lq
∗

weak(Ω).
Case (ii) If q = n, one has β = 1. For any 1 ≤ τ <∞, it follows from (3.21) that

φ
(
L̃
)
≤ C

(L̃− L)α
φ(L) =

C

(L̃− L)α
φ(L)1−ατ φ(L)

α
τ ≤ C|Ω|ατ

(L̃− L)α
φ(L)1−ατ .

As above, by Stampacchia Lemma we derive u ∈ θ + Lτ (Ω).
Case (iii) If q > n, one has β > 1. Lemma 2.2 implies φ(d) = 0 for some constant d
depending only on α, β, s0, r, ‖Dθ‖Lq , ‖a(x)‖

L
q
p−1

and ‖b(x)‖
L

nq
q+np−n

. Thus |{|u−
θ| > d}| = 0, which means u − θ ≤ d, a.e. Ω. Therefore u ∈ θ + L∞(Ω), and the
proof is complete. �
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