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INFINITELY MANY SOLUTIONS FOR SUBLINEAR
FRACTIONAL SCHRÖDINGER-TYPE EQUATIONS WITH

GENERAL POTENTIALS

GANG-LING HOU, BIN GE, JIAN-FANG LU

Communicated by Vicentiu D. Radulescu

Abstract. This article concerns the fractional Schrödinger type equations

(−∆)αu+ V (x)u = f(x, u) in RN ,
where N ≥ 2, α ∈ (0, 1), (−∆)α stands for the fractional Laplacian, V is
a positive continuous potential, f ∈ C(RN × R,R). We establish criteria

that guarantee the existence of infinitely many solutions by using the genus

properties in critical point theory.

1. Introduction

In this article, we consider the nonlinear Schrödinger-type equation

(−∆)αu+ V (x)u = f(x, u) in RN , (1.1)

where N ≥ 2, α ∈ (0, 1), (−∆)α stands for the fractional Laplacian, V is a positive
continuous potential, f ∈ C(RN × R,R). The fractional Laplacian (−∆)α with
α ∈ (0, 1) of a function φ ∈ S is defined by

F(((−∆)α)φ)(ξ) = |ξ|2αF(φ)(ξ), ∀α ∈ (0, 1),

where S denotes the Schwartz space of rapidly decreasing C∞ functions in RN , F
is the Fourier transform, i.e.,

F(φ)(ξ) =
1

(2π)N/2

∫
RN

e−2πiξ·xφ(x)dx.

If φ is smooth enough, it can also be computed by the following singular integral

(−∆)αφ(x) = cN,α P.V.
∫

RN

φ(x)− φ(y)
|x− y|N+2α

dy.

Here P.V. is the principal value and cN,α is a normalization constant.
The fractional Schrödinger equation is a fundamental equation of fractional quan-

tum mechanics. It was discovered by Laskin [9, 10] as a result of extending the
Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical
paths, where the Feynman path integral leads to the classical Schrödinger equation,
and the path integral over Lévy trajectories leads to the fractional Schrödinger
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equation. The study of the fractional Schrödinger equations and the correspond-
ing variational problems has received more and more interest in recent years. For
example, [8, 26, 27] studied fractional elliptic problems with critical growth, [7, 11]
gave some sufficient conditions for the existence of positive solutions to fractional
elliptic equation, [2, 4, 6, 19] studied the existence of ground state solutions on
RN and [17] studied fractional Kirchhoff equations. For more results about the
fractional Schrödinger equations, we refer to [1, 12, 13, 14, 20, 22].

It is well known, the main difficulty in treating problem (1.1) in RN arises
from the lack of compactness of the Sobolev embeddings, which prevents from
checking directly that the energy functional associated with (1.1) satisfies the C-
condition. To overcome the difficulty of the noncompact embedding, Teng [23],
Xu-Wei-Dong [25], Chen [3], Bisci-Radulescu [21], also establish a new compact
embedding theorems for the subspace of Hα(RN ). Furthermore, the authors able
to guarantee the existence and multiplicity of nontrivial weak solutions of (1.1)
in E = {u ∈ Hα(RN ) :

∫
RN |(−∆)α/2u(x)|2dx +

∫
RN V (x)u2dx < +∞} provided

inf V > 0 and the following conditions hold:
(A1) For any M > 0, there exists r0 > 0 such that

lim
|y|→∞

µ({x ∈ RN : |x− y| ≤ r0, V (x) ≤M}) = 0,

where µ is the Lebesgue measure on RN .
We emphasize that in our approach, no coerciveness hypothesis (A1) and not

necessarily radially symmetric will be required on the potential V . To the best of
our knowledge, few works concerning on this case up to now. Inspired by the above
facts and aforementioned papers, the main purpose of this paper is to study the
existence of infinitely many solutions for (1.1) when F (x, u) satisfies sublinear in
u at infinity. Our tool used here is the genus properties in critical point theory.
Before stating our main results, we first make some assumptions on the functions
V and f . For the potential V , we make the following assumption

(A2) V ∈ C(RN ) and V0 := infx∈RN V (x) > 0.
For the nonlinearity f , we suppose it satisfies the following conditions:
(A3) (1) f ∈ C(RN × R,R) and there exist constant 1 < r < 2 and positive

function a ∈ L
2

2−r (RN ) such that

|f(x, t)| ≤ a(x)|u|r−1, ∀(x, t) ∈ RN × R.
(2) There exist a bounded open set I ⊂ RN and three constants δ, ρ > 0
and θ ∈ (1, 2) such that

F (x, t) ≥ ρ|t|θ, ∀(x, t) ∈ I × [−δ, δ],

where F (x, t) =
∫ t

0
f(x, s)ds.

The same problem is studied by Shi and Chen [21]. The authors established
the existence of at least k distinct pairs of solutions for(1.1) by using the Clark
theorem. Inspired by the above-mentioned papers, we study problem (1.1) in the
different method. More precisely, the aim of this work is to prove the existence of
infinitely many solutions by using the genus properties in critical point theory. We
are now in the position to state our main results.

Theorem 1.1. Suppose that (A2) and (A3) hold. Then (1.1) possesses at least one
nontrivial solution.
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Theorem 1.2. Suppose that (A2) and (A3) hold, and f satisfies

f(x,−t) = −f(x, t), ∀(x, t) ∈ RN × R.
Then (1.1) possesses infinitely many solutions.

The rest of this article is organized as follows. In Section 2, we state and prove
some preliminary results that will be used later. We will finish the proof of our
main result (Theorem 1.1 and Theorem 1.2) in Section 3.

2. Preliminaries

In this section we recall some results on Sobolev spaces of fractional order. A
very complete introduction to fractional Sobolev spaces can be found in [5].

Consider the fractional order Sobolev space

Hα(RN ) =
{
u ∈ L2(RN ) :

∫
RN

(
|ξ|2αû2 + û2

)
dξ < +∞

}
,

where û .= F(u). The norm is defined by

‖u‖Hα(RN ) =
(∫

RN
(|ξ|2αû2 + û2)dξ

)1/2

.

In this paper we consider its subspace:

E =
{
u ∈ Hα(RN ) :

∫
RN

V (x)u2dx < +∞
}

with the norm

‖u‖E =
(∫

RN
(|ξ|2αû2 + û2)dξ +

∫
RN

V (x)u2dx
)1/2

.

Note that, by Plancherel’s theorem we have |û|2 = |u|2 and∫
RN
|(−∆)α/2u(x)|2dx =

∫
RN

( ̂(−∆)α/2u(ξ))2dξ

=
∫

RN
(|ξ|αû(ξ))2dξ

=
∫

RN
|ξ|2αû2dξ < +∞, ∀u ∈ Hα(RN ).

Together with (A2), it follows that the norm ‖ · ‖E is equivalent to the norm

‖u‖ =
(∫

RN
|(−∆)α/2u(x)|2dx+

∫
RN

V (x)u2dx
)1/2

.

Throughout out this paper, we will use the norm ‖u‖ in E.

Lemma 2.1 ([7]). Hα(RN ) continuously embedded into Lp(RN ) for p ∈ [2, 2∗α],
and compactly embedded into Lploc(RN ) for p ∈ [2, 2∗α).

Lemma 2.2. Assume that (A2), (A3) hold. Then the functional ϕ : E → R defined
by

ϕ(u) =
1
2

∫
RN

[
|(−∆)α/2u(x)|2 + V (x)u2

]
dx−

∫
RN

F (x, u)dx (2.1)

is well defined and of class C1(E,R) and

〈ϕ′(u), v〉 =
∫

RN

[
(−∆)α/2u(−∆)α/2v + V (x)uv

]
dx−

∫
RN

f(x, u)v dx. (2.2)
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Moreover, the critical points of ϕ in E are solutions of problem (1.1).

Proof. The functional ϕ is well defined on E. Indeed, by virtue of (A3)(1) and the
Mean Value Theorem, we have

F (x, t) ≤ a(x)
r
|t|r, ∀(x, t) ∈ RN × R. (2.3)

For any u ∈ E, we obtain for (A2), (2.3), and Hölder inequality that∫
RN
|F (x, u)|dx ≤

∫
RN

a(x)
r
|u|rdx

≤
∫

RN
a(x)|u|rdx

=
∫

RN

a(x)
V (x)r/2

V (x)r/2|u|rdx

≤ 1

V
r/2
0

∫
RN

a(x)V (x)r/2|u|rdx

≤ 1

V
r/2
0

|a| 2
2−r

∣∣∣V r/2|u|r∣∣∣
2
r

=
1

V
r/2
0

|a| 2
2−r
‖u‖r

(2.4)

and so ϕ defined by (2.1) is well defined on E.
Next, we prove that (2.2) holds. For any λ ∈ (0, 1), one can deduce from H(f)(1)

and the Hölder inequality that∫
RN

max
t∈[0,1]

|f(x, u+ th)h|dx

≤
∫

RN
max
t∈[0,1]

|f(x, u+ th)||h|dx

≤
∫

RN
a(x)(|u|+ |h|)r−1|h|dx

≤
∫

RN
ra(x)(|u|r−1 + |h|r−1)|h|dx

=
∫

RN
r
a(x)
V r/2

[
(V

r−1
2 |u|r−1)(V 1/2|h|) + V r/2|h|r

]
dx

≤ r

V
r/2
0

∫
RN

a(x)
[
(V

r−1
2 |u|r−1)(V 1/2|h|) + V r/2|h|r

]
dx

≤ r

V
r/2
0

[
|a| 2

2−r

∣∣V r−1
2 |u|r−1

∣∣
2
r−1

∣∣V 1/2|h|
∣∣
2

+ |a| 2
2−r

∣∣∣V r/2|h|r∣∣∣
2
r

]
≤ r

V
r/2
0

|a| 2
2−r

[
‖u‖r−1‖h‖+ ‖h‖r

]
≤ r

V
r/2
0

|a| 2
2−r

[
‖u‖r−1 + ‖h‖r−1

]
‖h‖ < +∞.

(2.5)
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Thus, by (2.1), (2.5) and Lebesgue’s Dominated Convergence Theorem, we have

〈ϕ′(u), v〉 = lim
t→0+

ϕ(u+ th)− ϕ(u)
t

=
∫

RN

[
(−∆)α/2u(−∆)α/2v + V (x)uv

]
dx

− lim
t→0+

∫
RN

F (x, u+ th)− F (x, u)
t

dx

=
∫

RN

[
(−∆)α/2u(−∆)α/2v + V (x)uv

]
dx

− lim
t→0+

∫
RN

f(x, u+ tλh)h dx

=
∫

RN

[
(−∆)α/2u(−∆)α/2v + V (x)uv

]
dx− lim

t→0+

∫
RN

f(x, u)h dx

(2.6)

which implies that (2.2) holds. Moreover, by a standard argument, it is easy to
show that the critical points of ϕ in E are solutions of problem (1.1) (see [24]).

Next, we prove that ϕ′ is continuous on E. According to (2.1), it suffices to show
that

J ′(u) =
∫

RN
f(x, u)dx.

is continuous. Let un → u in E, then un → u in L2(RN ), since the imbedding
E ↪→ Hα(RN ) ↪→ L2(RN ) is continuous. Thus,

un(x)→ u(x), a.e. x ∈ RN . (2.7)

We claim that

lim
n→+∞

∫
RN

∣∣f(x, un(x))− f(x, u(x))
∣∣2dx = 0. (2.8)

Otherwise, there exists a constant ε > 0 and a subsequence {unk}∞k=1 such that∫
RN

∣∣f(x, unk(x))− f(x, u(x))
∣∣2dx ≥ ε, ∀k ≥ 1. (2.9)

Since un → u in L2(RN ), passing to a subsequence if necessary, it can be assumed
that

C =:
∞∑
k=1

|unk − u|22 < +∞.

Set w(x) =
(∑∞

k=1 |unk(x)− u(x)|2
)1/2, x ∈ RN . Then w ∈ L2(RN ). Therefore,∫

RN

∣∣f(x, unk(x))− f(x, u(x))
∣∣2dx

≤ 2
∫

RN

(
|f(x, unk(x))|2 + |f(x, u(x))|2

)
dx

≤ 2
∫

RN
|a(x)|2

[
|unk(x)|2(r−1) + |u(x)|2(r−1)

]
dx

= 2
∫

RN
|a(x)|2

[
|unk(x)− u(x) + u(x)|2(r−1) + |u(x)|2(r−1)

]
dx

≤ 2
∫

RN
|a(x)|2

[
(|unk(x)− u(x)|+ |u(x)|)2(r−1) + |u(x)|2(r−1)

]
dx



6 G.-L. HOU, B. GE, J.-F. LU EJDE-2018/97

≤ 24r−1

∫
RN
|a(x)|2

[
|w(x)|2(r−1) + |u(x)|2(r−1) + |u(x)|2(r−1)

]
dx

≤ 4r
∫

RN
|a(x)|2

[
|w(x)|2(r−1) + |u(x)|2(r−1)

]
dx

≤ 4r|a2| 1
2−r

[∣∣|w(x)|2(r−1)
∣∣

1
r−1

+
∣∣|u(x)|2(r−1)

∣∣
1
r−1

]
dx

= 4r|a|2 2
2−r

[∣∣|w(x)|2(r−1)
2 + |u|2(r−1)

2

]
dx

≤ 4r|a|2 2
2−r

[∣∣|w(x)|2(r−1)
2 + |u|2(r−1)

2

]
dx < +∞.

Then by (2.7) and Lebesgue’s Dominated Convergence Theorem, we have

lim
k→+∞

∫
RN

∣∣f(x, unk(x))− f(x, u(x))
∣∣2dx = 0,

which contradicts with (2.7). Hence (2.8) holds. Applying (2.2), (2.8) and the
Hölder inequality, we have

|〈J ′(un)− J ′(u), v〉|

=
∣∣∣ ∫

RN
(f(x, un(x))− f(x, u(x)))v(x)dx

∣∣∣
≤
∫

RN
|f(x, un(x))− f(x, u(x))||v(x)|dx

≤
(∫

RN
|f(x, un(x))− f(x, u(x))|2dx

)1/2(∫
RN
|v(x)|2dx

)1/2

≤
(∫

RN
|f(x, un(x))− f(x, u(x))|2dx

)1/2(∫
RN

V (x)
V0
|v(x)|2dx

)1/2

=
1

V
1/2
0

(∫
RN
|f(x, un(x))− f(x, u(x))|2dx

)1/2(∫
RN

V (x)|v(x)|2dx
)1/2

≤ 1

V
1/2
0

(∫
RN
|f(x, un(x))− f(x, u(x))|2dx

)1/2

‖v‖1/2

→ 0, as n→ +∞.

This shows that J ′ is continuous, and so ϕ′ is continuous. The proof is completed.
�

Lemma 2.3 ([15]). Let X be a real Banach space and ϕ ∈ C1(X,R) satisfies the
(PS)-condition. If ϕ is bounded from blow, then c = infu∈X ϕ(u) is a critical value
of ϕ.

To find multiplicity of nontrivial critical points of ϕ, the following “genus” prop-
erties are needed in our argument. Let X be a Banach space, ϕ ∈ C1(X,R) and
c ∈ R. Set

Σ = {A ⊂ X \ {0} : A is closed in X and symmetric with respect to0},
Kϕ
c = {u ∈ X : ϕ(u) = c, ϕ′(u) = 0} and ϕc = {u ∈ X : ϕ(u) ≤ c}.

Definition 2.4 ([18]). For A ∈ Σ, we say genus of A is n denoted by γ(A) = n
if there is an odd map φ ∈ C(A,Rn\{0}) and n is the smallest integer with this
property.
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Definition 2.5 ([16]). Let X be a Banach space with X∗ being its topological
dual and ϕ ∈ C1(X). We say that ϕ satisfies the Palais−Smale condition at level
c ∈ R (PSc-condition for short), if any sequence {xn}∞n=1 ⊆ X, such that

ϕ(xn)→ c, ϕ′(xn)→ 0 in X∗,

has a strongly subsequence. If this is true at every level c ∈ R, then we simply say
that ϕ satisfies the Palais− Smale condition (PS-condition for short).

The notion of genus generalizes the concept of dimension of a linear space.

Lemma 2.6 ([16, Proposition 4.2.15]). If X is a Banach space and U is a bounded
symmetric neighborhood of the origin in X, then γ(∂U) = dimX.

Lemma 2.7 ([18]). Let ϕ be an even C1 functional on X and satisfy the (PS)-
condition. For any n ∈ N , set

Σn = {A ∈ Σ : γ(A) ≥ n} and cn = inf
A∈Σn

sup
u∈A

ϕ(u).

(a) If Σn 6= ∅ and cn ∈ R, then cn is a critical value of ϕ;
(b) If There exists l ∈ N such that cl = cl+1 = · · · = cl+n = c < +∞, then

γ(Kϕ
c ) ≥ n+ 1.

3. Proofs of main results

Proof of Theorem 1.1. We first prove that ϕ is bounded from below. By (A3)(1),
one yields

|F (x, t)| =
∣∣∣F (x, 0) +

∫ t

0

d

ds
F (x, s)ds

∣∣∣
=
∣∣∣ ∫ t

0

f(x, s)ds
∣∣∣

≤
∫ t

0

|f(x, s)|ds

≤a(x)
r
|t|r ≤ a(x)|t|r,

(3.1)

for all x ∈ RN and all t ∈ R.
Hence, from (2.4) and (3.1), we obtain

ϕ(u) =
1
2

∫
RN

[
|(−∆)α/2u(x)|2 + V (x)u2

]
dx−

∫
RN

F (x, u)dx

≥1
2
‖u‖2 −

∫
RN

a(x)|u|rdx

≥1
2
‖u‖2 − 1

V
r/2
0

|a| 2
2−r
‖u‖r.

(3.2)

Since 1 < r < 2, (3.2) implies that ϕ(u)→ +∞ as ‖u‖ → +∞. Hence ϕ is bounded
from below.

Next, we prove that ϕ satisfies the (PS)-condition. Suppose that {un}n∈N ⊂ E
is a sequence such that

ϕ(un)→ c and ϕ′(un)→ 0, as n→ +∞.
Then by (3.2), there exist constants C0, C1 > 0 such that

|un|2 ≤ C0‖un‖ ≤ C1, ∀n ∈ N. (3.3)
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So we may assume, going if necessary to a subsequence, that

un ⇀ u0 weakly in E.

From the choice of the function a ∈ L
2

2−r (RN ), for any given number ε > 0, we can
choose Rε > 0 such that

(∫
|x|>Rε

|a(x)|
2

2−r dx
) 2−r

2
< ε. (3.4)

Since the embedding E ↪→ L2
loc(RN ) is compact, un ⇀ u0 in E implies un → u0 in

L2
loc(RN ), and hence,

lim
n→+∞

∫
|x|≤Rε

|un − u0|2dx = 0. (3.5)

Let Bε = {x ∈ RN : |x| ≤ Rε} and Bcε = RN \ Bε. By (3.5), there exists n0 ∈ N
such that

|un − u0|L2(Bε) < ε, for n ≥ n0. (3.6)

Next, we prove that

∫
RN

[f(x, un)− f(x, u0)](un − u0)dx→ 0, as n→ +∞.

Indeed, by hypothesis (A3)(1), we have

∫
RN
|f(x, un)− f(x, u0)||un − u0|dx

≤
∫

RN
a(x)[|un|r−1 + |u0|r−1]|un − u0|dx

=
∫

RN

a(x)

V
r−1
2

V
r−1
2 [|un|r−1 + |u0|r−1]|un − u0|dx

≤ V0
− r−1

2

∫
RN

a(x)V
r−1
2 [|un|r−1 + |u0|r−1]|un − u0|dx

≤ V0
− r−1

2

[ ∫
Bε

a(x)V
r−1
2 [|un|r−1 + |u0|r−1]|un − u0|dx

+
∫
Bcε

a(x)V
r−1
2 [|un|r−1 + |u0|r−1]|un − u0|dx

]
=: V0

− r−1
2 [I1 + I2].

(3.7)
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On the one hand, using the Hölder inequality and (3.6), we have

I1 =
∫
Bε

a(x)V
r−1
2 [|un|r−1 + |u0|r−1]|un − u0|dx

≤ |a|
L

2
2−r (Bε)

[∣∣V r−1
2 |un|r−1

∣∣
L

2
r−1 (Bε)

+
∣∣V r−1

2 |u0|r−1
∣∣
L

2
r−1 (Bε)

]
|un − u0|L2(Bε)

≤ ε|a|
L

2
2−r (Bε)

[∣∣V r−1
2 |un|r−1

∣∣
L

2
r−1 (Bε)

+
∣∣V r−1

2 |u0|r−1
∣∣
L

2
r−1 (Bε)

]
≤ ε|a|

L
2

2−r (RN )

[∣∣V r−1
2 |un|r−1

∣∣
L

2
r−1 (RN ))

+
∣∣V r−1

2 |u0|r−1
∣∣
L

2
r−1 (RN ))

]
= ε|a|

L
2

2−r (RN )
[‖un‖r−1 + ‖u0‖r−1]

≤ ε|a|
L

2
2−r (RN )

[(C1

C0

)r−1 + ‖u0‖r−1
]

(3.8)

for all n ≥ n0.
On the other hand, using the Hölder inequality and (3.4), we have

I2 =
∫
Bcε

a(x)V
r−1
2 [|un|r−1|+ |u0|r−1]|un − u0|dx

≤ |a|
L

2
2−r (Bcε)

[∣∣V r−1
2 |un|r−1

∣∣
L

2
r−1 (Bcε)

+
∣∣V r−1

2 |u0|r−1
∣∣
L

2
r−1 (Bcε)

]
|un − u0|L2(Bcε)

≤ |a|
L

2
2−r (Bcε)

[∣∣V r−1
2 |un|r−1

∣∣
L

2
r−1 (RN )

+
∣∣V r−1

2 |u0|r−1
∣∣
L

2
r−1 (RN )

]
|un − u0|L2(RN )

≤ C0ε‖un − u0‖
[∣∣V r−1

2 |un|r−1
∣∣
L

2
r−1 (RN )

+
∣∣V r−1

2 |u0|r−1
∣∣
L

2
r−1 (RN )

]
≤ C0ε‖un − u0‖

[
‖un‖r−1 + ‖u0‖r−1

]
≤ 2C0ε

[
‖un‖r + ‖u0‖r

]
≤ 2C0ε

[(C1

C0

)r + ‖u0‖r
]

(3.9)

for all n ∈ N .
Since ε is arbitrary, it follows from (3.7), (3.8) and (3.9) that

∫
RN

[f(x, un)− f(x, u0)](un − u0)dx→ 0 as n→ +∞. (3.10)

In view of the definition of weak convergence, we have

〈ϕ′(un)− ϕ′(u0), un − u0〉 → 0, as n→ +∞. (3.11)
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Note that
〈ϕ′(un)− ϕ′(u0), un − u0〉

=
∫

RN

[∣∣(−∆)α/2(un − u0)
∣∣2 + V (x)(un − u0)2

]
dx

−
∫

RN
[f(x, un)− f(x, u0)](un − u0)dx

= ‖un − u0‖2 −
∫

RN
[f(x, un)− f(x, u0)](un − u0)dx.

(3.12)

From (3.10), (3.11) and (3.12) it follows that

‖un − u0‖ → 0, as n→ +∞, (3.13)

which implies that un → u0 in E. Therefore ϕ satisfies the (PS)-condition. Then
by Lemma 2.3 we see that c = infu∈E ϕ(u) is a critical value of ϕ, i.e., there exists
a critical point u0 ∈ E such that ϕ(u0) = c.

Finally, we prove that u0 6= 0. Taking φ ∈ [Hα
0 (I) ∩E] \ {0} with ‖φ‖ = 1, then

by (A3)(2), for t ∈ (0, 1), we have

ϕ(tφ) =
1
2

∫
RN

[
|(−∆)α/2(tφ)

∣∣2 + V (x)|tφ|2
]
dx−

∫
RN

F (x, tφ)dx

=
1
2
t2‖φ‖2 −

∫
I

F (x, tφ)dx

<
1
2
t2 −

∫
I

ρ|tφ|θdx

=
1
2
t2 − tθρ

∫
I

|φ|θdx.

(3.14)

Since 1 < θ < 2, it follows (3.14) that ϕ(tφ) < 0 for t > 0 small enough. Hence c =
ϕ(u0) < 0. Therefore u0 is a nontrivial critical point of ϕ with ϕ(u0) = infu∈E ϕ(u)
and is a nontrivial solution of problem (1.1). The proof is completed. �

Proof of Theorem 1.2. From the proof of Theorem 1.1, we know that ϕ is bounded
below and satisfies the (PS)-condition. It is clear from F (x,−t) = F (x, t) that ϕ
is even and ϕ(0) = 0. In order to apply Lemma 2.7, we prove now that for any
n ∈ N , there exists K ⊆ Hα(RN ) compact, and symmetric with γ(K) = n such
that

sup
u∈K

ϕ(u) < 0.

For any n ∈ N , we take n disjoint open sets Ii such that ∪ni=1Ii ⊂ I. For
i = 1, 2, . . . , n, we choose ui ∈ (Hα

0 (Ii) ∩ E) \ {0} and |ui|θ = 1. Let En =
span{u1, u2, . . . , um}. Because En is a finite dimensional subspace of E, all norm
are equivalent and so we can find 0 < C3 < 1 such that

C3‖u‖ ≤ |u|θ ≤
1
C3
‖u‖, ∀u ∈ En. (3.15)

From (A3)(2), and use (3.15) again we see that for any u ∈ En, we have

J(u) =
∫

RN
F (x, u)dx =

∫
I

F (x, u)dx

≥ρ
∫
I

|u(x)|θdx = ρ|u|θθ ≥ ρCθ3‖u‖θ.
(3.16)
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Set

I(u) =
∫

RN

1
2

[
|(−∆)α/2u(x)|2 + V (x)u2

]
dx.

Then from (2.4) and (3.16), it follows that for every u ∈ En,

ρCθ3
[
I(u)

]θ/2 ≤ J(u) ≤ V0
−r/2|a|

L
2

2−r (RN )

[
I(u)

]r/2
. (3.17)

We consider the compact set

K =
{
u ∈ En :

(1
4
) θ

2−θ
(
ρCθ3

) 2
2−θ ≤ J(u) ≤

(1
2
) θ

2−θ
(
ρCθ3

) 2
2−θ
}
.

Hence, for every u ∈ K, we have

ϕ(u) =I(u)− J(u)

≤
( 1
ρCθ3

)2/θ

(J(u))2/θ − J(u)

=
( 1
ρCθ3

)2/θ

J(u)(J(u))
2−θ
θ − J(u)

≤
( 1
ρCθ3

)2/θ

J(u)
1
2

(
ρCθ3

)2/θ

− J(u)

=− 1
2
J(u) ≤ −1

2

(1
4

) θ
2−θ
(
ρCθ3

) 2
2−θ

< 0.

(3.18)

Because En is isomorphic in Rn, we can identify K with a ring K′ in RN such that

∂B1(0) = Sn−1 = {y ∈ Rn : |y| = 1} ⊆ K′ ⊆ Rn\{0}.

By lemma Lemma 2.6, we conclude that

γ(K) = n. (3.19)

Let cn = infA∈Σn supu∈A ϕ(u). Then from (3.19) and the fact that ϕ is bounded
below on E, we have −∞ < cn < 0, that is, for any n ∈ N , cn is a real negative
number. By Lemma 2.7, ϕ admits infinitely many nontrivial critical points, and so
problem (1.1) possesses infinitely many nontrivial negative energy solutions. The
proof is completed. �
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