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SUPERLINEAR FRACTIONAL BOUNDARY VALUE PROBLEMS
WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION
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Abstract. In this article, by means of a direct variational approach and the
theory of the fractional differential space, we prove the existence of a non-

trivial solution for superlinear fractional boundary value problems without

Ambrosetti and Rabinowitz condition.

1. Introduction

Fractional differential equations have recently been proved to be valuable tools
in the modeling of many phenomena in various fields of science and engineering.
Indeed, we can find numerous applications in viscoelasticity, neurons, electrochem-
istry, control, porous media, electromagnetism, etc., (see [4, 10, 11, 15, 17, 20]). Re-
cently, the study of various mathematical problems with the existence of solutions
of various BVP of fractional differential equations has been received considerable
attention, we refer the reader to [1, 2, 5, 6, 8, 9, 12, 19, 24, 25, 26] for an overview
of and references on this subject.

In this article we are concerned with the existence of a nontrivial solution for
the following Dirichlet problem of fractional order differential equation

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 0D

−β
T (u′(t))

)
+ λ∇F (t, u(t)) = 0, a.a. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.1)

where 0D
−β
t and 0D

−β
T are the left and right Riemann-Liouville fractional integrals

of order 0 ≤ β < 1, respectively, λ > 0 is a real number, F : [0, T ] × RN → R is a
given function and ∇F (t, x) is the gradient of F at x.

Such a type of behaviour occurs, for example, when λ = 1, in this case (1.1)
becomes

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 0D

−β
T (u′(t))

)
+∇F (t, u(t)) = 0, a.a. t ∈ [0, T ],

u(0) = u(T ) = 0.
(1.2)

There have been many works about the existence of nontrivial solutions to (1.2)
by using variational methods. Jiao and Zhou [3] obtained the existence of solutions
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for (1.2) by the Mountain Pass theorem under the Ambrosetti-Rabinowitz (AR)
condition. Chen and Tang [13] studied the existence and multiplicity of solutions
for the system (1.2) when the nonlinearity F (t, ·) are superquadratic, asymptotically
quadratic, and subquadratic, respectively. For more recent results, we can refer to
[7, 14, 18] and the references therein.

It is well known, the (AR) condition is quite important not only to ensure that
the Euler-lagrange functional associated to problem (1.2) has a mountain pass ge-
ometry, but also to guarantee that Palais-Smale sequence of the Euler-Lagrange
functional is bounded. However, this condition is very restrictive and eliminates
many interesting and important nonlinearities.

Motivated by the works described above, we try to get the existence of a non-
trivial solution for problem (1.1) without (AR) condition. To state our main result,
we assume that F (t, x) satisfies the following general conditions:

(A1) F (t, 0) = 0, lim|x|→0
F (t,x)
|x|2 = 0 uniformly a.e. t ∈ [0, T ].

(A2) There are positive constant positive constants a, b and p > 1 such that

|∇F (t, x)| ≤ a+ b|x|p, for a.e. t ∈ [0, T ], all x ∈ RN .

(A3) lim|x|→∞
F (t,x)
|x|2 = +∞ uniformly a.e. t ∈ [0, T ].

(A4) There exists a constant C∗ > 0 such that

H(t, y) ≤ H(t, x) + C∗,

for any t ∈ [0, T ], 0 < |y| < |x| or 0 < |x| < |y|, where H(t, x) =
(x,∇F (t, x))− 2F (t, x).

This article is organized as follows. In Sect.2 we introduce the fractional differential
space setting that we adopt throughout the paper. In Sect.3 we give the main result
and its proof.

2. Preliminary results

In this section, we introduce some basic definitions and properties of the frac-
tional calculus which are used further in this paper. For the proofs, which are
omitted, we refer the reader to [3, 7, 13, 16, 21, 22] or other texts on basic frac-
tional calculus.

Definition 2.1 ([16])). Let g(t) be a function defined on [a, b] and µ > 0. The left
and right Riemann-Liouville fractional integrals of order µ for function g(t) denoted
by aD

−µ
t g(t) and tD

−µ
b g(t), respectively, are defined by

aD
−µ
t g(t) =

1
Γ(µ)

∫ t

a

(t− s)µ−1g(s)ds, t ∈ [a, b],

tD
−µ
b g(t) =

1
Γ(µ)

∫ b

t

(t− s)µ−1g(s)ds, t ∈ [a, b],

where Γ(µ) =
∫∞
0
tµ−1e−tdt.

Definition 2.2 ([16]). Let g(t) be a function defined on [a, b]. The left and right
Riemann-Liouville fractional derivatives of order µ for function g(t) denoted by
aD

µ
t g(t) and tD

µ
b g(t), respectively, are defined by

aD
µ
t g(t) =

dn

dtn
aD

µ−n
t g(t) =

1
Γ(n− µ)

dn

dtn

(∫ t

a

(t− s)n−µ−1g(s)ds
)
,
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tD
µ
b g(t) = (−1)n

dn

dtn
tD

µ−n
b g(t) =

1
Γ(n− µ)

dn

dtn

(∫ b

t

(t− s)n−µ−1g(s)ds
)
,

where t ∈ [a, b], n− 1 ≤ µ < n, and n ∈ N.

The left and right Caputo fractional derivatives are defined via the Riemann-
Liouville fractional derivatives. In particular, they are defined for the function
belonging to the space of absolutely continuous functions, which we denote by
AC([a, b],RN ). ACk([a, b],RN ) (k = 1, 2, . . . ) is the space of functions g such that
g ∈ Ck([a, b],RN ). In particular, AC([a, b],RN ) = AC1([a, b],RN ).

Definition 2.3 ([16]). Let µ ≥ 0 and n ∈ N. If µ ∈ [n − 1, n) and g(t) ∈
ACn([a, b],RN ), then the left and right Caputo fractional derivatives of order µ for
function g(t) denoted by c

aD
µ
t g(t) and c

tD
µ
b g(t), respectively, exist almost everywhere

on [a, b]. caD
µ
t g(t) and c

tD
µ
b g(t) are represented by

c
aD

µ
t g(t) =a D

µ−n
t g(n)(t) =

1
Γ(n− µ)

(∫ t

a

(t− s)n−µ−1g(n)(s)ds
)
,

c
tD

µ
b g(t) = (−1)ntD

µ−n
b g(n)(t) =

1
Γ(n− µ)

(∫ b

t

(t− s)n−µ−1g(n)(s)ds
)
,

respectively, where t ∈ [a, b].

Definition 2.4 ([13]). Define 0 < α ≤ 1 and 1 < p <∞. The fractional derivative
space Eα,p0 is defined by the closure of C∞0 ([0, T ],RN ) with respect to the norm

‖u‖α,p =
(∫ T

0

|u(t)|pdt+
∫ T

0

|c0Dα
t u(t)|pdt

)1/p

, ∀u ∈ Eα,p0 ,

where C∞0 ([0, T ],RN ) denotes the set of all functions u ∈ C∞([0, T ],RN ) with
u(0) = u(T ) = 0. It is obvious that the fractional derivative space Eα,p0 is the space
of functions u ∈ Lp([0, T ],RN ) having an α-order Caputo fractional derivative
c
0D

α
t u ∈ Lp([0, T ],RN ) and u(0) = u(T ) = 0.

Proposition 2.5 ([13]). Let 0 < α ≤ 1 and 1 < p <∞. The fractional derivative
space Eα,p0 is a reflexive and separable space.

Throughout this paper, we denote the norm of u in Eα,p0 ([0, T ]) and Lp([0, T ]),
1 < p ≤ ∞, respectively, by

‖u‖α,p =
(∫ T

0

|c0Dα
t u|pdt

)1/p

, ‖u‖p =
(∫ T

0

|u|pdt
)1/p

, ‖u‖∞ = max
t∈[0,T ]

|u(t)|.

Proposition 2.6 ([13]). Let 0 < α ≤ 1 and 1 < p <∞. For all u ∈ Eα,p0 , one has

‖u‖p ≤
Tα

Γ(α+ 1)
‖c0Dα

t u‖p. (2.1)

Moreover, if α > 1/p and 1
p + 1

q = 1, then

‖u‖∞ ≤
T
α−1
p

Γ(α)
(

(α+ 1)q + 1
) 1
q

‖c0Dα
t u‖p. (2.2)

According to (2.1), one can consider Eα,p0 with respect to the norm

‖u‖α,p = ‖c0Dα
t u‖p =

(∫ T

0

|c0Dα
t u|pdt

)1/p

. (2.3)
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Proposition 2.7 ([13]). Define 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p ,

and the sequence uk converges weakly to u ∈ Eα,p0 , that is, uk ⇀ u. Then uk → u
in C([0, T ],RN ), that is, ‖uk − u‖∞ → 0, as k →∞.

By Definition 2.3, for any u ∈ AC([0, T ],RN ), problem (1.1) is equivalent to the
problem

d

dt

(1
2 0D

α−1
t (c0D

α
t u(t))− 1

2 tD
α−1
T (ctD

α
Tu(t))

)
+ λ∇F (t, u(t)) = 0,

a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

(2.4)

where α = 1− β
2 ∈ ( 1

2 , 1].
In the following, we will treat problem (2.4) in the Hilbert space Eα = Eα,20 and

corresponding norm ‖u‖α = ‖u‖α,2. It follows from that the functional φ : Eα → R
given by

φλ(u) = −1
2

∫ T

0

(c0D
α
t u(t),ct D

α
Tu(t))dt− λ

∫ T

0

F (t, u(t))dt, u ∈ Eα, (2.5)

is continuously differentiable on Eα. Moreover, for u, v ∈ Eα, we have

〈φ′λ(u), v〉 =− 1
2

∫ T

0

[(c0D
α
t u(t),ct D

α
T v(t)) + (ctD

α
Tu(t),c0D

α
t v(t))]dt

− λ
∫ T

0

(∇F (t, u(t)), v(t))dt.

(2.6)

Proposition 2.8 ([13]). A function u ∈ AC([0, T ],RN ) is a solution of (2.4) if

(i) Dα(u(t)) is derivative for almost every t ∈ [0, T ],
(ii) u satisfies (2.4), where Dα(u(t)) = 1

2 0
Dα−1
t (c0D

α
t u(t))− 1

2 t
Dα−1
T (ctD

α
Tu(t)).

Proposition 2.9 ([13]). If 1
2 < α ≤ 1 then for any u ∈ Eα, one has

| cos(πα)|‖u‖2α ≤ −
∫ T

0

(c0D
α
t u(t),ct D

α
Tu(t))dt ≤ 1

| cos(πα)|
‖u‖2α. (2.7)

Proposition 2.10 ([13]). Let 1
2 < α ≤ 1 and φλ be defined by (2.5). If u ∈ Eα

is a solution of φ′λ(u) = 0, then u is a solution of problem (2.4) which satisfies the
problem (1.1).

3. Main result and its proof

Lemma 3.1. Suppose that (A1)–(A4) holds. Then we have the following assertions:

(a) φλ is unbounded from below on Eα;
(b) u = 0 is a strict local minimum for the functional φλ.

Proof. By (A3), for any M > 0, there exists K0 > 0, such that

F (t, x) ≥M |x|2, for all |x| ≥ K0, a.e. t ∈ [0, T ]. (3.1)
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On the other hand, by the mean value theorem and (A2), we obtain

|F (t, x)| =|(∇F (t, λ0x), x)|
≤|∇F (t, λ0x)| · |x|
≤(a+ bλp0|x|p) · |x|
≤(a+ b|x|p) · |x|

≤aK0 + bKp+1
0 =: CM ,

(3.2)

for for some λ0 ∈ (0, 1), |x| ≤ K0 and a.e. t ∈ [0, T ].
Hence, for any M > 0, there exists CM > 0, such that

F (t, x) ≥M0|x|2 − CM0 , a.e. t ∈ [0, T ], all x ∈ RN , (3.3)

where M0 = M + CM
K2

0
.

Choosing u0 = (0, . . . , 0, Tπ sin(πtT )) ∈ Eα, then

‖u0‖22 =
∫ T

0

|u0|2dt =
T 3

2π2
and ‖u0‖2α ≤

T 3−2α

Γ2(2− α)(3− 2α)
. (3.4)

For η > 0, and noting that (3.3) and (3.4), we have

φλ(ηu0) =− 1
2

∫ T

0

(c0D
α
t ηu0(t),ct D

α
T ηu0(t))dt− λ

∫ T

0

F (t, ηu0(t))dt

≤ η2

2| cos(πα)|
‖u0‖2α − λ

∫ T

0

(M0η
2|u0|2 − CM0)dt

=
η2

2| cos(πα)|
‖u0‖2α − λM0η

2

∫ T

0

|u0|2dt+ λCM0T

≤ η2

2| cos(πα)|
· T 3−2α

Γ2(2− α)(3− 2α)
− λM0η

2 · T
3

2π2
+ λCM0T

=
( 1

2| cos(πα)|
· T 3−2α

Γ2(2− α)(3− 2α)
− λM0

T 3

2π2

)
η2 + λCM0T.

(3.5)

If M0 is large enough so that

1
2| cos(πα)|

T 3−2α

Γ2(2− α)(3− 2α)
− λM0

T 3

2π2
< 0, (3.6)

then
φλ(ηu0)→ −∞, as η → +∞. (3.7)

This proves (a).
By (A1), for any ε > 0, there exists δ(ε) > 0, such that

|F (t, x)| < |x|2ε, |x| < δ. (3.8)

Analogously, by the mean value theorem and (A2), we have

|F (t, x)| ≤(a+ b|x|p)|x|

=|x|p+1(a · 1
|x|p

+ b)

≤|x|p+1(
a

δp
+ b)

=Cε|x|p+1,

(3.9)
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where |x| ≥ δ, t ∈ [0, T ], 1 < p <∞. Hence, for almost all t ∈ [0, T ] and all x ∈ RN ,
we have

F (t, x) ≤ |x|2ε+ Cε|x|p+1. (3.10)
Then

φλ(u) =− 1
2

∫ T

0

(c0D
α
t u(t),ct D

α
Tu(t))dt− λ

∫ T

0

F (t, u(t))dt

≥| cos(πα)|
2

‖u‖2α − λ
∫ T

0

(|u|2ε+ Cε|u|p+1)dt

=
| cos(πα)|

2
‖u‖2α − λε‖u‖22 − λCε‖u‖

p+1
p+1.

(3.11)

By Proposition 2.6, we have

‖u‖2 ≤
Tα

Γ(α+ 1)
‖c0Dα

t u‖2 =
Tα

Γ(α+ 1)
‖u‖α. (3.12)

Hence,

φλ(u) ≥ | cos(πα)|
2

‖u‖2α − λε(
Tα

Γ(α+ 1)
)2‖u‖2α − Cε‖u‖

p+1
p+1. (3.13)

Since embedding Eα ↪→ C[0, T ] is continous, then there exists a constant c > 0
such that

‖u‖p+1 ≤ c‖u‖α, ∀u ∈ Eα,
which implies

φλ(u) ≥| cos(πα)|
2

‖u‖2α −
λεT 2α

Γ2(α+ 1)
‖u‖2α − c0‖u‖p+1

α

=
( | cos(πα)|

2
− λεT 2α

Γ2(α+ 1)

)
‖u‖2α − c0‖u‖p+1

α .

(3.14)

For a given λ, choose that ε = ε(λ) satisfies ε < | cos(πα)|Γ2(α+ 1)/(2λT 2α), then
we have

φλ(u) > 0, ‖u‖α < ρ (3.15)
for some ρ ∈ (0, 1). So u = 0 is a strict local minimum for φλ. �

Lemma 3.2. Assume (A1)–(A3) hold and 0 < λ0 < µ0, λ0 ≤ λ ≤ µ0, cλ =
infγ∈P maxz∈[0,1] φλ(γ(z)), then cλ/λ is monotone decreasing and is left semi-con-
tinuous.

Proof. By choosing ε > 0, such that( | cos(πα)|
2

− λεT 2α

Γ2(α+ 1)

)
≥ | cos(πα)|

4
.

By (3.14), we have

φλ(u) ≥ | cos(πα)|
4

‖u‖2α − c0‖u‖p+1
α , ∀u ∈ Eα, 0 < λ0 < µ0, c0 > 0. (3.16)

That is, there exist ρ > 0 and R > 0, such that

φλ(u) ≥ R, ‖u‖α = ρ, ∀λ ≤ µ0. (3.17)

By choosing e ∈ Eα such that φλ0(e) < 0, we infer that

φλ(e)
λ

<
φλ0(e)
λ0

< 0, ∀λ ∈ [λ0, µ0].
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The same can be done to obtain
φλ(u)
λ
≤ φµ(u)

µ
, ∀u ∈ Eα, µ < λ. (3.18)

Define

P =
{
γ : [0, 1]→ Eα : γ is continuous and γ(0) = 0, γ(1) = e

}
.

According to the definition of cλ, we have cµ0 > 0. Thus map c : [λ0, µ0]→ R+ is
defined as c(λ) = cλ. In fact, the formula (3.18) contains cλ

λ is monotone decreasing,
the formula (3.17) contains cλ ≥ R > 0 and cλ is bounded from below.

Now we prove left semi-continuity of cλ/λ. Fix µ ∈ [λ0, µ0] and ε > 0. Then
exists γ ∈ P , such that

cµ ≤ max
z∈[0,1]

φµ(γ(z)) ≤ cµ +
εµ

8
. (3.19)

Let r0 = maxz∈[0,1]

∣∣ ∫ T
0
F (t, γ(z))dt

∣∣. Then, for µ < 2λ and 1
λ <

1
µ + ε

2cµ
, we can

obtain
φλ(γ(z)) =φµ(γ(z)) + (φλ(γ(z))− φµ(γ(z)))

=φµ(γ(z)) + (µ− λ)
∫ T

0

F (t, γ(z))dt

≤cµ +
εµ

8
+ r0|µ− λ|.

(3.20)

If |µ− λ| < εµ
8r0

, then cλ ≤ cµ + εµ
4 . Hence, if λ < µ, then

cµ
µ
− ε < cµ

µ
<
cλ
λ
≤
cµ + εµ

4

λ
=
cµ
λ

+
εµ

4λ

≤ cµ
λ

+
εµ

4
2
µ
≤ cµ(

1
µ

+
ε

2cµ
) +

ε

2
=
cµ
µ

+ ε.

(3.21)

Hence, cλ/λ and cλ are left semi-continuous. �

Remark 3.3. We recall that the map b : [λ0, µ0] → R+, given by b(λ) = cλ
λ ,

is monotone decreasing. Thus, bλ and cλ are differentiable at almost all values
λ ∈ (λ0, µ0).

Lemma 3.4. There exists C > 0, such that

‖φ′µ(u)− φ′λ(u)‖(Eα)∗ ≤ C(1 + ‖u‖pα)|µ− λ|, ∀λ, µ > 0. (3.22)

Proof. By (A2), we have
|∇F (t, u)| ≤ a+ b|u|p. (3.23)

For all v ∈ Eα with ‖v‖α ≤ 1, we have

|〈φ′µ(u)− φ′λ(u), v〉| =|λ− µ||
∫ T

0

(∇F (t, u(t)), v)dt|

≤|λ− µ||
∫ T

0

|∇F (t, u(t))||v|dt

≤|λ− µ||
∫ T

0

|(a+ b|u|p)|v|dtr

≤|λ− µ||
∫ T

0

|(a+ b|u|p) max
t∈[o,T ]

|v|dt.

(3.24)
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Since the embedding Eα ↪→ C[0, T ] is continuous, there exists a constant c1 > 0
such that

‖v‖∞ ≤ c1‖v‖α, ‖v‖p ≤ c1‖v‖α, ∀ v ∈ Eα,
which implies that

|〈φ′µ(u)− φ′λ(u), v〉| ≤|λ− µ|‖v‖∞(aT + b‖u‖pp)
≤|λ− µ|c1‖v‖α(aT + bc1‖u‖pα)

≤|λ− µ|c1‖v‖α(aT + bc1‖u‖pα).
(3.25)

So that there exists C > 0, such that

‖φ′µ(u)− φ′λ(u)‖(Eα)∗ ≤ C(1 + ‖u‖pα)|µ− λ|, ∀λ, µ > 0.

�

Lemma 3.5. Assume that map c : [λ0, µ0] → R+, satisfies c(λ) = cλ and c(λ) is
differentiable at point µ, then there exists a sequence {un} ∈ Eα, such that

φµ(un)→ cµ, φ′µ(un)→ 0, −
∫ T

0

(c0D
α
t u(t),ct D

α
Tu(t))dt ≤ C2,

as n→∞, where C2 = 2cµ + 2µ(2− c′(µ)) + 1.

Proof. Assume, by contradiction, that the lemma is false. Then there exists δ > 0,
such that

‖φ′µ(u)‖ ≥ 2δ, ∀ u ∈ Nδ,

where Nδ = {u ∈ Eα : −
∫ T
0

(c0D
α
t u(t),ct D

α
Tu(t))dt ≤ C2, |φµ(u)− cµ| < δ}.

There exists constant C3, such that∣∣ ∫ T

0

F (t, u)dt
∣∣ =

1
2µ
|2φµ(u)−

∫ T

0

−(c0D
α
t u(t),ct D

α
Tu(t))dt|

≤ C3, ∀ u ∈ Nδ.
(3.26)

Let V : Nδ → Eα be the pseudo-gradient vector field for φµ in Nδ, that is, V is
locally Lipschitz, ‖V ‖ ≤ 1 and

φ′µ(u) · (V (u)) ≤ −δ, ∀u ∈ Nδ (3.27)

(see [23]). Now, fix a sequence {λn} ⊆ (λ0, µ0) such that µ ≤ λn+1 < λn, λn → µ,
|λn − µ| ≤ δ

4 , |cµ − cλn | ≤ δ
4 , for each n, let γn ∈ P be such that

max
z∈[0,1]

φµ(γn(z)) ≤ cµ + (λn − µ). (3.28)

Consider the set

An = {z ∈ [0, 1] : φλn(γn(z)) > cλn − (λn − µ)}.

By definition of cλn , An is nonempty. If v ∈ γn(An), we have∫ T

0

F (t, v)dt =
φµ(v)− φλn(v)

λn − µ

≤cµ + (λn − µ)− cλn + (λn − µ)
λn − µ

=
cµ − cλn
λn − µ

+ 2.

(3.29)
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Since c(µ) is differentiable, we have

cλn =cµ + c′(µ)(λn − µ) + o((λn − µ)2)

=cµ + c′(µ)(λn − µ) + on(1)(λn − µ);
(3.30)

that is, cµ − cλn = [c′µ + on(1)](µ− λn). So
∫ T
0
F (t, v)dt = −c′µ + 2 + on(1).

Since
∫ T
0
−(c0D

α
t v(t),ct D

α
T v(t))dt = 2φµ(v) + 2µ

∫ T
0
F (t, v(t))dt, we have∫ T

0

−(c0D
α
t v(t),ct D

α
T v(t))dt

≤ 2cµ + 2(λn − µ) + 2µ(−c′(µ) + 2 + on(1)) ≤ C2,

(3.31)

for n large.
It is easy to see that inequality (3.26) is satisfied for v ∈ γn(An). Thus γn(An) ⊂

Nδ, since
cλn − (λn − µ) ≤ φλn(v), φµ(v) ≤ cµ + (λn − µ),

|φλn(v)− φµ(v)| = |λn − µ||
∫ T

0

F (t, v)dt| ≤ c3|λn − µ|.
(3.32)

So v ∈ Nδ, that is γn(An) ⊂ Nδ.
Using (3.27) we have φ′λn ·(V (u)) < − δ2 , for all u ∈ Nδ. Now consider a Lipschitz

continuous cut-off function η such that 0 ≤ η ≤ 1, η(u) = 0 in u 6∈ Nδ, and η(u) = 1
for u ∈ N δ

2
.

Let φ be the flow generated by ηV , that is,
∂φ

∂r
(u, r) = η(φ(u, r))V (φ(u, r)), r ≥ 0,

φ(u, 0) = u.
(3.33)

Integrating the both sides of the equation, we have∫ r

0

∂φ(u, t)
∂t

dt =
∫ r

0

η(φ(u, t))V (φ(u, t))dt,

That is φ(u, t) = u +
∫ r
0
η(φ(u, t))V (φ(u, t))dt is the solution of (3.33). Applying

the ODE uniqueness we have:
If u 6∈ Nδ, then φ(u, r) = u for all r ≥ 0.
If u ∈ Nδ, then φ(u, r) ∈ Nδ for all r ≥ 0,
If u ∈ Eα, then ∂φ

∂r (u, r) = V (φ(u, r)) and

φλn(φ(u, r))
∂φ

∂r
(u, r) < −δ

2
≤ 0, ∀r ≥ 0,

If φ(u, r) ∈ N δ
2
, for all r ∈ [0, r0], then φλn(φ(u, r)) ≤ φλn(u)− δr0

2 .
It is easy to see that if u ∈ N δ

2
, then φλn(φ(u, 1)) ≤ φλn(u)− δ

2 .
Since e 6∈ Nδ, we have φ(e, r) = e and φ(0, r) = 0, for all r ≥ 0, and then

φ(γ, r) ∈ P , for all r ∈ R and γ ∈ P . This implies that hn(z) = φ(γn(z), 1) is
continuous path in P such that

φλn(hn(z)) ≤ φλn(γn(z)),

and then for its maximum point sn ∈ [0, 1], we have sn ∈ An and

cµ − on(1) = cλn ≤ max
z∈[0,1]

φλn(hn(z)) = φλn(hn(sn)) ≤ φλn(γn(sn))− δ

2
.
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That is,

φλn(γn(sn)) ≥ cµ − on(1) +
δ

2
. (3.34)

On the other hand, by (3.28) and (3.32), we obtain

φλn(γn(sn)) ≤ φµ(γn(sn)) + C3|λn − µ| ≤ cµ + (1 + C3)|λn − µ|. (3.35)

According to (3.34) and (3.35), we have

cµ +
δ

2
≤ lim
n→∞

φλn(γn(sn)) ≤ cµ,

which is a contradiction. So the original conclusion is true. �

From Lemma 3.5 we can obtain the following statement.

Lemma 3.6. For almost all λ > 0, cλ is a critical value for φλ.

Theorem 3.7. Suppose that (A1)–(A4) holds, then for any λ > 0, problem (1.1)
has a nontrivial solution.

Proof. For cλ is left semi-continuity, applying Lemma 3.6, for any µ > 0, there
exists a sequences {un} ⊆ Eα and λn ⊆ R, such that

λn → µ, cλn → cµ, n→∞.
φλn(un) = cλn , φ′λn(un) = 0.

(3.36)

We only need to show that {un} is bounded in Eα. If {un} is unbounded, we may
assume, without loss of generality, that ‖un‖α → ∞ as n → ∞. Let ωn = un

‖un‖α ,
then ωn ∈ Eα with ‖ωn‖α = 1. Then there are ω ∈ Eα and h ∈ Lp+1([0, T ]) such
that ωn ⇀ ω in Eα, ωn → ω in C([0, T ],R+) and Lp+1([0, T ]), ωn(t) → ω(t), a.e.
t ∈ [0, T ], n→∞, |ωn(t)| ≤ h(t), a.e. t ∈ [0, T ], for all n ∈ N.

Let Ω0 = {t ∈ [0, T ] : ω(t) 6= 0}. If t ∈ Ω0, then by (A3),

lim
n→+∞

F (t, un(t))
u2
n(t)

ω2
n(t) = +∞ (3.37)

and

lim
n→+∞

∫ T
0
F (t, un(t))dt∫ T

0
−(c0D

α
t un(t),ct Dα

Tun(t))dt

= lim
n→+∞

( 1
2λn
−

φλn(un)

λn
∫ T
0
−(c0D

α
t un(t),ct Dα

Tun(t))dt

)
=

1
2µ
.

(3.38)

By Proposition 2.9 and Fatou’s lemma

+∞ =
∫ T

0

lim
n→∞

| cos(πα)|F (t, un(t))
u2
n(t)

· ω2
n(t)dt

≤ lim
n→∞

∫ T

0

| cos(πα)|F (t, un(t))
u2
n(t)

· ω2
n(t)dt

≤ lim
n→∞

∫ T

0

F (t, un(t))
1

| cos(πα)|‖un(t)‖2α
dt

≤ lim
n→+∞

∫ T
0
F (t, un(t))dt∫ T

0
−(c0D

α
t un(t),ct Dα

Tun(t))dt
=

1
2µ
.

(3.39)
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This is a contradiction. This shows that Ω0 has zero measure. Hence ω = 0 a.e.
t ∈ [0, T ].

Let zn ∈ [0, 1], such that φλn(znun) = maxz∈[0,1] φλn(zun). By (2.5) and (2.6),
we have

2φλn(znun) = −
∫ T

0

(c0D
α
t znun,

c
t D

α
T znun)dt− 2λn

∫ T

0

F (t, znun)dt (3.40)

and

φ′λn(znun)(znun) =− 1
2

∫ T

0

(c0D
α
t znun(t),ct D

α
T znun(t))dt

− 1
2

∫ T

0

(ctD
α
T znun(t),c0D

α
t znun(t))dt

− λn
∫ T

0

(∇F (t, znun(t)), znun(t))dt.

(3.41)

From φ′λn(znun)(znun) = 0, we have

2φλn(zun) ≤2φλn(znun)− φ′λn(znun)(znun)

=λn
∫ T

0

(∇F (t, znun(t)), znun(t))− 2F (t, znun))dt.
(3.42)

By assumption (A4), it follows that

H(t, znun) = (znun,∇F (t, znun))− 2F (t, znun), (3.43)

and |znun| ≤ |un|. Therefore,

H(t, znun) ≤ (un,∇F (t, un))− 2F (t, un) + C∗. (3.44)

By (3.42) and (3.44), we obtain

2φλn(zun) ≤ λn
∫ T

0

[(un,∇F (t, un))− 2F (t, un) + C∗]dt. (3.45)

Since φλn(un) = cλn , φ
′
λn

(un) = 0, it follows that

2cλn = −
∫ T

0

(c0D
α
t un(t),ct D

α
Tun(t))dt− 2λn

∫ T

0

F (t, un(t))dt,

φ′λn(un)(un) = −
∫ T

0

(c0D
α
t un(t),ct D

α
Tun(t))dt− λn

∫ T

0

(∇F (t, un(t)), un(t))dt.

So 2φλn(zun) ≤ λnC∗T + 2cλn , for all z ∈ [0, 1].
On the other hand, for all r0 > 0,

2φλn(r0ωn) =−
∫ T

0

(c0D
α
t r0ωn,

c
t D

α
T r0ωn)dt− 2λn

∫ T

0

F (t, r0ωn)dt,

=| cos(πα)|r20 −On(1),
(3.46)

which contradicts 2φλn(zun) ≤ λnC∗T + 2cλn . This contradiction shows {un} is
unbounded in Eα. The proof is complete. �
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