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Abstract. We consider Burgers equation on the whole x−t plane. We require

the solution to be classical everywhere, except possibly over a closed set S of
potential singularities, which is

(a) a subset of a countable union of ordered graphs of differentiable functions,

(b) has one dimensional Hausdorff measure, H1(S), equal to zero.
We establish that under these conditions the solution is identically equal to a

constant.

1. Introduction

In this note we establish a sort of rigidity theorem for solutions of the Burgers
equation

ht(x, t) + h(x, t)hx(x, t) = 0 (1.1)
in the plane Rx × Rt. We consider functions h(x, t) that solve (1.1) classically,
pointwise, except perhaps on a closed set S of the x − t plane as in the Abstract,
and we show that h must be identically constant. We note that such a statement
is false in the half plane Rx × R+

t because of rarefaction waves. We also note that
the conclusion of the theorem is relatively simple to recover for entropy solutions.
Indeed if u(x, t) is an L∞(Rx × Rt) entropy solution to

ut +
1
2

(u2)x = 0

u(x, 0) = u0(x)
(1.2)

then we have the (well known) estimate

u(x+ a, t)− u(x, t)
a

<
E

t
(1.3)

for every a > 0, t > 0 with E depending only on ‖u0‖L∞ = M (see [4, Theorem 16-
4] or [3, Lemma in 3.4.3]). By shifting the origin of time all the way to t = −∞, and
by uniqueness in the entropy class, we conclude via (1.3) that x → u(x, t) is non-
increasing for every t. Thus in particular u0 is a nonincreasing L∞ function, and
if u0 is not identically constant (a.e.) then the solution of (1.2) will have a shock.
Thus, the hypothesis H1(S) = 0 will force u0 to be identically constant, and so also
u.
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There is a similar result for the eikonal equation(∂u
∂t

)2

+
(∂u
∂x

)2

= 1 (1.4)

by Caffarelli and Crandall [1] which states that if u solves (1.4) pointwise on R2 \ Ŝ,
with H1(Ŝ) = 0, then necessarily u is either affine or a double “cone function”,
u(y) = a ± |y − z|, y = (x, t), z = (x0, t0). The point in [1] again is that u is not
assumed a viscosity solution.

The proof of our result is based on a simple and explicit change of variables (see
(2.2) below) that transforms (1.2) into (1.4), and actually establishes almost the
equivalence of the two problems in R2. Note that for the set Ŝ in [1] there is no
extra hypothesis besides that H1(Ŝ) = 0. Our only excuse for writing it down is
that it concerns the Burgers equation, which in spite of its simplicity pervades the
theory of hyperbolic conservation laws [2, 3].

2. Main result

Theorem 2.1. Let h(x, t) be a measurable function on R2 and suppose that S
is closed and on R2 \ S the following hold: h(x, t) is continuous, ∂h

∂t , ∂h
∂x exist,

x→ ∂h
∂x (x, t) is L1

loc and moreover

ht + hhx = 0, on R2 \ S. (2.1)

If H1(S) = 0 and S ⊂ ∪i∈ZΓi, where Γi := {(x, t) : t = pi(x), pi differentiable,
x ∈ R},

. . . < p−n(x) < · · · < p−1(x) < p1(x) < p2(x) < · · · < pn(x) < · · · ,

then h ≡ constant on R2, and S = ∅.

Notes. (1) The change of variables h = c(v) converts vt + c(v)vx = 0 into Burgers’
equation ht +hhx = 0, hence this more general equation is covered for differentiable
c provided that c′ 6= 0. Note that if we write the equation for v in divergence form
vt + (C(v))x = 0, where C ′ = c, then the condition c′ 6= 0 corresponds to C ′′ 6= 0
which is naturally weaker than the usual condition of genuine nonlinearity C ′′ > 0,
since we do not require any orientation of the x− t plane.

(2) The change of variables relating (1.2) to (1.4) is basically

u(x, t) =
∫ t

0

ds√
h2(x, s) + 1

+ g(x) (2.2)

where g(x) =
∫ x

0
h(u,0)du√
h2(u,0)+1

. Note that the projected characteristics of the corre-

sponding equations coincide,

dx

dτ
= h

dx

dτ
= ux =

h√
h2 + 1

dt

dτ
= 1

dt

dτ
= ut =

1√
h2 + 1

.

The need for differentiating under the integral sign in (2.2) for obtaining (1.4) forces
us to introduce the perhaps unnecessary hypothesis that S lies on a set of graphs.

(3) The hypotheses on the singular set a priori do not exclude S to be a countable
union of Cantor sets arranged on a family of parallel lines in the x− t plane.
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Proof of Theorem 2.1. For the convenience of the reader we begin by giving the
proof in the simple case where S lies on a single differentiable graph contained
inside a strip, S ⊂ Γ := {(x, t) | t = p(x), p differentiable, 0 < p(x) < 1, x ∈ R}.
Set

Ω+ = {(x, t) ∈ R2 | t ≤ p(x)}, Ω− = {(x, t) ∈ R2 | t ≥ p(x)}.
For (x, t) ∈ Ω+, we define

u+(x, t) =
∫ t

0

ds√
h2(x, s) + 1

+ g+(x), (2.3)

where

g+(x) =
∫ x

0

h(u, 0)du√
h2(u, 0) + 1

and for (x, t) ∈ Ω−, we define

u−(x, t) =
∫ t

1

ds√
h2(x, s) + 1

+ g−(x), (2.4)

where

g−(x) =
∫ x

0

h(u, 1)du√
h2(u, 1) + 1

.

We begin with u+(x, t) for t ≤ p(x), (x, t) ∈ U := R2 \ S, open. By our hypothesis

u+
x (x, t) =

∫ t

0

−h(x, s)hx(x, s)(√
h2(x, s) + 1

)3 ds+
h(x, 0)√
h2(x, 0) + 1

=
∫ t

0

hs(x, s)(√
h2(x, s) + 1

)3 ds+
h(x, 0)√
h2(x, 0) + 1

=
h(x, t)√
h2(x, t) + 1

.

(2.5)

On the graph we have

u+
x (x, p(x)) =

h(x, p(x))√
h2(x, p(x)) + 1

, (x, p(x)) /∈ S. (2.6)

Differentiating in t is straightforward, and holds quite generally that

u+
t (x, t) =

1√
h2(x, t) + 1

, u+
t (x, p(x)) =

1√
h2(x, p(x)) + 1

. (2.7)

Thus from (2.5) and (2.7) we have

(u+
x (x, t))2 + (u+

t (x, t))2 = 1 in Ω+ \ S. (2.8)

Analogously we argue for u−(x, t) and we obtain

u−x (x, t) =
h(x, t)√
h2(x, t) + 1

in Ω− \ S, (2.9)

u−x (x, p(x)) =
h(x, p(x))√
h2(x, p(x)) + 1

, (x, p(x)) /∈ S, (2.10)

u−t (x, t) =
1√

h2(x, t) + 1
, u−t (x, p(x)) =

1√
h2(x, p(x)) + 1

(2.11)
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and so once more

(u−x (x, t))2 + (u−t (x, t))2 = 1 in Ω− \ S. (2.12)

Also from (2.6) and (2.10) we obtain

u+
x (x, p(x)) = u−x (x, p(x)), u+

t (x, p(x)) = u−t (x, p(x)), (x, p(x)) /∈ S. (2.13)

We now set

u(x, t) =

{
u+(x, t), (x, t) ∈ Ω+

u−(x, t) + ∆(x), (x, t) ∈ Ω−
(2.14)

where
∆(x) := u+(x, p(x))− u−(x, p(x)), x ∈ R. (2.15)

Note that Γ \ S is open in Γ and so is its projection πx(Γ \ S) = ∪∞i=1(ai, bi) =: O,
and for x ∈ O

d∆(x)
dx

= u+
x (x, p(x)) + u+

t (x, p(x))p′(x)− (u−x (x, p(x))

+ u−t (x, p(x))p′(x)) = 0
(2.16)

(by (2.13)). Therefore, by the continuity of h and p, u(x, t) is differentiable on
R2 \ S, and by (2.8), (2.12), (2.14) and (2.16),

(ux(x, t))2 + (ut(x, t))2 = 1 on R2 \ S. (2.17)

Hence, by the result in [1], u is of the form

u(x, t) = ax+ bt+ γ (a2 + b2 = 1), (2.18)

or
u(x, t) = c±

√
(x− x0)2 + (t− t0)2. (2.19)

In the first case ut = b and so h(x, t) ≡ constant.
On the other hand (2.19) gives

ut(x, t) = ± t− t0√
(x− x0)2 + (t− t0)2

⇒ h(x, t) =
x− x0

t− t0

(2.20)

which is singular on {t = t0}, and thus is excluded by the hypothesis H1(S) = 0.
Therefore h(x, t) ≡ constant is the only option.

Note that ∆(x) is continuous for x ∈ R;L(πx(S)) = 0.
For the proof of the general case, we indicate the necessary modifications. Sup-

pose p`(x) < p`+1(x), a`(x) ∈ C1, p`(x) < a`(x) < p`+1(x), ` = 1, 2, . . . , ` =
−2,−3, . . . (and p−1(x) < a0(x) < p1(x)) where we have inserted the C1 graphs
a`(x) that will play the role of the horizontal lines t = 0 and t = 1 in the simple
case treated above. Let

Ω+
1 = {p−1(x) ≤ t ≤ p1(x)}, Ω−1 = {p1(x) ≤ t ≤ a1(x)}, (2.21)

u+
1 (x, t) :=

∫ t

a0(x)

ds√
h2(x, s) + 1

+ g+
1 (x),

g+
1 (x) =

∫ x

0

h(s, a0(s)) + a′0(s)√
h2(s, a0(s)) + 1

ds,

on Ω+
1 ; (2.22)
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u−1 (x, t) :=
∫ t

a1(x)

ds√
h2(x, s) + 1

+ g−1 (x),

g−1 (x) =
∫ x

0

h(s, a1(s)) + a′1(s)√
h2(s, a1(s)) + 1

ds,

on Ω−1 ; (2.23)

∆1(x) := u+
1 (x, p1(x))− u−1 (x, p1(x));

u1(x, t) =

{
u+

1 (x, t), on Ω+
1

u−1 (x, t) + ∆1(x), on Ω−1 .
(2.24)

For i = 2, 3, . . . , set

Ω+
i = {ai−1(x) ≤ t ≤ pi(x)}, Ω−i = {pi(x) ≤ t ≤ ai(x)}, (2.25)

u+
i (x, t) := u−i−1(x, t) + ∆i−1(x), on Ω+

i , (2.26)

∆j(x) := (u+
j − u

−
j )(x, pj(x)), j = 1, 2, . . . . (2.27)

Set

u−i (x, t) :=
∫ t

ai(x)

ds√
h2(x, s) + 1

+ g−i (x),

g−i (x) =
∫ x

0

h(s, ai(s)) + a′i(s)√
h2(s, ai(s)) + 1

ds,

in Ω−i , (2.28)

uk(x, t) =

{
u+

k (x, t), on Ω+
k

u−k (x, t) + ∆k(x), on Ω−k
k = 1, 2, . . . . (2.29)

Next we define u below a0(x).

u+
−1(x, t) = u+

1 (x, t) on Ω+
−1 = {p−1(x) ≤ t ≤ a0(x)}, (2.30)

with

u−−1(x, t) :=
∫ t

a−1(x)

ds√
h2(x, s) + 1

+ g−−1(x), (2.31)

on Ω−−1 = {a−1(x) ≤ t ≤ p−1(x)}, where

g−−1(x) =
∫ x

0

h(s, a−1(s)) + a′−1(s)√
h2(s, a−1(s)) + 1

ds, (2.32)

∆−1(x) := u+
−1(x, p−1(x))− u−−1(x, p−1(x)), (2.33)

u−1(x, t) =

{
u+
−1(x, t), in Ω+

−1,

u−−1(x, t) + ∆−1(x), in Ω−−1.
(2.34)

And further down i = 2, 3, . . . , we set

Ω+
−i = {p−i(x) ≤ t ≤ a−i+1(x)}, Ω−−i = {a−i(x) ≤ t ≤ p−i(x)}, (2.35)

u+
−i(x, t) := u−−i+1(x, t) + ∆−i+1(x), on Ω+

−i, (2.36)

∆−i(x) := (u+
−i − u

−
−i)(x, p−i(x)), (2.37)

with

u−−i(x, t) :=
∫ t

a−i(x)

ds√
h2(x, s) + 1

+ g−−i(x), on Ω−−i (2.38)
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where

g−−i(x) =
∫ x

0

h(s, a−i(s)) + a′−i(s)√
h2(s, a−i(s)) + 1

ds, (2.39)

u−k(x, t) =

{
u+
−k(x, t), in Ω+

−k,

u−−k(x, t) + ∆−k(x), in Ω−−k,
k = 2, 3, . . . . (2.40)

Finally we set
u(x, t) = uk(x, t) on Ω+

k ∪ Ω−k , k ∈ Z \ {0}. (2.41)
With this definition we note that u(x, t) is differentiable on R2 \ S, and(∂u

∂t

)2

+
(∂u
∂x

)2

= 1 on R2 \ S. (2.42)

and thus we conclude as before that h(x, t) ≡ constant and S = ∅. The proof is
complete. �
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