Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 53, pp. 1-6.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ALMOST ENTIRE SOLUTIONS OF THE BURGERS EQUATION

NICHOLAS D. ALIKAKOS, DIMITRIOS GAZOULIS
Communicated by Robert V. Kohn

Abstract

We consider Burgers equation on the whole $x-t$ plane. We require the solution to be classical everywhere, except possibly over a closed set S of potential singularities, which is (a) a subset of a countable union of ordered graphs of differentiable functions, (b) has one dimensional Hausdorff measure, $H^{1}(S)$, equal to zero.

We establish that under these conditions the solution is identically equal to a constant.

1. Introduction

In this note we establish a sort of rigidity theorem for solutions of the Burgers equation

$$
\begin{equation*}
h_{t}(x, t)+h(x, t) h_{x}(x, t)=0 \tag{1.1}
\end{equation*}
$$

in the plane $\mathbb{R}_{x} \times \mathbb{R}_{t}$. We consider functions $h(x, t)$ that solve (1.1) classically, pointwise, except perhaps on a closed set S of the $x-t$ plane as in the Abstract, and we show that h must be identically constant. We note that such a statement is false in the half plane $\mathbb{R}_{x} \times \mathbb{R}_{t}^{+}$because of rarefaction waves. We also note that the conclusion of the theorem is relatively simple to recover for entropy solutions. Indeed if $u(x, t)$ is an $L^{\infty}\left(\mathbb{R}_{x} \times \mathbb{R}_{t}\right)$ entropy solution to

$$
\begin{gather*}
u_{t}+\frac{1}{2}\left(u^{2}\right)_{x}=0 \tag{1.2}\\
u(x, 0)=u_{0}(x)
\end{gather*}
$$

then we have the (well known) estimate

$$
\begin{equation*}
\frac{u(x+a, t)-u(x, t)}{a}<\frac{E}{t} \tag{1.3}
\end{equation*}
$$

for every $a>0, t>0$ with E depending only on $\left\|u_{0}\right\|_{L^{\infty}}=M$ (see [4, Theorem 164] or [3, Lemma in 3.4.3]). By shifting the origin of time all the way to $t=-\infty$, and by uniqueness in the entropy class, we conclude via (1.3) that $x \rightarrow u(x, t)$ is nonincreasing for every t. Thus in particular u_{0} is a nonincreasing L^{∞} function, and if u_{0} is not identically constant (a.e.) then the solution of 1.2 will have a shock. Thus, the hypothesis $H^{1}(S)=0$ will force u_{0} to be identically constant, and so also u.

[^0]There is a similar result for the eikonal equation

$$
\begin{equation*}
\left(\frac{\partial u}{\partial t}\right)^{2}+\left(\frac{\partial u}{\partial x}\right)^{2}=1 \tag{1.4}
\end{equation*}
$$

by Caffarelli and Crandall [1] which states that if u solves (1.4) pointwise on $\mathbb{R}^{2} \backslash \widehat{S}$, with $H^{1}(\widehat{S})=0$, then necessarily u is either affine or a double "cone function", $u(y)=a \pm|y-z|, y=(x, t), z=\left(x_{0}, t_{0}\right)$. The point in [1] again is that u is not assumed a viscosity solution.

The proof of our result is based on a simple and explicit change of variables (see (2.2) below) that transforms (1.2) into (1.4), and actually establishes almost the equivalence of the two problems in \mathbb{R}^{2}. Note that for the set \widehat{S} in [1] there is no extra hypothesis besides that $H^{1}(\widehat{S})=0$. Our only excuse for writing it down is that it concerns the Burgers equation, which in spite of its simplicity pervades the theory of hyperbolic conservation laws [2, 3].

2. Main Result

Theorem 2.1. Let $h(x, t)$ be a measurable function on \mathbb{R}^{2} and suppose that S is closed and on $\mathbb{R}^{2} \backslash S$ the following hold: $h(x, t)$ is continuous, $\frac{\partial h}{\partial t}$, $\frac{\partial h}{\partial x}$ exist, $x \rightarrow \frac{\partial h}{\partial x}(x, t)$ is $L_{\text {loc }}^{1}$ and moreover

$$
\begin{equation*}
h_{t}+h h_{x}=0, \quad \text { on } \mathbb{R}^{2} \backslash S \tag{2.1}
\end{equation*}
$$

If $H^{1}(S)=0$ and $S \subset \cup_{i \in Z} \Gamma_{i}$, where $\Gamma_{i}:=\left\{(x, t): t=p_{i}(x)\right.$, p_{i} differentiable, $x \in \mathbb{R}\}$,

$$
\ldots<p_{-n}(x)<\cdots<p_{-1}(x)<p_{1}(x)<p_{2}(x)<\cdots<p_{n}(x)<\cdots
$$

then $h \equiv$ constant on \mathbb{R}^{2}, and $S=\emptyset$.
Notes. (1) The change of variables $h=c(v)$ converts $v_{t}+c(v) v_{x}=0$ into Burgers' equation $h_{t}+h h_{x}=0$, hence this more general equation is covered for differentiable c provided that $c^{\prime} \neq 0$. Note that if we write the equation for v in divergence form $v_{t}+(C(v))_{x}=0$, where $C^{\prime}=c$, then the condition $c^{\prime} \neq 0$ corresponds to $C^{\prime \prime} \neq 0$ which is naturally weaker than the usual condition of genuine nonlinearity $C^{\prime \prime}>0$, since we do not require any orientation of the $x-t$ plane.
(2) The change of variables relating $\sqrt{1.2}$ to $\sqrt{1.4}$ is basically

$$
\begin{equation*}
u(x, t)=\int_{0}^{t} \frac{d s}{\sqrt{h^{2}(x, s)+1}}+g(x) \tag{2.2}
\end{equation*}
$$

where $g(x)=\int_{0}^{x} \frac{h(u, 0) d u}{\sqrt{h^{2}(u, 0)+1}}$. Note that the projected characteristics of the corresponding equations coincide,

$$
\begin{aligned}
& \frac{d x}{d \tau}=h \frac{d x}{d \tau}=u_{x}=\frac{h}{\sqrt{h^{2}+1}} \\
& \frac{d t}{d \tau}=1 \frac{d t}{d \tau}=u_{t}=\frac{1}{\sqrt{h^{2}+1}}
\end{aligned}
$$

The need for differentiating under the integral sign in 2.2 for obtaining (1.4) forces us to introduce the perhaps unnecessary hypothesis that S lies on a set of graphs.
(3) The hypotheses on the singular set a priori do not exclude S to be a countable union of Cantor sets arranged on a family of parallel lines in the $x-t$ plane.

Proof of Theorem 2.1. For the convenience of the reader we begin by giving the proof in the simple case where S lies on a single differentiable graph contained inside a strip, $S \subset \Gamma:=\{(x, t) \mid t=p(x)$, p differentiable, $0<p(x)<1, x \in \mathbb{R}\}$. Set

$$
\Omega^{+}=\left\{(x, t) \in \mathbb{R}^{2} \mid t \leq p(x)\right\}, \quad \Omega^{-}=\left\{(x, t) \in \mathbb{R}^{2} \mid t \geq p(x)\right\}
$$

For $(x, t) \in \Omega^{+}$, we define

$$
\begin{equation*}
u^{+}(x, t)=\int_{0}^{t} \frac{d s}{\sqrt{h^{2}(x, s)+1}}+g^{+}(x) \tag{2.3}
\end{equation*}
$$

where

$$
g^{+}(x)=\int_{0}^{x} \frac{h(u, 0) d u}{\sqrt{h^{2}(u, 0)+1}}
$$

and for $(x, t) \in \Omega^{-}$, we define

$$
\begin{equation*}
u^{-}(x, t)=\int_{1}^{t} \frac{d s}{\sqrt{h^{2}(x, s)+1}}+g^{-}(x) \tag{2.4}
\end{equation*}
$$

where

$$
g^{-}(x)=\int_{0}^{x} \frac{h(u, 1) d u}{\sqrt{h^{2}(u, 1)+1}}
$$

We begin with $u^{+}(x, t)$ for $t \leq p(x),(x, t) \in U:=\mathbb{R}^{2} \backslash S$, open. By our hypothesis

$$
\begin{align*}
u_{x}^{+}(x, t) & =\int_{0}^{t} \frac{-h(x, s) h_{x}(x, s)}{\left(\sqrt{h^{2}(x, s)+1}\right)^{3}} d s+\frac{h(x, 0)}{\sqrt{h^{2}(x, 0)+1}} \\
& =\int_{0}^{t} \frac{h_{s}(x, s)}{\left(\sqrt{h^{2}(x, s)+1}\right)^{3}} d s+\frac{h(x, 0)}{\sqrt{h^{2}(x, 0)+1}} \tag{2.5}\\
& =\frac{h(x, t)}{\sqrt{h^{2}(x, t)+1}}
\end{align*}
$$

On the graph we have

$$
\begin{equation*}
u_{x}^{+}(x, p(x))=\frac{h(x, p(x))}{\sqrt{h^{2}(x, p(x))+1}}, \quad(x, p(x)) \notin S \tag{2.6}
\end{equation*}
$$

Differentiating in t is straightforward, and holds quite generally that

$$
\begin{equation*}
u_{t}^{+}(x, t)=\frac{1}{\sqrt{h^{2}(x, t)+1}}, \quad u_{t}^{+}(x, p(x))=\frac{1}{\sqrt{h^{2}(x, p(x))+1}} \tag{2.7}
\end{equation*}
$$

Thus from 2.5 and 2.7 we have

$$
\begin{equation*}
\left(u_{x}^{+}(x, t)\right)^{2}+\left(u_{t}^{+}(x, t)\right)^{2}=1 \quad \text { in } \Omega^{+} \backslash S \tag{2.8}
\end{equation*}
$$

Analogously we argue for $u^{-}(x, t)$ and we obtain

$$
\begin{gather*}
u_{x}^{-}(x, t)=\frac{h(x, t)}{\sqrt{h^{2}(x, t)+1}} \quad \text { in } \Omega^{-} \backslash S, \tag{2.9}\\
u_{x}^{-}(x, p(x))=\frac{h(x, p(x))}{\sqrt{h^{2}(x, p(x))+1}}, \quad(x, p(x)) \notin S, \tag{2.10}\\
u_{t}^{-}(x, t)=\frac{1}{\sqrt{h^{2}(x, t)+1}}, \quad u_{t}^{-}(x, p(x))=\frac{1}{\sqrt{h^{2}(x, p(x))+1}} \tag{2.11}
\end{gather*}
$$

and so once more

$$
\begin{equation*}
\left(u_{x}^{-}(x, t)\right)^{2}+\left(u_{t}^{-}(x, t)\right)^{2}=1 \quad \text { in } \Omega^{-} \backslash S . \tag{2.12}
\end{equation*}
$$

Also from 2.6 and 2.10 we obtain

$$
\begin{equation*}
u_{x}^{+}(x, p(x))=u_{x}^{-}(x, p(x)), \quad u_{t}^{+}(x, p(x))=u_{t}^{-}(x, p(x)), \quad(x, p(x)) \notin S \tag{2.13}
\end{equation*}
$$

We now set

$$
u(x, t)= \begin{cases}u^{+}(x, t), & (x, t) \in \Omega^{+} \tag{2.14}\\ u^{-}(x, t)+\Delta(x), & (x, t) \in \Omega^{-}\end{cases}
$$

where

$$
\begin{equation*}
\Delta(x):=u^{+}(x, p(x))-u^{-}(x, p(x)), \quad x \in \mathbb{R} \tag{2.15}
\end{equation*}
$$

Note that $\Gamma \backslash S$ is open in Γ and so is its projection $\pi_{x}(\Gamma \backslash S)=\cup_{i=1}^{\infty}\left(a_{i}, b_{i}\right)=: O$, and for $x \in O$

$$
\begin{align*}
\frac{d \Delta(x)}{d x}= & u_{x}^{+}(x, p(x))+u_{t}^{+}(x, p(x)) p^{\prime}(x)-\left(u_{x}^{-}(x, p(x))\right. \tag{2.16}\\
& \left.+u_{t}^{-}(x, p(x)) p^{\prime}(x)\right)=0
\end{align*}
$$

(by 2.13). Therefore, by the continuity of h and $p, u(x, t)$ is differentiable on $\mathbb{R}^{2} \backslash S$, and by 2.8, 2.12, 2.14 and 2.16,

$$
\begin{equation*}
\left(u_{x}(x, t)\right)^{2}+\left(u_{t}(x, t)\right)^{2}=1 \quad \text { on } \mathbb{R}^{2} \backslash S \tag{2.17}
\end{equation*}
$$

Hence, by the result in [1], u is of the form

$$
\begin{equation*}
u(x, t)=a x+b t+\gamma \quad\left(a^{2}+b^{2}=1\right) \tag{2.18}
\end{equation*}
$$

or

$$
\begin{equation*}
u(x, t)=c \pm \sqrt{\left(x-x_{0}\right)^{2}+\left(t-t_{0}\right)^{2}} . \tag{2.19}
\end{equation*}
$$

In the first case $u_{t}=b$ and so $h(x, t) \equiv$ constant.
On the other hand 2.19 gives

$$
\begin{align*}
u_{t}(x, t) & = \pm \frac{t-t_{0}}{\sqrt{\left(x-x_{0}\right)^{2}+\left(t-t_{0}\right)^{2}}} \tag{2.20}\\
& \Rightarrow h(x, t)=\frac{x-x_{0}}{t-t_{0}}
\end{align*}
$$

which is singular on $\left\{t=t_{0}\right\}$, and thus is excluded by the hypothesis $H^{1}(S)=0$. Therefore $h(x, t) \equiv$ constant is the only option.

Note that $\Delta(x)$ is continuous for $x \in \mathbb{R} ; \mathcal{L}\left(\pi_{x}(S)\right)=0$.
For the proof of the general case, we indicate the necessary modifications. Suppose $p_{\ell}(x)<p_{\ell+1}(x), a_{\ell}(x) \in C^{1}, p_{\ell}(x)<a_{\ell}(x)<p_{\ell+1}(x), \ell=1,2, \ldots, \ell=$ $-2,-3, \ldots$ (and $\left.p_{-1}(x)<a_{0}(x)<p_{1}(x)\right)$ where we have inserted the C^{1} graphs $a_{\ell}(x)$ that will play the role of the horizontal lines $t=0$ and $t=1$ in the simple case treated above. Let

$$
\begin{align*}
& \Omega_{1}^{+}=\left\{p_{-1}(x) \leq t \leq p_{1}(x)\right\}, \quad \Omega_{1}^{-}=\left\{p_{1}(x) \leq t \leq a_{1}(x)\right\}, \tag{2.21}\\
& u_{1}^{+}(x, t):=\int_{a_{0}(x)}^{t} \frac{d s}{\sqrt{h^{2}(x, s)+1}}+g_{1}^{+}(x), \tag{2.22}\\
& g_{1}^{+}(x)=\int_{0}^{x} \frac{h\left(s, a_{0}(s)\right)+a_{0}^{\prime}(s)}{\sqrt{h^{2}\left(s, a_{0}(s)\right)+1}} d s
\end{align*}
$$

$$
\begin{gather*}
u_{1}^{-}(x, t):=\int_{a_{1}(x)}^{t} \frac{d s}{\sqrt{h^{2}(x, s)+1}}+g_{1}^{-}(x), \\
g_{1}^{-}(x)=\int_{0}^{x} \frac{h\left(s, a_{1}(s)\right)+a_{1}^{\prime}(s)}{\sqrt{h^{2}\left(s, a_{1}(s)\right)+1}} d s, \tag{2.23}\\
\Delta_{1}(x):=u_{1}^{+}\left(x, p_{1}(x)\right)-u_{1}^{-}\left(x, p_{1}(x)\right) ; \\
u_{1}(x, t)= \begin{cases}u_{1}^{+}(x, t), & \text { on } \Omega_{1}^{+} \\
u_{1}^{-}(x, t)+\Delta_{1}(x), & \text { on } \Omega_{1}^{-} .\end{cases} \tag{2.24}
\end{gather*}
$$

For $i=2,3, \ldots$, set

$$
\begin{gather*}
\Omega_{i}^{+}=\left\{a_{i-1}(x) \leq t \leq p_{i}(x)\right\}, \quad \Omega_{i}^{-}=\left\{p_{i}(x) \leq t \leq a_{i}(x)\right\} \tag{2.25}\\
u_{i}^{+}(x, t):=u_{i-1}^{-}(x, t)+\Delta_{i-1}(x), \quad \text { on } \Omega_{i}^{+} \tag{2.26}\\
\Delta_{j}(x):=\left(u_{j}^{+}-u_{j}^{-}\right)\left(x, p_{j}(x)\right), \quad j=1,2, \ldots \tag{2.27}
\end{gather*}
$$

Set

$$
\begin{gather*}
u_{i}^{-}(x, t):=\int_{a_{i}(x)}^{t} \frac{d s}{\sqrt{h^{2}(x, s)+1}}+g_{i}^{-}(x), \\
g_{i}^{-}(x)=\int_{0}^{x} \frac{h\left(s, a_{i}(s)\right)+a_{i}^{\prime}(s)}{\sqrt{h^{2}\left(s, a_{i}(s)\right)+1}} d s, \tag{2.28}\\
u_{k}(x, t)=\left\{\begin{array}{ll}
u_{k}^{+}(x, t), & \text { in } \Omega_{i}^{-}, \\
u_{k}^{-}(x, t)+\Delta_{k}(x), & \text { on } \Omega_{k}^{+}
\end{array} \quad k=1,2, \ldots .\right. \tag{2.29}
\end{gather*}
$$

Next we define u below $a_{0}(x)$.

$$
\begin{equation*}
u_{-1}^{+}(x, t)=u_{1}^{+}(x, t) \quad \text { on } \Omega_{-1}^{+}=\left\{p_{-1}(x) \leq t \leq a_{0}(x)\right\} \tag{2.30}
\end{equation*}
$$

with

$$
\begin{equation*}
u_{-1}^{-}(x, t):=\int_{a_{-1}(x)}^{t} \frac{d s}{\sqrt{h^{2}(x, s)+1}}+g_{-1}^{-}(x) \tag{2.31}
\end{equation*}
$$

on $\Omega_{-1}^{-}=\left\{a_{-1}(x) \leq t \leq p_{-1}(x)\right\}$, where

$$
\begin{gather*}
g_{-1}^{-}(x)=\int_{0}^{x} \frac{h\left(s, a_{-1}(s)\right)+a_{-1}^{\prime}(s)}{\sqrt{h^{2}\left(s, a_{-1}(s)\right)+1}} d s \tag{2.32}\\
\Delta_{-1}(x):=u_{-1}^{+}\left(x, p_{-1}(x)\right)-u_{-1}^{-}\left(x, p_{-1}(x)\right), \tag{2.33}\\
u_{-1}(x, t)
\end{gather*}= \begin{cases}u_{-1}^{+}(x, t), & \text { in } \Omega_{-1}^{+} \tag{2.34}\\
u_{-1}^{-}(x, t)+\Delta_{-1}(x), & \text { in } \Omega_{-1}^{-} .\end{cases}
$$

And further down $i=2,3, \ldots$, we set

$$
\begin{gather*}
\Omega_{-i}^{+}=\left\{p_{-i}(x) \leq t \leq a_{-i+1}(x)\right\}, \quad \Omega_{-i}^{-}=\left\{a_{-i}(x) \leq t \leq p_{-i}(x)\right\} \tag{2.35}\\
u_{-i}^{+}(x, t):=u_{-i+1}^{-}(x, t)+\Delta_{-i+1}(x), \quad \text { on } \Omega_{-i}^{+} \tag{2.36}\\
\Delta_{-i}(x):=\left(u_{-i}^{+}-u_{-i}^{-}\right)\left(x, p_{-i}(x)\right) \tag{2.37}
\end{gather*}
$$

with

$$
\begin{equation*}
u_{-i}^{-}(x, t):=\int_{a_{-i}(x)}^{t} \frac{d s}{\sqrt{h^{2}(x, s)+1}}+g_{-i}^{-}(x), \quad \text { on } \Omega_{-i}^{-} \tag{2.38}
\end{equation*}
$$

where

$$
\begin{gather*}
g_{-i}^{-}(x)=\int_{0}^{x} \frac{h\left(s, a_{-i}(s)\right)+a_{-i}^{\prime}(s)}{\sqrt{h^{2}\left(s, a_{-i}(s)\right)+1}} d s \tag{2.39}\\
u_{-k}(x, t)=\left\{\begin{array}{ll}
u_{-k}^{+}(x, t), & \text { in } \Omega_{-k}^{+}, \\
u_{-k}^{-}(x, t)+\Delta_{-k}(x), & \text { in } \Omega_{-k}^{-},
\end{array} \quad k=2,3, \ldots\right. \tag{2.40}
\end{gather*}
$$

Finally we set

$$
\begin{equation*}
u(x, t)=u_{k}(x, t) \quad \text { on } \Omega_{k}^{+} \cup \Omega_{k}^{-}, k \in Z \backslash\{0\} . \tag{2.41}
\end{equation*}
$$

With this definition we note that $u(x, t)$ is differentiable on $\mathbb{R}^{2} \backslash S$, and

$$
\begin{equation*}
\left(\frac{\partial u}{\partial t}\right)^{2}+\left(\frac{\partial u}{\partial x}\right)^{2}=1 \quad \text { on } \mathbb{R}^{2} \backslash S \tag{2.42}
\end{equation*}
$$

and thus we conclude as before that $h(x, t) \equiv$ constant and $S=\emptyset$. The proof is complete.

Acknowledgments. We would like to thank the anonymous referees for their useful suggestions that improved significantly the presentation of our result.

References

[1] L. A. Caffarelli; M. G. Crandall; Distance functions and almost global solutions of eikonal equations, Com. Partial Differential Equations, 35 (2010), no 3, 391-414.
[2] C. M. Dafermos; Hyperbolic Conservations Laws in Continuum Physics, Third Edition, Springer, Heidelberg 2010.
[3] L. C. Evans; Partial Differential Equations. Second Edition, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society.
[4] J. Smoller; Shock Waves and Reaction - Diffusion Equations, Second Edition, Springer, Heidelberg, 1994.

Nicholas D. Alikakos
Department of Mathematics, University of Athens, panepistimioupolis 15784 Athens, Greece

E-mail address: nalikako@math.uoa.gr
Dimitrios Gazoulis
Department of Mathematics, University of Athens, panepistimioupolis 15784 Athens, Greece

E-mail address: dgazoulis@math.uoa.gr

[^0]: 2010 Mathematics Subject Classification. 35B08, 35L65.
 Key words and phrases. Burgers equation; entropy solution; rigidity.
 (C) 2018 Texas State University.

 Submitted November 21, 2016. Published February 20, 2018.

