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EXISTENCE OF POSITIVE SOLUTIONS TO KIRCHHOFF TYPE
PROBLEMS INVOLVING SINGULAR AND CRITICAL

NONLINEARITIES
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Communicated by Paul H. Rabinowitz

Abstract. In this study, we study a Kirchhoff type problem involving singular

and critical nonlinearities. With aid of variational methods and concentration
compactness principle, we prove that the problem admits a weak solution.

1. Introduction and statement of main result

We are interested in the Kirchhoff type problem

−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a bounded smooth domain in R3, 0 ∈ Ω, a > 0, b ≥ 0.
Existence and multiplicity of solutions to (1.1) have been studied intensively

by many researchers. There are lots of works in the literature not only on the
subcritical cases such as [2, 5, 11, 12, 20, 24, 26, 27, 30], but also on the critical
cases like [3, 8, 9, 10, 13, 15, 17, 18, 19, 21, 23, 28, 29]. In particular, Naimen [22]
investigated the kirchhoff type equation

−
(

1 + b

∫
Ω

|∇u|2
)

∆u = βu+ u5, in Ω,

u = 0, on ∂Ω,
(1.2)

here Ω is a 3 dimensional open ball. For the reader’s convenience, we report here
one of the main results of [22].

Theorem 1.1 ([22, Theorem 1.1]). Let β ∈ R be a given constant. Then the
following assertions hold.

(i) If β < β1/4 (β1 is the principal eigenvalue of −∆ on the open ball), problem
(1.2) has no solution for all b ≥ 0.

(ii) If β1/4 < β < β1, there exists a constant A1 = A1(β) > 0 such that (1.2)
has a solution for all 0 < b < A1.
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(iii) If β = β1, there exists a constant A2 = A2(β) > 0 such that (1.2) has a
solution for all 0 < b < A2 and (1.2) has no solution for b = 0.

In (1.2), if b = 0, Brezis-Nirenberg [4] found a solution provided β1/4 < β < β1,
thereby, Theorem 1.1 (ii) extends one of the main results of Brezis-Nirenberg [4] to
the Kirchhoff type problem. When N = 3, we see that it is not easy to establish
a solution in the case of 0 < β < β1, the reason is that, it is difficult to estimate
the critical value level for this case. However, for 4-dimensional case, Brezis and
Nirenberg [4] obtained a positive solution provided 0 < β < β1. Therefore, we also
see that dimensions of space make an effect on parameter β.

Recently, Perera et al. [25] considered the problem

−∆u = βu+ u2∗−1 − µ, in Ω,
u = 0, on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 4). They obtained a ground
state solution when 0 < β < β1 and µ > 0 enough small. It remains open to extend
this study for the case N = 3 (see [25, Remark 1.4]).

Based on the above work, in this article we consider the case that problem has
a combination of a critical Sobolev exponent term and a singular term. More
precisely, we study the Kirchhoff type equation of the form

−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = λ
u

|x|2−s
+ u5 − µ, in Ω,

u = 0, on ∂Ω,
(1.3)

where 0 < s < 1, λ, µ are two positive real numbers, and 0 < λ < aλ1, here λ1 is
the first eigenvalue for eigenvalue problem

−∆u = λ|x|s−2u in Ω,
u = 0, on ∂Ω,

(1.4)

where 0 < s < 2, Chaudhuri et al. in [7] proved that problem (1.4) has a sequence
of eigenvalues

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · → +∞.
Moreover, the first eigenvalue is characterized by

λ1 := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2∫

Ω
|u|2|x|s−2

.

Our main result reads as follows.

Theorem 1.2. Assume a > 0, b ≥ 0 and 0 < λ < aλ1. Then there exists µ∗ > 0
such that (1.3) has at least a nontrivial solution for every µ ∈ (0, µ∗). Moreover, if
µ = 0, then (1.3) admits a positive solution.

Remark 1.3. On the one hand, compared with Theorem 1.1, we see that the
coefficient b is restrained in (ii) and (iii). Moreover, in Theorem 1.2, we also see
that the singular term 1/|x|2−s can release the restriction on β1/4 < β < β1. On the
other hand, the problem mentioned in [25, Remark 1.4] is hard to tackle, however,
if we add a singular term, the problem can be solved. So our results can be regarded
as partial solution to that problem.

In the next section we present some lemmas and the proof of Theorem 1.2.
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2. Proof of main results

Let us give the following some notation:

• The space H1
0 (Ω) is equipped with the norm ‖u‖2 =

∫
Ω
|∇u|2 dx, the norm

in Lp(Ω) is denoted by | · |p;
• u+

n (x) = max{un(x), 0}, u−n (x) = max{−un(x), 0}; C,C1, C2, . . . , denote
various positive constants, which may vary from line to line;
• Let S be the best Sobolev constant, namely

S := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx( ∫

Ω
|u|6 dx

)1/3 . (2.1)

Existence of a positive solution. Consider the energy functional Iµ : H1
0 (Ω)→

R given by

Iµ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − λ

2

∫
Ω

(u+)2

|x|2−s
dx− 1

6

∫
Ω

(u+)6 dx+ µ

∫
Ω

u dx.

Lemma 2.1. There exist α, ρ,Λ0 > 0 such that the functional Iµ satisfies the
following conditions for each µ ∈ [0,Λ0):

(i) Iµ(u) > α if ‖u‖ = ρ;
(ii) There exists e ∈ H1

0 (Ω) such that Iµ(e) < 0.

Proof. (i) For u ∈ H1
0 (Ω), by Sobolev and Young inequalities, it holds that

µ

∫
Ω

u− dx ≤ 5
6
|Ω|µ6/5 +

1
6S3
‖u‖6.

Then

Iµ(u) ≥ a

2
‖u‖2 +

b

4
‖u‖4 − λ

2

∫
Ω

(u+)2

|x|2−s
dx− 1

6

∫
Ω

(u+)6 dx− µ
∫

Ω

u− dx

≥ aλ1 − λ
2λ1

‖u‖2 − 1
3S3
‖u‖6 − 5

6
|Ω|µ6/5.

Set ρ = [ (aλ1−λ)S3

2λ1
]1/4, Λ0 = [ 2

5 (S(aλ1−λ)
2λ1

)3/2|Ω|−1]5/6, we have

Iµ|‖u‖=ρ ≥
1
3

[ (aλ1 − λ)S
2λ1

]3/2
=: α

provided µ ∈ [0,Λ0).
(ii) For u ∈ H1

0 (Ω)\{0}, t > 0, it holds that

Iµ(tu) ≤ at2

2
‖u‖2 +

bt4

4
‖u‖4 − t6

6

∫
Ω

(u+)6 dx+ µt

∫
Ω

u dx→ −∞

as t→∞. So we can easily find e ∈ H1
0 (Ω) with ‖e‖ > ρ, such that Iµ(e) < 0. The

proof is complete. �

To use variational methods, we firstly derive some results related to the Palais-
Smale compactness condition. We say that Iµ satisfies the (PS) condition at the
level c ∈ R ((PS)c condition for short) if any sequence {un} ⊂ H1

0 (Ω) along with

Iµ(un)→ c, I ′µ(un)→ 0 in (H1
0 (Ω))∗
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as n → ∞ possesses a convergent subsequence. If Iµ satisfies (PS)c condition for
each c ∈ R, then we say that Iµ satisfies the (PS) condition. Define

Λ =
abS3

4
+
b3S6

24
+

(b2S4 + 4aS)3/2

24
.

Lemma 2.2. Assume 0 < λ < aλ1, then Iµ satisfies the (PS)c condition for
c < Λ−Dµ6/5, where D = 5

6 (9|Ω|5/66−
1
6 )6/5.

Proof. Let {un} ⊂ H1
0 (Ω) be a sequence satisfying

Iµ(un)→ c, I ′µ(un)→ 0, as n→∞. (2.2)

on the contrary assume {un} is unbounded, then

1 + c+ o(1)‖un‖ ≥ Iµ(un)− 1
6
〈I ′µ(un), un〉

≥ a

3
‖un‖2 −

λ

3

∫
Ω

(u+)2

|x|2−s
dx− 5µ

6

∫
Ω

u−n dx

≥ aλ1 − λ
3λ1

‖un‖2 − C‖un‖,

which implies that the last inequality is an absurd. So {un} is bounded in H1
0 (Ω).

Based on the concentration compactness principle (see [16]), there exist a subse-
quence, still denoted by {un}, such that

|∇un|2 ⇀ dη ≥ |∇u|2 +
∑
j∈J

ηjδj ,

|un|6 ⇀ dγ = |u|6 +
∑
j∈J

γjδj ,

where J is an at most countable index set, δxj
is the Dirac mass at xj , and let

xj ∈ Ω in the support of η, γ. Moreover, it holds

ηj ≥ Sγ1/3
j textforallj ∈ J. (2.3)

For ε > 0, let φε,j(x) be a smooth cut-off function centered at xj such that 0 ≤
φε,j(x) ≤ 1, and

φε,j(x) =

{
1 in B(xj ,
= 0 in Ω\B(xj , 2ε),

|∇φε,j(x)| ≤ 2
ε
.

By Hölder’s inequality and (2.1),∣∣ ∫
Ω

u+
n

|x|2−s
φε,jun dx

∣∣ ≤ (∫
B(xj ,2ε)

|un|6 dx
)1/3(∫

B(xj ,2ε)

dx

|x|
3(2−s)

2

)2/3

≤ C‖un‖2εs.

Note that {un} is bounded in H1
0 (Ω), then

lim
ε→0

lim
n→∞

∫
Ω

u+
n

|x|2−s
φε,jun dx = 0.

Similarly, we have

lim
ε→0

lim
n→∞

∫
Ω

φε,jun dx = 0.
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As φε,jun is bounded in H1
0 (Ω), taking the test function ϕ = φε,jun in (2.2), it

holds

0 = lim
ε→0

lim
n→∞

〈I ′µ(un), φε,jun〉

= lim
ε→0

lim
n→∞

{
(a+ b‖un‖2)

∫
Ω

(∇un,∇(φε,jun)) dx

− λ
∫

Ω

(u+
n )2

|x|2−s
φε,j dx−

∫
Ω

(u+
n )6φε,j dx+ µ

∫
Ω

unφε,j dx
}

= lim
ε→0

lim
n→∞

{
(a+ b‖un‖2)

∫
Ω

(
|∇un|2φε,j + un∇un∇φε,j

)
dx−

∫
Ω

|un|6φε,j dx
}

≥ (a+ bηj)ηj − γj ,

so that γj ≥ (a+ bηj)ηj . Applying (2.3), we deduce that

γj ≥ aSγ1/3
j + bS2γ

2/3
j , or γj = 0. (2.4)

Set X = ν
1/3
j , it follows from (2.4) that X2 ≥ aS + bS2X; that is,

X ≥ bS2 +
√
b2S4 + 4aS
2

,

using (2.3) again, consequently

ηj ≥ SX ≥
bS3 +

√
b2S6 + 4aS3

2
=: K.

Next we show that

ηj ≥
bS3 +

√
b2S6 + 4aS3

2
is impossible. To obtain a contradiction assume that there exists j0 ∈ J such that
ηj0 ≥ bS3+

√
b2S6+4aS3

2 . By (2.2) and Young inequality,

c = lim
n→∞

{
Iµ(un)− 1

4
〈I ′µ(un), un〉

}
= lim
n→∞

{
(
1
2
− 1

4
)a‖un‖2 + b(

1
4
− 1

4
)‖un‖4 + (

1
4
− 1

6
)
∫

Ω

|un|6 dx

+
3µ
4

∫
Ω

un dx−
λ

4

∫
Ω

|un|2|x|s−2 dx
}

≥ a

4

(
‖u‖2 +

∑
j∈J

ηj

)
+

1
12

(∫
Ω

|u|6 dx+
∑
j∈J

γj

)
− λ

4

∫
Ω

|u|2|x|s−2 dx− 3µ
4

∫
Ω

u− dx

≥ a

4
ηj0 +

1
12
γj0 +

a

4
‖u‖2 − λ

4

∫
Ω

|u|2|x|s−2 dx

+
1
12

∫
Ω

|u|6 dx− 3µ
4

∫
Ω

|u| dx

≥ aK

2
+
b

4
K2 − K3

6S3
− 1

4

(
aK + bK2 − K3

S3

)
−Dµ6/5,
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where D = 5
6 (9|Ω|5/66−

1
6 )6/5. Easy computations show that

aK

2
+
b

4
K2 − K3

6S3
= Λ,

aK + bK2 −K3S−3 = 0.

Applying the result, we get Λ −Dµ6/5 ≤ c < Λ −Dµ6/5. This is a contradiction.
It indicates that J is empty, which implies that∫

Ω

(u+
n )6 dx→

∫
Ω

(u+)6 dx.

Now, set limn→∞ ‖un‖ = l, by (2.2), we have

(a+ b‖un‖2)‖un‖2 − λ
∫

Ω

(u+
n )2|x|s−2 dx−

∫
Ω

(u+
n )6 dx+ µ

∫
Ω

un dx = o(1), (2.5)

and

(a+ b‖un‖2)
∫

Ω

(∇un,∇ϕ) dx

= λ

∫
Ω

u+
nϕ|x|s−2 dx+

∫
Ω

(u+
n )5ϕdx− µ

∫
Ω

ϕdx+ o(1)
(2.6)

for any ϕ ∈ H1
0 (Ω). Let n→∞, then from (2.5), one gets

(a+ bl2)l2 − λ
∫

Ω

(u+)2|x|s−2 dx−
∫

Ω

(u+)6 dx+ µ

∫
Ω

u dx = 0.

Similarly, from (2.6),

(a+ bl2)
∫

Ω

(∇u,∇ϕ) dx

= λ

∫
Ω

u+ϕ|x|s−2 dx+
∫

Ω

(u+)5ϕdx− µ
∫

Ω

ϕdx.

(2.7)

Taking the test function ϕ = u in (2.7), we have

(a+ bl2)‖u‖2 − λ
∫

Ω

(u+)2|x|s−2 dx−
∫

Ω

(u+)6 dx+ µ

∫
Ω

u dx = 0.

So we obtain l = ‖u‖, consequently un → u in H1
0 (Ω). The proof is complete. �

From [4], it is well known that the function

Uε(x) =
(3ε)1/4

(ε+ |x|2)1/2
, x ∈ R3, ε > 0

satisfies

−∆Uε = U5
ε in R3,∫

R3
|Uε|6 =

∫
R3
|∇Uε|2 = S3/2.

Let η ∈ C∞0 (Ω) be a cut-off function such that 0 ≤ η ≤ 1, |∇η| ≤ C and η(x) = 1
for |x| < R0 and η(x) = 0 for |x| > 2R0, we set uε(x) = η(x)Uε(x). Then it holds

‖uε‖2 = S3/2 +O(ε1/2),

|uε|66 = S3/2 +O(ε3/2).
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Lemma 2.3. Assume 0 < s < 1, then supt≥0 Iµ(tuε) < Λ − Dµ6/5 for some
ε = ε(µ) > 0 small enough.

Proof. Since limt→∞ Iµ(tuε) = −∞, which suggests that supt≥0 Iµ(tuε) attained at
tε > 0, i.e.,

atε‖uε‖2 + bt3ε‖uε‖4 − λtε
∫

Ω

u2
ε

|x|2−s
dx− t5ε

∫
Ω

u6
ε dx+ µ

∫
Ω

uε dx = 0,

so that

t4ε

∫
Ω

u6
ε dx ≥ a‖uε‖2 + bt2ε‖uε‖4 − λ

∫
Ω

u2
ε

|x|2−s
dx. (2.8)

It follows from (2.8) that tε is bounded below, i.e., there exists a positive constant
t0 > 0 (independently of ε) such that 0 < t0 ≤ tε. Besides, it holds

t2ε

∫
Ω

u6
ε dx =

a‖uε‖2 − λ
∫

Ω
u2
ε|x|s−2 dx

t2ε
+ b‖uε‖4 +

µ

t3ε

∫
Ω

uε dx,

which implies that tε is bounded above for all ε > 0; that is, there exists a positive
real number t1 > 0 (independently of ε), such that tε ≤ t1 < +∞. Set

J(t) =
at2

2
‖uε‖2 +

bt4

4
‖uε‖4 −

t6

6

∫
Ω

u6
ε dx.

As in [14] we have
sup
t≥0

J(t) ≤ Λ +O(ε1/2).

According to the definition uε, for 0 < α < 1, it holds∫
Ω

uε dx ≤ Cε1/4

∫
|x|≤R0

1
(ε+ |x|2)1/2

dx

= Cε1/4

∫ R0

0

r2

(ε+ r2)1/2
dr

≤ Cε1/4

∫ R0

0

r dr = Cε1/4.

From [6, Proposition 2.4], for some K > 0, we have∫
Ω

u2
ε|x|s−2 dx = Kε

s
2 +O(ε1/2).

Consequently,

sup
t≥0

Iµ(tuε) ≤ sup
t≥0

J(t)− t20λ

2

∫
Ω

u2
ε

|x|2−s
dx+ t1µ

∫
Ω

uε dx

≤ Λ + C1ε
1/2 − C2ε

s
2 + C3µε

1/4,

here Ci (i = 1, 2, 3) (independently of ε, µ) are there positive constants. Since

0 < s < 1, let ε = µ
12
5 , µ < Λ1 =

[
C2

C1+C3+D

] 5
6(1−s) , then

C1ε
1/2 − C2ε

s
2 + C3µε

1/4 = C1µ
6/5 − C2µ

6s/5 + C3µ
8/5

≤ (C1 + C3)µ6/5 − C2µ
6s/5

< −Dµ6/5,
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so that
sup
t≥0

Iµ(tuε) ≤ Λ−Dµ6/5,

provided µ < Λ1 sufficiently small. The proof is complete. �

Proof of Theorem 1.2. Let µ∗ = min{Λ0,Λ1}, then Lemmas 2.1–2.3, for all 0 ≤
µ < µ∗. Assume µ 6= 0. Then applying the mountain-pass lemma [1], there exists
a sequence {vn} ⊂ H1

0 (Ω) such that

Iµ(vn)→ cµ > 0, and I ′µ(vn)→ 0, (2.9)

where

cµ = inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)),

Γ =
{
γ ∈ C([0, 1], H1

0 (Ω)) : γ(0) = 0, γ(1) = e
}
.

By Lemmas 2.2 and 2.3, {vn} ⊂ H1
0 (Ω) has a convergent subsequence, say {vn},

we may assume that vn → vµ in H1
0 (Ω) as n→∞. Hence, from (2.9), it holds

Iµ(vµ) = lim
n→∞

Iµ(vn) = cµ > 0,

which implies that vµ 6≡ 0. Furthermore, from the continuity of I ′µ, we obtain that
vµ is a nontrivial solution of (1.1).

If µ = 0, applying the mountain-pass lemma, there is a sequence {un} ⊂ H1
0 (Ω)

such that
I0(un)→ c0 ∈ (0,Λ), and I ′0(un)→ 0.

Arguing as in the previous proof, {un} has a subsequence strongly convergent in
H1

0 (Ω) to a critical point v0 of I0. Moreover, for every φ ∈ H1
0 (Ω), we have

(a+ b‖v0‖2)
∫

Ω

(∇v0,∇φ)− λ
∫

Ω

v+
0 φ|x|s−2 dx−

∫
Ω

(v+
0 )5φdx = 0. (2.10)

Taking the test φ = v−0 in (2.10), it follows that

‖v−0 ‖ = 0,

which implies that v0 ≥ 0 in Ω and −(a + b‖v0‖2)∆v0 ≥ 0. Note that I0(v0) =
limn→∞ I0(vn) = c0 > 0, which means that v0 6≡ 0 in Ω. Therefore, by the strong
maximum principle, we have v0 > 0 in Ω. The proof is complete. �
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