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FACTORIZATION OF SECOND-ORDER STRICTLY
HYPERBOLIC OPERATORS WITH LOGARITHMIC SLOW

SCALE COEFFICIENTS AND GENERALIZED MICROLOCAL
APPROXIMATIONS
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Communicated by Ludmila Pulkina

Abstract. We give a factorization procedure for a strictly hyperbolic partial
differential operator of second order with logarithmic slow scale coefficients.

From this we can microlocally diagonalize the full wave operator which results

in a coupled system of two first-order pseudodifferential equations in a mi-
crolocal sense. Under the assumption that the full wave equation is microlocal

regular in a fixed domain of the phase space, we can approximate the problem
by two one-way wave equations where a dissipative term is added to suppress

singularities outside the given domain. We obtain well-posedness of the corre-

sponding Cauchy problem for the approximated one-way wave equation with
a dissipative term.
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1. Basic notions

In this section we specify the basic notions that will be needed for our construc-
tions. As the problem is treated within the framework of Colombeau algebras we
refer to the literature [6, 24, 23, 15, 9, 8] for a systematic treatment of this field.

One of the main objects in our setting are Colombeau generalized functions
based on GL2 which were first introduced in [2]. The elements in this algebra are
given by equivalence classes u := [(uε)ε∈(0,1]] of nets of regular functions uε in the
Sobolev space H∞ = ∩k∈ZH

k satisfying certain asymptotic seminorm estimates.
More precisely, we denote by MH∞ the nets of moderate growth whose elements
are characterized by the property

∀α ∈ Nn ∃N ∈ N : ‖∂αuε‖L2(Rn) = O(ε−N ) as ε→ 0.

Negligible nets will be denoted by NH∞ and are nets in MH∞ whose elements
satisfy the following additional condition

∀q ∈ N : ‖uε‖L2(Rn) = O(εq) as ε→ 0.

Then the algebra of generalized functions based on L2-norm estimates is defined as
the factor space GH∞ =MH∞/NH∞ . By abuse of notation, we continue to write
GL2(Rn) for GH∞ . For simplicity, we shall also use the notation (uε)ε instead of
(uε)ε∈(0,1] throughout the paper.

Using [2, Theorem 2.7], we first note that the distributions H−∞ = ∪k∈ZH
k are

linearly embedded in GL2(Rn) by convolution with a mollifier ϕε(x) = ε−nϕ(ε−1x)
where ϕ ∈ S(Rn) is a Schwartz function such that∫

ϕ(x) dx = 1,
∫
xαϕ(x) dx = 0 for all α ∈ Nn, |α| ≥ 1. (1.1)

Further, by the same result, H∞(Rn) is embedded as a subalgebra of GL2(Rn).
As different growth types are crucial in regularity theory we introduce the set of
logarithmic slow scale nets by

Πlsc :=
{

(ωε)ε ∈ R(0,1] : ∃η ∈ (0, 1] ∃c > 0 ∀ε ∈ (0, η] : c ≤ ωε,

∃η ∈ (0, 1] ∀p ≥ 0 ∃cp > 0 : |ωε|p ≤ cp log
(1
ε

)
, ε ∈ (0, η]

}
.

Further, we call a net (ωε)ε ∈ Πlsc logarithmic slow scale strictly nonzero if there
exists (rε)ε ∈ Πlsc and an η ∈ (0, 1] such that |ωε| ≥ 1/rε for ε ∈ (0, η]. The different
growth type then result by convolution with a mollifier ϕω−1

ε
(x) = ωε

nϕ(ωεx) with
the same ϕ ∈ S(Rn) as above.



EJDE-2018/42 FACTORIZATION OF HYPERBOLIC OPERATORS 3

More generally, we introduce Colombeau algebras based on a locally convex
vector space E topologized through a family of seminorms {pi}i∈I as in [13, Section
1]. To continue, the elements

ME := {(uε)ε ∈ E(0,1] : ∀i ∈ I ∃N ∈ N : pi(uε) = O(ε−N ) as ε→ 0}

M∞E := {(uε)ε ∈ E(0,1] : ∃N ∈ N ∀i ∈ I : pi(uε) = O(ε−N ) as ε→ 0}

Mlsc
E := {(uε)ε ∈ E(0,1] : ∀i ∈ I ∃(ωε)ε ∈ Πlsc : pi(uε) = O(ωε) as ε→ 0}

NE := {(uε)ε ∈ E(0,1] : ∀i ∈ I ∀q ∈ N : pi(uε) = O(εq) as ε→ 0}

(1.2)

are said to be E-moderate, E-regular, E-moderate of logarithmic slow scale type
and E-negligible, respectively.

Then, NE is an ideal in ME and the Colombeau algebra based on E is defined
by the factor space GE =ME/NE and possesses the structure of a C̃-module. The
space of the regular Colombeau generalized functions G∞E = M∞E /NE is again a
C̃-module whereas the space of the logarithmic slow scale algebra GlscE =Mlsc

E /NE
is a C-module.

Example 1.1. Setting E = C one gets the ring of complex generalized numbers
C̃ = GC with the absolute value as the corresponding seminorm. Furthermore, we
denote by R̃ = GR the ring of real generalized numbers.

Further, let Ω be an open subset of Rn. Then the Colombeau algebra G(Ω) =
EM (Ω)/N (Ω) is obtained by taking E = C∞(Ω) endowed with the topology induced
by the family of seminorms pK,i(f) = sup{|∂αf(x)| : x ∈ K, |α| ≤ i} with K b Ω,
i ∈ N and f ∈ C∞(Ω).

Another example is the Colombeau algebra Gp,p(Ω), 1 ≤ p ≤ ∞, when E is
set to W∞,p(Ω) and the topology is determined by the collection of seminorms
pi(f) = sup{‖∂αf‖p : |α| ≤ i}, f ∈ W∞,p(Ω), as i varies over N. We note that
GL2 = G2,2. For more general Colombeau algebras based on Sobolev spaces we
refer to [2, Section 2]. Using the notation there we have the following identities:
EM,p(Ω) =MW∞,p(Ω) and Np,p(Ω) = NW∞,p(Ω).

2. Pseudodifferential calculus

In this section we introduce a general calculus for pseudodifferential operators
which are standard quantizations of generalized symbols. Since most of the tech-
niques are similar to the usual theory of pseudodifferential operators we also refer to
[17, 31]. A detailed discussion on pseudodifferential operators with Colombeau gen-
eralized symbols can be found in [9, 8]. As usual, we write Dxj = −i∂xj = −i ∂

∂xj
.

We shall initially discuss the main notions of generalized symbols. As already
indicated above we will study symbols which satisfy asymptotic growth conditions
with respect to (ωε)ε ∈ Πlsc. As usual, we use the notation 〈ξ〉 := (1 + |ξ|2)1/2.

We let ρ, δ ∈ [0, 1] and m ∈ R. We denote by Smρ,δ = Smρ,δ(Rn × Rn) the set
of symbols of order m and type (ρ, δ) as first introduced by Hörmander in [16,
Definition 2.1]. Since the symbol class Smρ,δ satisfies global estimates we remark
that our space MSmρ,δ

is different to that in [12, Section 1.4].
In the following, we will typically encounter subspaces of MSmρ,δ

subjected to
logarithmic slow scale asymptotics we can choose in (1.2) E = Smρ,δ and obtain
symbols of the form:
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Definition 2.1. Let m ∈ R. The set of moderate logarithmic slow scale symbols
Smρ,δ,lsc(Rn×Rn) of order m and type (ρ, δ) consists of all (aε)ε ∈ Smρ,δ(Rn×Rn)(0,1]

such that for all α, β ∈ Nn there exists (ωε)ε ∈ Πlsc :

q
(m)
α,β (aε) := sup

(x,ξ)∈R2n
|∂αξ ∂βxaε(x, ξ)|〈ξ〉−m+ρ|α|−δ|β| = O(ωε) as ε→ 0.

An element of Smρ,δ,lsc(Rn × Rn) is said to be negligible if it fulfills the following
condition:

∀α, β ∈ Nn ∀q ∈ N : q(m)
α,β (aε) = O(εq) as ε→ 0.

The subset of all negligible elements of Smρ,δ,lsc(Rn×Rn) is denoted byNm
ρ,δ(Rn×Rn).

Then, logarithmically slow scale symbols of order m are defined as the factor space

S̃mρ,δ,lsc(Rn × Rn) := Smρ,δ,lsc(Rn × Rn)/Nm
ρ,δ(Rn × Rn).

and in the following we will assume that δ < ρ. In the case that ρ = 1 and δ = 0
we use the abbreviation S̃mlsc for S̃m1,0,lsc.

Remark 2.2. Moreover, the space S̃−∞lsc of logarithmic slow scale symbols of order
−∞ consists of equivalence classes a whose representatives (aε)ε have the property
that

∀m ∈ R ∀α, β ∈ Nn ∃(ωε)ε ∈ Πlsc : q(m)
α,β (aε) = O(ωε) as ε→ 0.

Since (ωε)ε is a logarithmic slow scale net, we note that the net of a symbol (aε)ε
in Smlsc can always be estimated as follows

∀α, β ∈ Nn : q(m)
α,β (aε) = O

(
log
(1
ε

))
as ε→ 0.

To give an example, let P (x,Dx) =
∑
|α|≤m aα(x)Dα

x be a partial differential oper-
ator with bounded and measurable coefficients. Then the logarithmically slow scale
regularization of the symbol is given by pε(x, ξ) := (p(., ξ) ∗ ϕω−1

ε
)(x) and (pε)ε is

contained in Smlsc(Rn × Rn).
Also, we will make use of the following symbol class:

Definition 2.3. Let U ⊂ Rn × Rn be open and conic with respect to the second
variable. We say that a generalized symbol a is in S̃mρ,δ,lsc(U) if it has a representa-
tive (aε)ε with aε ∈ Smρ,δ(U) for fixed ε ∈ (0, 1] and for any compact set K ⊂ pr2(U)
(independent of ε) and VK := {(x, ξ) ∈ U : ξ ∈ K} we have: for all α, β ∈ Nn there
exists (ωε)ε ∈ Πlsc exists C > 0:

|∂αξ ∂βxaε(x, ξ)| ≤ Cωε〈ξ〉m−ρ|α|+δ|β| (x, ξ) ∈ V cK
for ε sufficiently small and where V cK := {(x, λξ) : (x, ξ) ∈ VK , λ ≥ 1}.

Note that Definition 2.1 is equivalent to Definition 2.3 in the case that U =
Rn×Rn. For completeness, we recall the definition for global symbols Smρ,δ(U) which
is similar to that for local symbols, see [4, Definition 2.3, page 141]: For U being an
open subset of Rn×Rn, which is conic in the second variable, we say that a ∈ Smρ,δ(U)
if a ∈ C∞(U) and for each compact K ⊂ pr2(U) and VK := {(x, ξ) ∈ U : ξ ∈ K}
we have

∀α, β ∈ Nn : sup
(x,ξ)∈V cK

|∂αξ ∂βxa(x, ξ)|〈ξ〉−m+ρ|α|−δ|β| <∞.
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We choose the following convention for defining the Fourier transform Fu of a
function u ∈ L2(Rn):

Fu(ξ) := û(ξ) :=
∫

Rn
e−ixξu(x) dx := lim

σ→0+

∫
Rn
e−ixξ−σ〈x〉u(x) dx.

Then the Fourier transform is an isomorphism on L2 and the inverse Fourier trans-
form of u ∈ L2 is given by the formula

F−1u(x) :=
∫

Rn
eixξu(ξ)d̄ξ := lim

σ→0+

∫
Rn
eixξ−σ〈ξ〉u(ξ)d̄ξ.

where we have set d̄ξ := (2π)−n dξ. More information on the Fourier transform
acting on GL2 can be found in [1]. As already mentioned above, we will focus
on generalized pseudodifferential operators having the following phase-amplitude
representation:

Definition 2.4. Let (aε)ε ∈ a ∈ S̃mρ,δ,lsc(Rn×Rn) and let (uε)ε be a representative
of u ∈ GL2 . We define the corresponding linear operator A : GL2 → GL2 by

A(x,D)u(x) :=
∫
ei(x−y)ξa(x, ξ)u(y) dy d̄ξ := (Aε(x,D)uε(x))ε +NH∞(Rn)

where

Aε(x,Dx)uε(x) :=
∫
ei(x−y)ξaε(x, ξ)uε(y) dy d̄ξ =

∫
eixξaε(x, ξ)ûε(ξ) d̄ξ

= F−1
ξ→x

(
aε(x, ξ)ûε(ξ)

)
where the last integral is interpreted as an oscillatory integral. The operator A is
called the generalized pseudodifferential operator with generalized symbol a. Later
on, we will sometimes write A ∈ Ψm

ρ,δ,lsc(Rn) to denote that A is a generalized
pseudodifferential operator with symbol in S̃mρ,δ,lsc(Rn × Rn). In the case that
(ρ, δ) = (1, 0), we will write A ∈ Ψm

lsc(Rn) for short.

2.1. Generalized point values of a generalized symbol. As above, let U ×
Γ ⊆ Rn × Rn be open and conic with respect to the second variable and (aε)ε a
generalized symbol in Smρ,δ,lsc(U × Γ).

Definition 2.5. Let Γ ⊆ Rn be an open cone. On

ΓM := {(ζε)ε ∈ Γ(0,1] : ∃N ∈ N : |ζε| = O(ε−N ) as ε→ 0}

we introduce the equivalence relation

(ζ1
ε )ε ∼ (ζ2

ε )ε ⇔ ∀m ∈ N : |ζ1
ε − ζ2

ε | = O(εm) as ε→ 0

and denote by Γ̃ := ΓM/ ∼ the generalized cone with respect to Γ.

Lemma 2.6. Let a ∈ S̃mρ,δ,lsc(U × Γ) and ζ̃ ∈ Γ̃. Then the generalized point value
of a at (z, ζ̃) = [(z, (ζε))ε],

a(z, ζ̃) := [(aε(z, ζε))ε]

is a well-defined element of C̃.
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Proof. The proof is similar to that of [15, Proposition 1.2.45]. We let (z, (ζε)ε)ε ∈
U × ΓM and (aε)ε ∈ Smρ,δ,lsc(U × Γ). For any index i ∈ N Ci denotes a positive
constant, (ωi,ε)ε a logarithmic slow scale net and Ni a natural number. Then

|aε(z, ζε)| ≤ C1ω1,ε(1 + |ζε|)m ≤ C1ω1,ε(1 + C2ε
−N2)max(m,0) ≤ C3ε

−N3

so (aε(z, ζε))ε ∈ RM =MR.
We now show that ζ̃1 ∼ ζ̃2 implies a(z, ζ̃1) ∼ a(z, ζ̃2). So let ζ̃1 ∼ ζ̃2. Then

|aε(z, ζ1
ε )− aε(z, ζ2

ε )| ≤ |ζ1
ε − ζ2

ε |
∫ 1

0

|Dζaε(z, ζ1
ε + σ(ζ2

ε − ζ1
ε ))| dσ

≤ C4ω4,ε(1 + C5ε
−N5)max(m,0)|ζ1

ε − ζ2
ε | ≤ C6ε

−N6εp

for all p ≥ 0 and ε small enough. Hence (aε(z, ζ1
ε ))ε − (aε(z, ζ2

ε ))ε ∼ 0.
Finally, if (aε)ε ∈ NSm(U × Γ) we have

|aε(z, ζε)| ≤ Cεp(1 + |ζε|)m ≤ Cεp(1 + C7ε
−N7)max(m,0)

for any p ≥ 0 as ε→ 0. So (aε(z, ζε))ε ∼ 0. �

In the case of generalized logarithmic slow scale coneswe obtain a similar result.

Definition 2.7. Let Γ ⊆ Rn be an open cone. On

ΓM,lsc := {(ζε)ε ∈ Γ(0,1] : ∃(ωε)ε ∈ Πlsc : |ζε| = O(ωε) as ε→ 0}

we introduce the equivalence relation

(ζ1
ε )ε ∼ (ζ2

ε )ε ⇔ ∀m ∈ N : |ζ1
ε − ζ2

ε | = O(εm) as ε→ 0

and denote by Γ̃lsc := ΓM,lsc/ ∼ the generalized logarithmic slow scale cone of Γ.

Lemma 2.8. Let a ∈ S̃mρ,δ,lsc(U ×Γ) and ζ̃ ∈ Γ̃lsc. Then the generalized point value
of a at (z, ζ̃) = [(z, (ζε)ε)],

a(z, ζ̃) := [(aε(z, ζε))ε]

is a well-defined element of C̃lsc.

2.2. Asymptotic Expansion. To prepare the factorization theorem of section 5
we will have to consider products of pseudodifferential operators. In the sequel
we will construct a complete symbolic calculus for generalized pseudodifferential
operators.

We therefore start with some general observations concerning the notion of as-
ymptotic expansion of a generalized symbol in S̃mρ,δ,lsc. The presentation of the
results are inspired by the results given in [8, Section 2.5] and [9]. There, the
techniques are described by means of generalized symbols as well as for slow scale
symbols. The modification to logarithmic slow scale symbols is evident.

The definition of the asymptotic expansion is now the following:

Definition 2.9. Let {mj}j be a strictly decreasing sequence of real numbers such
that mj → −∞ as j →∞, m0 = m.
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(i) Further, let {(aj,ε)ε}j be a sequence with (aj,ε)ε ∈MS
mj
ρ,δ

. We say that the

formal series
∑∞
j=0(aj,ε)ε is the asymptotic expansion for (aε)ε ∈ C∞(Rn×

Rn)(0,1], denoted by (aε)ε ∼
∑
j(aj,ε)ε, if and only if

(aε −
N−1∑
j=0

aj,ε)ε ∈MS
mN
ρ,δ

∀N ≥ 1.

(ii) Further, let {(aj,ε)ε}j be a sequence with (aj,ε)ε ∈ S
mj
ρ,δ,lsc. We say that the

formal series
∑∞
j=0(aj,ε)ε is the asymptotic expansion for (aε)ε ∈ C∞(Rn×

Rn)(0,1], denoted by (aε)ε ∼
∑
j(aj,ε)ε, if and only if

(aε −
N−1∑
j=0

aj,ε)ε ∈ SmNρ,δ,lsc ∀N ≥ 1.

In both cases, (a0,ε)ε is said to be the principal symbol of (aε)ε.

Also, we introduce the special case MSmρ,δ,cl
(Rn × Rn) ⊆MSmρ,δ

of classical gen-
eralized symbols.

Definition 2.10. We say that a generalized symbol (aε)ε ∈ MSmρ,δ
is classical,

denoted by (aε)ε ∈ MSmρ,δ,cl
, if there exists a sequence {(aj,ε)ε}j with symbols

(aj,ε)ε in MSm−jρ,δ
(Rn × (Rn \ 0)) homogeneous of degree m − j in |ξ| ≥ 1, j ∈ N,

such that for any cut-off function ϕ ∈ C∞0 (Rn) equal to 1 near the origin we have(
aε(x, ξ)−

N−1∑
j=0

(1− ϕ(ξ))aj,ε(x, ξ)
)
ε
∈MSm−Nρ,δ

quad∀N ≥ 1. (2.1)

As above, we will write (aε)ε ∼
∑
j(aj,ε)ε if (2.1) holds and we call (a0,ε)ε the

principal symbol of (aε)ε.

Replacing MSmρ,δ
by Mlsc

Smρ,δ
, one obtains classical symbols of logarithmic slow

scale type.
As a result, we obtain that any infinite sum of symbols of strictly decreasing

orders can be summed as follows.

Theorem 2.11.
(i) Let (aj,ε)ε ∈ MS

mj
ρ,δ

with mj ↘ −∞ as j → ∞, m0 = m as in (i) of Def-

inition 2.9. Then there exists (aε)ε ∈ MSmρ,δ
such that (aε)ε ∼

∑
j(aj,ε)ε.

Moreover, if (a′ε)ε ∼
∑
j(aj,ε)ε, then (aε − a′ε)ε ∈MS−∞ .

(ii) Let (aj,ε)ε ∈ S
mj
ρ,δ,lsc with mj ↘ −∞ as j →∞, m0 = m as in (ii) of Def-

inition 2.9. Then there exists (aε)ε ∈ Smρ,δ,lsc such that (aε)ε ∼
∑
j(aj,ε)ε.

Moreover, if (a′ε)ε ∼
∑
j(aj,ε)ε, then (aε − a′ε)ε ∈ S−∞lsc .

Remark 2.12. The proof of this theorem can be found in [8, Theorem 2.2]. The
same proof remains valid for classical symbol classes. We recall the construction of
the symbol (aε)ε of Theorem 2.11:

Let ψ ∈ C∞(Rn), 0 ≤ ψ(ξ) ≤ 1 such that ψ(ξ) = 0 for |ξ| ≤ 1 and ψ(ξ) = 1 for
|ξ| ≥ 2. As in [8, Theorem 2.2] one can define

aε(x, ξ) :=
∑
j∈N

ψ(λj,εξ)aj,ε(x, ξ)
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where λj,ε are appropriate positive constants with λj+1,ε < λj,ε < 1, λj,ε → 0
as j → ∞. In case (i) of Theorem 2.11, λj,ε are taken to be the inverse of an
appropriate strictly positive net. In Theorem 2.11 (ii), it turns out that (λj,ε) can
be chosen to be an inverse of a logarithmic slow scale net.

We also remark that Theorem 2.11 can be carried over to classical symbols in a
corresponding way.

Noting that in Theorem 2.11 (i) one can replace the moderateness by negligibility
we introduce as in [8, Definition 2.6 (ii)]:

Definition 2.13. Let {mj}j be as in Definition 2.9. Further let {aj}j be a sequence
in S̃

mj
ρ,δ,lsc. We say that the formal series

∑∞
j=0 aj is the asymptotic expansion of

a ∈ S̃mρ,δ,lsc, denoted by a ∼
∑
j aj , if and only if there exists a representative (aε)ε

of a and, for every j representatives (aj,ε)ε of aj , such that (aε)ε ∼
∑
j(aj,ε)ε.

Similarly, we introduce the following definition for classical symbols.

Definition 2.14. Let {aj}j∈N be a sequence with aj ∈ S̃m−jρ,δ,lsc(Rn×(Rn\0)) homo-
geneous of degree m− j. We say that the formal series

∑∞
j=0 aj is the asymptotic

expansion of a ∈ S̃mρ,δ,cl,lsc, denoted by a ∼
∑
j aj , if and only if there exists a

representative (aε)ε of a and, for every j representatives (aj,ε)ε of aj , such that
(aε)ε ∼

∑
j(aj,ε)ε.

2.3. Composition and Adjoint of Pseudodifferential Operators. In this
subsection we briefly recall the composition law of two pseudodifferential opera-
tors and adjoint operators. A detailed discussion for slow scale regular generalized
symbols can be found in [9, Section 5]. Again, the adaptation to logarithmic slow
scale symbols is evident.

Therefore, for logarithmic slow scale symbols,we obtain the following result.

Theorem 2.15. Let A(x,Dx) and B(x,Dx) be two pseudodifferential operators
with generalized symbols a ∈ S̃m1

ρ,δ,lsc and b ∈ S̃m2
ρ,δ,lsc respectively. Then the product

AB is well-defined and maps GL2 into itself. Moreover AB is a pseudodifferential
operator with generalized symbol a#b in S̃m1+m2

ρ,δ,lsc having the representation

a#b(x, ξ) ∼
∑
|α|≥0

1
α!
Dα
ξ a(x, ξ)∂αx b(x, ξ).

For the proof we refer to [9, Theorem 5.15]. We note that Theorem 2.15 can also
be stated for classical symbols. In detail, if a ∈ S̃m1

ρ,δ,cl,lsc and b ∈ S̃m2
ρ,δ,cl,lsc, then

a#b in S̃m1+m2
ρ,δ,cl,lsc.

Also useful is the following theorem.

Theorem 2.16. Let A(x,Dx) be a pseudodifferential operators with generalized
symbol a ∈ S̃mρ,δ,lsc. Then the adjoint operator A∗ is in Ψm

ρ,δ,lsc and its symbol a∗ is
given by the asymptotic expansion

a∗(x, ξ) ∼
∑
|α|≥0

i|α|

α!
Dα
xD

α
ξ a(x, ξ).

For the proof see [9, Theorem 5.12].
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3. Governing equation in the Colombeau setting

The present survey is devoted to wave propagation in inhomogeneous acoustic
media in the case of non-smooth background data. The operator structure is mo-
tivated from wave propagation phenomena occuring in a number of physical appli-
cations, such as underwater acoustics or seismology. Hence, the evolution direction
is the depth coordinate.

3.1. Derivation of the inhomogeneous wave equation. The acoustic wave
equation characterizes fluid motions and can be derived from the conservation laws
of mass and momentum together with the equation of state of thermodynamical
equilibrium. This system of acoustic equations can be linearized and therefore
describes small perturbations from a state of rest of the pressure U(t, x) ∈ R, the
density ρ′(t, x) ∈ R and the velocity ~v′(t, x) ∈ Rn that moves in a fluid with given
wave speed c(x) and density ρ(x), (x ∈ Rn, t ∈ R). To explain how these waves are
generated or added to the fluid one can introduce so-called sources by adding source
terms in the equation of mass, momentum and energy. Assuming an isentropic
process the linearized acoustic system can be written as (cf. [20, 21, 25, 3])

∂ρ′

∂t
= div(ρ~v′) +m (mass conservation)

∂~v′

∂t
=

1
ρ
∇U + ~f (momentum conservation)

∂U

∂t
= c2

(∂ρ′
∂t

+ ~v′∇ρ
)

(equation of state)

where the mass source term m and the force source term ~f are supposed to vanish
in the undisturbed state. Here m represents a volume injection of a source such as,
for example, bodies whose volume is oscillating. An example for a body force ~f of
a source is an oscillating rigid body of constant volume. Note that these equations
also hold for the fluid at rest.

Substituting the state equation into the equation of mass and using the conser-
vation of momentum to eliminate the velocity term gives

div(
1
ρ
∇U)− 1

c2ρ

∂2

∂t2
U = F

where F := −∂m/ρ∂t + div(~f/ρ) denotes the source function. We remark that in the
absence of sources one derives the homogeneous wave equation.

In the following we will study the Colombeau generalized partial differential
equation of the form

LU :=
(
∂z

1
ρ
∂z +

n−1∑
j=1

∂xj
1
ρ
∂xj −

1
ρ

1
c2
∂2
t

)
U = F (3.1)

with the (pressure) wave field U ∈ GL2(Rn+1) and F ∈ GL2(Rn+1) a source term.
For the space coordinates we will allocate the vertical direction z, which we call the
depth, the lateral directions are denoted by x.

We assume that the coefficients 1
ρ = 1

ρ (x, z), 1
c = 1

c (x, z) are Colombeau general-
ized functions in Glsc∞,∞ :=Mlsc

W∞,∞/NW∞,∞ and meet the following requirements:

there are representatives
(

1
ρε

)
ε
∈ 1

ρ ,
(

1
c2ε

)
ε
∈ 1

c2 such that
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(i) there exist Hölder continuous functions 1
ρ∗ ,

1
c∗ ∈ C

0,µ(Rn) for some µ ∈
(0, 1) such that for all (x, z) ∈ Rn we have 1

ρε
= 1

ρ∗ ∗ ϕω−1
ε
, 1
cε

= 1
c∗ ∗ ϕω−1

ε

where ϕ is as in (1.1), (ωε)ε ∈ Πlsc and the convolution is taken with respect
to x and z

(ii) ∃η ∈ (0, 1] ∃ constants c0, c1, ρ0 and ρ1 such that 0 < c0 ≤ cε(x, z) ≤ c1 <
∞ and 0 < ρ0 ≤ ρε(x, z) ≤ ρ1 <∞ for all (x, z) ∈ Rn and ε ∈ (0, η].

The lower bound assumption is sometimes referred to as strong positivity (cf. [10,
Section 1] or [7, Section 2]). The upper bound means uniform boundedness of the
0-th derivative of the representatives. For more details on the assumption (i) we
refer to the remark given below.

Given a regularized operator as above, we carry out all transformations within
algebras of generalized functions from now on. More explicitly, we will study the
action of the linear operator L from GL2 into itself in the following sense: on the
level of representatives L acts as

(uε)ε 7→
((
∂z

1
ρε
∂z +

n−1∑
j=1

∂xj
1
ρε
∂xj −

1
ρε

1
c2ε
∂2
t

)
uε

)
ε
∀(uε)ε ∈MH∞ .

This explains our governing equation in (3.1) where U = [(uε)ε].

Remark 3.1. To realize the logarithmic slow scale type conditions on the coeffi-
cients of a partial differential operator, one usually uses a rescaling in the molli-
fication. In our case, the regularization is obtained by convolution with the log-
arithmically scaled mollifier ϕω−1

ε
(.) := ωnε ϕ(ωε.) with ϕ ∈ S(Rn) as in (1.1) and

(ωε)ε ∈ Πlsc.
For completeness, we give the following implications for our type of coefficients:

Let u ∈ C0,µ(Rn) be a real-valued Hölder continuous function with exponent µ ∈
(0, 1) and such that inf(u) ≥ c for some positive constant c. Further ϕ is a mollifier
as above and (ωε)ε ∈ Πlsc. One may think of ωε = log(log( 1

ε )) as an explicit
example. Then ∃c > 0 : ωε ≥ c for all ε ∈ (0, 1

11 ] and for all p ≥ 0,∃cp > 0 :
ωpε ≤ cp log( 1

ε ) for all ε ∈ (0, 1]. So given some (ωε)ε ∈ Πlsc the logarithmic slow
scale regularization of u is given by uε(x) = u ∗ ϕω−1

ε
(x) and satisfies the following

estimates (see [18, Theorem 7], or [28, Section 5]):

‖∂αuε‖L∞ =

{
O(1) |α| = 0
O
(
ω
|α|−µ
ε

)
|α| > 0

(ε→ 0)

and
∃u0 > 0 ∃η ∈ (0, 1] : |uε(x)| ≥ u0 x ∈ Rn, ε ∈ (0, η].

Here, the latter inequality is the strong positivity and the first estimate guarantees
that the net (uε)ε is in Mlsc

W∞,∞ . Moreover, note that u ∈ C0,µ implies that for
every x ∈ Rn we have

|uε(x)− u(x)| ≤
∫
|u(x− ω−1

ε y)− u(x)| |ϕ(y)| dy = O(ω−µε ) ε→ 0.

Again, with a slight abuse of notation we write u for the equivalence class of the
Colombeau regularization of u ∈ C0,µ, i.e:

u := (uε)ε +NW∞,∞ ∈ Glsc∞,∞.
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3.2. Time extrapolation of the wave field. In a paper of Garetto and Ober-
guggenberger, see [13], the authors studied well-posedness of Cauchy problems with
respect to the time variable for strictly hyperbolic systems and higher order equa-
tions in the Colombeau setting using symmetrisers and the theory of generalized
pseudodifferential operators. There they imposed conditions concerning the asymp-
totic scale of the regularization parameter of the operator. Concretely, the authors
proved existence, uniqueness and regularity of generalized solutions in the case that
the regularization parameter is chosen logarithmic slow scale. More details can be
found in [13, Theorem 4.2].

3.3. Depth evolution processes. The concept of one-way wave equations, also
known as paraxial wave equations, was first introduced by [5] and has become a
standard tool in depth migration processes due to ill-posedness of the full wave
equation. In fact, they are expressions for the first depth derivative of a wave field
and thus of the form

∂z + iB±(x, z,Dt, Dx). (3.2)

where B± are (microlocal) pseudodifferential operators. Our derivation of one-way
wave equations starts with a factorization of the operator L in (3.1) into terms of
the form (3.2).

Remark 3.2. As already noted in subsection 3.2, one obtains well-posed problems
in the model of time migration for strictly hyperbolic operators. We therefore give
the following link.

Note that the operator L in (3.1) is strictly hyperbolic in the following sense:
Let θ ∈ (0, π/2) be a fixed angle and

I ′θ :=
{

(x, z, τ, ξ) ∈ Rn × Rn : τ 6= 0, |c∗(x, z)τ−1ξ| < sin θ
}
.

For completeness we recall the following definition.

Definition 3.3. The operator L in (3.1) is called generalized strictly hyperbolic
in I ′θ if there exists a choice of representatives of the coefficients in Glsc∞,∞(Rn) such
that the corresponding principal symbol of Lε(ζ;x, z, τ, ξ) has 2 distinct real-valued
roots (ζj,ε)ε, j = 1, 2 such that

|ζ1,ε(x, z, τ, ξ)− ζ2,ε(x, z, τ, ξ)| ≥ ζε〈(τ, ξ)〉 (3.3)

holds for some strictly nonzero net (ζε)ε, for all (x, z, τ, ξ) ∈ I ′θ and ε sufficiently
small.

4. Ellipticity of pseudodifferential operators

In this section, we introduce the notion of elliptic operators which enables us to
construct a parametrix for such operators. Furthermore such operators will play an
important role in the characterization of the generalized wave front set (cf. section
6).

4.1. Ellipticity. In [10, Definition 1.2] and [8, Proposition 2.7] the authors intro-
duced the concept of slow scale ellipticity which can be carried over to logarithmic
slow scale ellipticity easily. With this in mind, we define the property of logarithmic
slow scale ellipticity for our class of operators as follows.
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Definition 4.1. We say that a generalized symbol a ∈ S̃mlsc is logarithmic slow
scale micro-elliptic at (x0, ξ0) ∈ T ∗Rn \ 0 if it has a representative (aε)ε such that
the following is satisfied: There exists a relatively compact open neighborhood U
of x0, exists a conic neighborhood Γ of ξ0, exist nets (rε)ε ∈ Πlsc, (sε)ε ∈ Πlsc and
a constant η ∈ (0, 1] such that

|aε(x, ξ)| ≥
1
sε
〈ξ〉m (x, ξ) ∈ U × Γ, |ξ| ≥ rε, ε ∈ (0, η]. (4.1)

In the sequel, we will sometimes use the abbreviation lsc for logarithmic slow scale.
We denote by Elllsc(a) the set of points (x0, ξ0) ∈ T ∗Rn \ 0 where a is logarithmic
slow scale micro-elliptic. If there exists a representative (aε)ε ∈ a such that (4.1)
holds for all (x0, ξ0) ∈ T ∗Rn \ 0 then the symbol a is called logarithmic slow scale
elliptic.

Definition 4.2. More generally, we say that a generalized symbol a ∈ S̃msc is slow
scale micro-elliptic at (x0, ξ0) ∈ T ∗Rn \ 0 if (4.1) holds for some nets (rε)ε, (sε)ε ∈
Πsc.

Note that a logarithmic slow scale elliptic symbol is also slow scale elliptic but
not vice versa.

Remark 4.3. We first observe that condition (4.1) is independent of the choice
of representative. Indeed, let (aε)ε ∈ a as in Definition 4.1 and (a′ε)ε another
representative of a. Then for some arbitrary but fixed p > 0 there ∃c1 > 0, ∃η1 ∈
(0, 1] such that on U × Γ we have

|a′ε(x, ξ)| ≥ |aε(x, ξ)|−|(a′ε−aε)(x, ξ)| ≥
1
sε
〈ξ〉m

(
1−c1sεε2p

)
|ξ| ≥ rε, ε ∈ (0, η1].

Since there exist η2 ∈ (0, 1] and c2 > 0 such that sε ≤ c2ε
−p for ε ∈ (0, η2],we

obtain

1− c1sεε2p ≥ 1− c1c2εp ≥ 1/2 ∀ε ∈ (0,min(η2,
(
2c1c2

)−1/p)].

Redefining η := min(η1, η2,
(
2c1c2

)−1/p) we obtain

|a′ε(x, ξ)| ≥
1

2sε
〈ξ〉m (x, ξ) ∈ U × Γ, |ξ| ≥ rε, ε ∈ (0, η].

Moreover, we notice that the notion of (logarithmic) slow scale ellipticity is stable
under lower order (logarithmic) slow scale perturbations. For a proof one reworks
essentially the lines in [10, Proposition 1.3]. For completeness we give the proof of
the following proposition.

Proposition 4.4. Let (aε)ε ∈ Smlsc(Rn×Rn) be logarithmic slow scale micro-elliptic
at the point (x0, ξ0). Then

(i) for all α, β ∈ Nn there exists (λε)ε ∈ Πlsc ∃η ∈ (0, 1]:

|∂αξ ∂βxaε(x, ξ)| ≤ λε|aε(x, ξ)|〈ξ〉−|α| U × Γ, |ξ| ≥ rε, ε ∈ (0, η]

(ii) if (bε)ε ∈ Sm
′

lsc (Rn × Rn) with m′ < m, then (4.1) is valid for the net
(aε + bε)ε.

Proof. We first show (i). Since (aε)ε ∈ Smlsc is logarithmic slow scale elliptic we
obtain: for all α, β ∈ Nn there exist (ωε)ε ∈ Πlsc, c > 0, and η ∈ (0, 1] such that

|∂αξ ∂βxaε(x, ξ)| ≤ cωε〈ξ〉m−|α| ≤ cωεsε〈ξ〉−|α||aε(x, ξ)|
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on U × Γ for |ξ| ≥ rε, ε ∈ (0, η]. Setting λε := ωεsε then (λε)ε ∈ Πlsc as desired.
To show the second part let (bε)ε ∈ Sm

′

lsc . Then

|aε(x, ξ) + bε(x, ξ)| ≥
1
sε
〈ξ〉m − cωε〈ξ〉m

′
=

1
sε
〈ξ〉m

(
1− csεωε〈ξ〉m

′−m
)
≥ 1

2sε
〈ξ〉m

on U × Γ, |ξ| ≥ r′ε := max(rε, (2csεωε)1/(m−m′)) and (r′ε)ε ∈ Πlsc. �

We note that the previous proposition can also be carried over for symbols that
are slow scale micro-elliptic.

Remark 4.5. In case of smooth symbols the notion of lsc-ellipticity reduces to the
classical one and is therefore equivalent to the complement of the characteristic set.
Indeed, given a ∈ Sm(Rn ×Rn) and a representative (aε)ε of an lsc-elliptic symbol
a ∈ Smlsc(Rn × Rn) then there exist nets (sε)ε, (rε)ε ∈ Πlsc and constants c > 0,
η ∈ (0, 1] such that for every q ∈ N we have:

|a(x, ξ)| ≥ |aε(x, ξ)|− |a(x, ξ)−aε(x, ξ)| ≥ 〈ξ〉m
( 1
sε
− cεq

)
for |ξ| ≥ rε, ε ∈ (0, η].

As we are allowed to fix an ε small enough the last expression is bounded away from
0. In particular Elllsc(a)c is equal to the characteristic set Char(a(x,D)). Note that
this result remains valid if one replaces lsc by sc (cf. [10, Remark 1.4]).

Before we proceed, we give an equivalent characterization of the notion of lsc-
ellipticity concerning the principal symbol. In [19, Proposition 3.3] it is proved that
a generalized partial differential operator with regular coefficients in G∞ = G∞C∞ is
W-elliptic (weak elliptic) if its principal symbol is S-elliptic (strong elliptic). For
the precise meaning of weak and strong ellipticity consult [19]. Referring to this we
want to give the following proposition.

Proposition 4.6. Given a generalized symbol (aε)ε ∈ Smcl,lsc then the following
properties are equivalent:

(i) (aε)ε is lsc-elliptic
(ii) the principal symbol (am,ε)ε satisfies the following condition: there exists

(sε)ε ∈ Πlsc, η ∈ (0, 1] and r > 0 such that

|am,ε(x, ξ)| ≥
1
sε
〈ξ〉m ∀(x, ξ) ∈ T ∗Rn with |ξ| ≥ r and ε ∈ (0, η].

Proof. The proof follows similar arguments to those used in [19, Proposition 3.3].
We first assume that condition (ii) holds. Then there exist nets (sε)ε ∈ Πlsc, (ωε)ε ∈
Πlsc and constants c, r > 0 such that

|aε(x, ξ)| = |am,ε(x, ξ) +
∑
j≥1

am−j,ε(x, ξ)|

≥ 1
sε
〈ξ〉m − cωε〈ξ〉m−1

≥ 1
sε
〈ξ〉m

(
1− cωεsε〈ξ〉−1

)
for |ξ| ≥ r and ε small enough. Setting rε = max(r, 2cωεsε) then (rε)ε ∈ Πlsc and
we obtain

|aε(x, ξ)| ≥
1

2sε
〈ξ〉m |ξ| ≥ rε, ε ∈ (0, η]

for some η ∈ (0, 1], showing (i).
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To prove that (i) implies (ii), suppose that (aε)ε satisfies (4.1) on Rn ×Rn. Let
ζ ∈ Rn, |ζ| = 1 and choose ξ ∈ Rn such that |ξ| ≥ rε and ζ = ξ/|ξ| with (rε)ε ∈ Πlsc

as in (4.1). Then ∃(s′ε)ε ∈ Πlsc, ∃(r′ε)ε ∈ Πlsc, ∃η ∈ (0, 1] so that

|
∑
j≥0

am−j,ε(x, ζ)|ξ|−j | = |aε(x, ξ)||ξ|−m

≥ 1
sε
〈ξ〉m 1

|ξ|m
=

1
sε
〈|ξ|−1〉m

≥ min(2m/2, 1)
sε

=:
1
s′ε

for |ξ| ≥ r′ε := max(1, rε), ε ∈ (0, η].
Now fix N ∈ N, N ≥ 1. Since (aε)ε ∈ Smlsc we obtain ∀(tε)ε ∈ Πlsc, ∀1 ≤ j ≤ N ,

∃(ωj,ε)ε ∈ Πlsc, ∃η ∈ (0, 1] such that

|am−j,ε(x, ζ)| 1
|ξ|j
≤ ωj,ε

1
|ξ|j
≤ 1
tε

for |ξ| ≥ max
1≤j≤N

(rε, (tεωj,ε)1/j)

and ε ∈ (0, η]. At this point we are free to choose (tε)ε ∈ Πlsc such that N
tε

= 1
4s′ε

.
On the other hand, we can use Theorem 2.11 for classical symbols to show that

∃(ωε)ε ∈ Πlsc, ∃η ∈ (0, 1] such that∣∣ ∑
j≥N+1

am−j,ε(x, ζ)|ξ|−j
∣∣ ≤ 1
|ξ|N+1

∣∣ ∑
j≥N+1

am−j,ε(x, ζ)
∣∣ ≤ 1
|ξ|N+1

ωε〈ζ〉m−N−1

≤ 2m−N−1ωε
|ξ|N+1

≤ 1
4s′ε

for any |ξ| ≥ max(1, rε, (2m−N−1ωεs
′
ε)

1
N+1 ) and ε ∈ (0, η]. At this point we reset

r′ε := max1≤j≤N (1, rε, (2m−N−1ωεs
′
ε)

1
N+1 , (tεωj,ε)1/j). Then (r′ε)ε ∈ Πlsc and we

obtain: ∃η ∈ (0, 1] such that

|am,ε(x, ζ)| ≥ |
∞∑
j=0

am−j,ε(x, ζ)|ξ|−j | − |
∞∑
j=1

am−j,ε(x, ζ)|ξ|−j |

≥ 1
s′ε
− |

N∑
j=1

am−j,ε(x, ζ)|ξ|−j +
∞∑

j=N+1

am−j,ε(x, ζ)|ξ|−j |

≥ 1
s′ε
− 1

2s′ε
=

1
2s′ε

for |ξ| ≥ r′ε,ε ∈ (0, η] by the above. Thus, since am,ε is homogeneous of degree m
in the second variable

|am,ε(x, ξ)| ≥
1

2s′ε
|ξ|m ≥ 1

2s′ε
〈ξ〉m for all ξ ∈ Rn, |ξ| ≥ 1

for ε sufficiently small. �

Remark 4.7. Again, Proposition 4.6 remains valid if we replace logarithmic slow
scale by slow scale.
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4.2. Strong ellipticity. As already announced in section 3 we are interested in
the depth extrapolation of the wave field U in (3.1). We will therefore introduce a
notion of (logarithmic) slow scale ellipticity which in addition has a certain behavior
with respect to ζ, the dual variable of the depth.

We first introduce some notation. We denote by (τ, ξ, ζ) ∈ R × Rn−1 × R the
dual variables corresponding to (t, x, z) ∈ R × Rn−1 × R. Thus, we will work on
a 2(n + 1)-dimensional phase space. We already mentioned in subsection 2.1 that
given a symbol a ∈ S̃mlsc(Rn+1 × Rn+1) and a generalized point (t, x, z, τ, ξ, ζ̃) in
Rn+1 × Rn × R̃ then the generalized point value of the symbol a at (t, x, z, τ, ξ, ζ̃)
is well-defined in C̃.

Moreover let Γs ⊆ Rn+1 be a (classical) conic neighborhood of (τ0, ξ0, ζ0) of the
form

Γs =
{
λ(τ, ξ; ζ) ∈ Rn+1 \ 0 : (τ, ξ; ζ) ∈ Bs

( (τ0, ξ0; ζ0)
|(τ0, ξ0; ζ0)|

)
∩ S1(0), λ > 0

}
for some s > 0 small enough, where Bs(η) denotes the open ball with radius s
around η ∈ Rn+1 and S1(0) := {η ∈ Rn+1 : |η| = 1}. We set

Γs,M := {(λ(τ, ξ; ζε))ε ∈ Γ(0,1]
s | ∃N ∈ N : |ζε| = O(ε−N ) as ε→ 0, λ > 0}

and introduce an equivalence relation on Γs by

(ζ1
ε )ε ∼ (ζ2

ε )ε ⇔ ∀m > 0 : |ζ1
ε − ζ2

ε | = O(εm) ε→ 0.

We then denote by Γ̃s := Γs,M/ ∼ the generalized cone with respect to ζ generated
from Γs. So Γ̃s is a generalized conic neighborhood of (τ0, ξ0, ζ0).

Moreover we recall that Γs ↪→ Γ̃s. The canonical embedding of Γs into Γ̃s is
given by (τ, ξ, ζ) 7→ (τ, ξ, (ζ)ε +NR).

Also note that in the definition of Γs,M , (τ, ξ; ζε)ε ∈ Γ(0,1]
s means that

(τ, ξ; ζε) ∈ Bs
( (τ0, ξ0; ζ0)
|(τ0, ξ0; ζ0)|

)
∩ S1(0) for every fixed ε ∈ (0, 1].

With this notation we now give the definition of strong lsc-micro-ellipticity.

Definition 4.8. Let a be a generalized symbol in S̃mlsc(Rn+1×Rn+1). We say that
a is strong logarithmic slow scale micro-elliptic at a point (t0, x0, z0, τ0, ξ0; ζ0) ∈
T ∗Rn+1 \ 0, and we write (t0, x0, z0, τ0, ξ0; ζ0) ∈ Ell∗lsc(a), if there exist a relatively
compact open neighborhood U of (t0, x0, z0), a (classical) conic neighborhood Γ of
(τ0, ξ0, ζ0) such that Γ ↪→ Γ̃ where Γ̃ = ΓM/ ∼ is the generalized conic neighborhood
of (τ0, ξ0, ζ0) generated from Γ as above, nets (rε)ε, (sε)ε ∈ Πlsc and an η ∈ (0, 1]
such that

|aε(t, x, z, τ, ξ; ζε)| ≥
1
sε
〈(τ, ξ; ζε)〉m U × ΓM , |(τ, ξ; ζε)| ≥ rε, ε ∈ (0, η]. (4.2)

Figure 1 below shall illustrate the relation of the sets Γs and Γs,M in the following
special situation. We fix a point (x0, z0) ∈ Rn, let ζ2

0 := 1
c∗2 (x0, z0)τ2

0 − |ξ0|2 and
let Γs be a conic neighborhood around (τ0, ξ0, ζ0). Then for any s > 0, however
small, we can define

ζs20,ε :=

{
1
c∗2 (x0, z0)τ2

0 − |ξ0|2 ε ∈ (Cs, 1]
1
c2ε

(x0, z0)τ2
0 − |ξ0|2 ε ∈ (0, Cs]
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for some positive constant Cs depending on s > 0 and which will be specified below.
Then

|ζ2
0 − ζs 2

0,ε | =
∣∣∣( 1
c∗2
− 1
c2ε

)
(x0, z0)τ2

0

∣∣∣ ≤ C(τ0)ω−µε ∀ε ∈ (0, 1].

Now let r(s) be a function depending on s such that r(s) → 0 as s → 0. Then,
since C(τ0)ω−µε ≤ r(s)/2 for all ε small enough, i.e. for ε less or equal a Cs > 0
(with Cs → 0 as s→ 0) we obtain

|ζ2
0 − ζs20,ε| ≤ r(s)/2 ∀ε ∈ (0, Cs].

By the definition of ζs20,ε we even get

|ζ2
0 − ζs20,ε| ≤ r(s)/2 ∀ε ∈ (0, 1].

So in particular we have (τ0, ξ0, ζs20,ε) ∈ Γs for all ε ∈ (0, 1] and ζs20,ε → ζ2
0 as ε→ 0.

Therefore, if we are working in an open ball around (τ0, ξ0, ζ0) with radius r(s) >
0 we can find a generalized point (τ0, ξ0, ζs0,ε)ε such that (τ0, ξ0, ζs0,ε) is contained
in Br(s)

(
(τ0, ξ0, ζ0)

)
for all ε ∈ (0, 1].

ζ0

(τ0, ξ0)
(τ, ξ)

ζ

ζ s
0,ε

Γs

S 1(0)

r(s)

Figure 1. Here the shaded area corresponds to the set Γs. The
dashed line through (τ0, ξ0, ζs0,ε) and the origin move to to the line
through (τ0, ξ0, ζ0) and the origin as ε→ 0 respectively.

Remark 4.9. In particular, since Γ ↪→ Γ̃ condition (4.2) implies

|aε(t, x, z, τ, ξ; ζ)| ≥ 1
sε
〈(τ, ξ; ζ)〉m U × Γ, |(τ, ξ; ζ)| ≥ rε, ε ∈ (0, η]. (4.3)

so the symbol a is logarithmic slow scale micro-elliptic at (t0, x0, z0, τ0, ξ0; ζ0).

Remark 4.10. The definition of strong slow scale micro-ellipticity is straightfor-
ward. Again, one simply replaces lsc by sc in Definition 4.8.

Lemma 4.11. Let a ∈ S̃mlsc(Rn+1 × Rn+1). Then a is strong logarithmic slow
scale micro-elliptic at (t0, x0, z0, τ0, ξ0; ζ0) if and only if it is logarithmic slow scale
micro-elliptic there. So if a satisfies (4.3), then it also satisfies (4.2) and vice versa.

Proof. The first direction is already shown by Remark 4.9.
On the other hand suppose that the symbol a is logarithmic slow scale micro-

elliptic at (t0, x0, z0, τ0, ξ0; ζ0) ∈ T ∗Rn+1\0. Then there exists a representative (aε)ε
of a such that the following is satisfied: ∃ relatively compact open neighborhood U
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of (t0, x0, z0), ∃ (classical) conic neighborhood Γ of (τ0, ξ0; ζ0), ∃ nets (rε)ε, (sε)ε ∈
Πlsc, ∃η ∈ (0, 1] such that

|aε(t, x, z, τ, ξ; ζ)| ≥ 1
sε
〈(τ, ξ; ζ)〉m on U × Γ, |(τ, ξ; ζ)| ≥ rε, ε ∈ (0, η].

In particular, since Γ is conic a neighborhood of (τ0, ξ0; ζ0), it is of the form

Γ = {λ(τ, ξ; ζ) ∈ Rn+1 \ 0 | (τ, ξ; ζ) ∈ Bs
( (τ0, ξ0; ζ0)
|(τ0, ξ0; ζ0)|

)
∩ S1(0), λ > 0}

for some s > 0 small enough.
We define Γ̃ := ΓM/ ∼ the generalized cone with respect to ζ constructed from

Γ as above.
Take (τ, ξ; ζε)ε ∈ ΓM . Then (τ, ξ; ζε) ∈ Γ for any fixed ε ∈ (0, 1] and ∃N ∈ N

such that |ζε| = O(ε−N ) as ε→ 0. Hence ∃η ∈ (0, 1]:

|aε(t, x, z, τ, ξ; ζε)| ≥
1
sε
〈(τ, ξ; ζε)〉m on U × ΓM , |(τ, ξ; ζε)| ≥ rε, ε ∈ (0, η].

As a conclusion we obtain that (t0, x0, z0, τ0, ξ0; ζ0) ∈ Ell∗lsc(a), i.e., the symbol a is
strong logarithmic slow scale micro-elliptic at the point (t0, x0, z0, τ0, ξ0; ζ0).

We have therefore shown that logarithmic slow scale micro-ellipticity at a par-
ticular point is equivalent to strong logarithmic slow scale micro-ellipticity at that
point. �

An inspection of the proof of Lemma 4.11 shows the following result.

Corollary 4.12. Given a ∈ S̃msc then a is strong slow scale elliptic at a phase space
point if and only if a is slow scale elliptic at that point.

Lemma 4.13. Let L be the generalized differential operator given in (3.1). Then
Ellsc(L) is a subset of the complement of Σ, where

Σ := {(t, x, z, τ, ξ, ζ) ∈ T ∗Rn+1 \ 0 : ζ2 − 1
c∗2

(x, z)τ2 + |ξ|2 = 0}

and 1
c∗2 ∈ C

0,µ(Rn) is as in the beginning of section 3. Note that Σ is a conic set
and independent of the regularization parameter ε ∈ (0, 1]. Moreover we have the
following inclusion relations:

Σ ⊆ Ellsc(L)c ⊆ Elllsc(L)c.

Proof. Let (t0, x0, z0, τ0, ξ0, ζ0) ∈ T ∗Rn+1 \ 0 be an arbitrary but fixed point of Σ.
Hence, ζ2

0 = 1
c∗2 (x0, z0)τ2

0 − |ξ0|2.
Assume that the operator L with generalized symbol in S̃2

lsc(Rn+1 × Rn+1) is
slow scale micro-elliptic at the point (t0, x0, z0, τ0, ξ0, ζ0) ∈ T ∗Rn+1 \ 0. Then by
Corollary 4.12 there is a relatively compact open neighborhood U of (t0, x0, z0), a
conic neighborhood Γ of (τ0, ξ0, ζ0) such that for some (rε)ε, (sε)ε ∈ Πsc and some
η ∈ (0, 1] we have

|Lε(x, z, τ, ξ, ζε)| ≥
1
sε
〈(τ, ξ, ζε)〉2

for all (t, x, z, τ, ξ, ζε)ε ∈ U × ΓM , |(τ, ξ, ζε)| ≥ rε, ε ∈ (0, η] and Γ̃ = ΓM/ ∼ is the
generalized conic neighborhood of (τ0, ξ0, ζ0) from above such that Γ ↪→ Γ̃.

For ε small enough we now define ζ2
0,ε := 1

c2ε
(x0, z0)τ2

0 − |ξ0|2 which tends to ζ2
0

(for fixed τ0 ∈ R) as ε tends to 0.
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Then one can choose (τ0, ξ0, ζ0,ε)ε ∈ ΓM , i.e. there is a positive constant s such
that

(τ0, ξ0; ζ0,ε) ∈ Bs
( (τ0, ξ0; ζ0)
|(τ0, ξ0; ζ0)|

)
∩ S1(0) for every fixed ε ∈ (0, 1]

since
(τ0, ξ0; ζ0,ε)→ (τ0, ξ0; ζ0) as ε→ 0.

On the other hand the principal symbol of Lε vanishes on (x0, z0, τ0, ξ0, ζ0,ε), i.e.

σ(Lε)(x0, z0, τ0, ξ0, ζ0,ε) = 0

for all ε small enough. So, by Proposition 4.6 and Remark 4.7, the symbol L is
not strong slow scale micro-elliptic and therefore not slow scale micro-elliptic at
(t0, x0, z0, τ0, ξ0, ζ0) - a contradiction. �

Lemma 4.14. Let L and Σ be as in Lemma 4.13. Then Σ = Ellclsc(L).

Proof. By Lemma 4.13 it suffices to show the inclusion Σc ⊆ Elllsc(L). To do this,
we introduce the continuous function

f(x, z, τ, ξ, ζ) := ζ2 − 1
c∗2

(x, z)τ2 + |ξ|2,

which coincides with the limit of the principal symbol of ρεLε as ε→ 0. So,

Σc = {(t, x, z, τ, ξ, ζ) ∈ T ∗Rn+1 \ 0 : |f(x, z, τ, ξ, ζ)| > 0}
is an open subset of the phase space.

Now given a point (t0, x0, z0, τ0, ξ0, ζ0) ∈ Σc, there exist a relatively compact
open neighborhood U of (t0, x0, z0), a conic neighborhood Γ of (τ0, ξ0, ζ0) and a
(small) δ > 0 such that

|f(x, z, τ, ξ, ζ)| =
∣∣ζ2 − 1

c∗2
(x, z)τ2 + |ξ|2

∣∣ ≥ δ|(τ, ξ, ζ)|2 U ×
(
Γ ∩ S1(0)

)
.

Since f is homogeneous of degree 2 in (τ, ξ, ζ) it follows that

|f(x, z, τ, ξ, ζ)| =
∣∣ζ2 − 1

c∗2
(x, z)τ2 + |ξ|2

∣∣ ≥ δ|(τ, ξ, ζ)|2 U × Γ, |(τ, ξ, ζ)| ≥ 1.

Hence, there exists a constant Cδ ∈ (0, 1], depending on δ > 0, such that

|σ(Lε(t, x, z, τ, ξ, ζ))| ≥
∣∣ζ2 − 1

c∗2
(x, z)τ2 + |ξ|2

∣∣− ∣∣( 1
c2ε
− 1
c∗2

)
(x, z)τ2

∣∣
≥ δ|(τ, ξ, ζ)|2 − Cω−µε |(τ, ξ, ζ)|2

≥ δ

2
|(τ, ξ, ζ)|2 U × Γ, |(τ, ξ, ζ)| ≥ 1, ε ∈ (0, Cδ].

Therefore, Lε is lsc-elliptic at (t0, x0, z0, τ0, ξ0, ζ0), which is the desired conclusion.
�

Remark 4.15. We define the set

ΛM :=
{

(t, x, z, τ, ξ; ζε)ε ∈ Rn+1 × (Rn × R(0,1]) \ 0 :

ζ2
ε =

1
c2ε

(x, z)τ2 − |ξ|2,∃N ∈ N : |ζε| = O(ε−N ) as ε→ 0
}
.

If a is a symbol on Σ, then the evaluation on ΛM/ ∼ is in general not defined. If
a is a symbol on Γ, then the generalized point value of a at a point of ΓM/ ∼ is a
well-defined element on C̃.



EJDE-2018/42 FACTORIZATION OF HYPERBOLIC OPERATORS 19

A fixed generalized point (t0, x0, z0, τ0, ξ0, ζ0,ε)ε ∈ ΛM satisfies

ζ2
0,ε =

1
c2ε

(x0, z0)τ2
0 − |ξ0|2.

Since τ0 ∈ R is fixed we obtain

ζ2
0,ε =

1
c2ε

(x0, z0)τ2
0 − |ξ0|2 → ζ2

0 =
1
c∗2

(x0, z0)τ2
0 − |ξ0|2

as ε→ 0 and where (t0, x0, z0, τ0, ξ0, ζ0) ∈ Σ. Moreover,

|ζ2
0,ε − ζ2

0 | = |
( 1
c2ε
− 1
c∗2

)
(x0, z0)τ2

0 | ≤ Cω−µε τ2
0 .

In the next subsection we will construct an approximate inverse for logarithmic
slow scale elliptic pseudodifferential operators.

4.3. Construction of a parametrix. In this subsection we will discuss unique-
ness and existence results concerning the invertibility of elliptic pseudodifferential
operators. Recall that the asymptotic expansion is unique modulo operators of or-
der−∞. As a consequence we will show that one obtains uniqueness of a parametrix
modulo operators of infinite order.

Note that given (aε)ε a symbol of class S−∞lsc the operator defined by (uε)ε 7→
(aε(x,D)uε)ε, ((uε)ε ∈MH∞) has a regular kernel representation in the sense that
moderate nets are mapped into regular nets. In the following theorem we shall
work on the level of representatives.

Theorem 4.16. Let (aε)ε ∈ Smlsc be logarithmic slow scale elliptic, i.e. ∃(rε)ε ∈
Πlsc, ∃(sε)ε ∈ Πlsc, ∃η ∈ (0, 1]:

|aε(x, ξ)| ≥
1
sε
〈ξ〉m |ξ| ≥ rε, ε ∈ (0, η].

Then there exists (pε)ε ∈ S−mlsc such that (pε#aε)ε = 1 modulo S−∞lsc .

Proof. Step 1: As in [8, Proposition 2.8] we show that there exists (p−m,ε)ε ∈ S−mlsc

such that
(p−m,εaε − 1)ε ∈ S−∞lsc . (4.4)

For the proof we let ψ ∈ C∞(Rn), 0 ≤ ψ ≤ 1, ψ(ξ) = 0 for |ξ| ≤ 1 and ψ(ξ) = 1 for
|ξ| ≥ 2. Then

p−m,ε(x, ξ) := a−1
ε (x, ξ)ψ(ξ/rε)

with (rε)ε ∈ Πlsc as in the theorem does the job. Indeed one can show that

|∂αξ ∂βxa−1
ε (x, ξ)| ≤ ωε(α, β)〈ξ〉−|α||a−1

ε (x, ξ)| |ξ| ≥ rε
for some ωε(α, β) ∈ Πlsc (cf. [9, Lemma 6.3]). Then, by the properties of the
function ψ,we obtain (p−m,ε)ε ∈ S−mlsc for |ξ| ≥ 2rε and |ξ| ≤ rε. On the set
rε ≤ |ξ| ≤ 2rε we observe that

|∂αξ ∂βxp−m,ε(x, ξ)|

= |
∑
α′≤α

(
α

α′

)
∂α
′

ξ ∂
β
xa
−1
ε (x, ξ)∂α−α

′

ξ ψ(ξ/rε)| ≤

≤
∑
α′≤α

(
α

α′

)
ωε(α′, β)|a−1

ε (x, ξ)|〈ξ〉−|α
′|r−|α−α

′|
ε χ[re,2rε](ξ) sup |(∂α−α

′
ψ)(ξ/rε)|
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≤
∑
α′≤α

(
α

α′

)
ωε(α′, β)r−|α−α

′|
ε sε〈2rε〉|α−α

′|〈ξ〉−m−|α| sup |(∂α−α
′
ψ)(ξ)|

and therefore, (pm,ε)ε is in S−mlsc . To show (4.4) we write

p−m,εaε(x, ξ) = a−1
ε aε(x, ξ) + a−1

ε aε(x, ξ)(ψ(ξ/rε)− 1) = 1 + (ψ(ξ/rε)− 1).

Since for any l > 0 and α ∈ Nn \ 0,

sup
rε≤|ξ|≤2rε

|〈ξ〉l(ψ(ξ/rε)− 1)| ≤ c(ψ)〈2rε〉l

sup
rε≤|ξ|≤2rε

|〈ξ〉l∂αξ (ψ(ξ/rε)− 1)| = sup
rε≤|ξ|≤2rε

|〈ξ〉lr−|α|ε (∂αψ)(ξ/rε)|

≤ c(ψ)r−|α|ε 〈2rε〉l

we have shown (4.4).
Step 2: We recursively define for k ≥ 1:

p−m−k,ε(x, ξ) := −
{ ∑
|γ|+j=k
j<k

(−i)|γ|

γ!
∂γxaε(x, ξ)∂

γ
ξ p−m−j,ε(x, ξ)

}
a−1
ε (x, ξ)ψ(ξ/rε).

By the same arguments as in [9, Propositions 6.5 and 6.6], one can show that each
(p−m−k,ε)ε is in S−m−klsc and by Theorem 2.11 there exists a net (pε)ε ∈ S−mlsc with
(pε)ε ∼

∑
j(p−m−j,ε)ε.

Step 3: The aim is to show that (pε#aε − 1)ε ∈ S−∞lsc . Therefore, let (σε)ε be the
generalized symbol with the asymptotic expansion

σε(x, ξ) ∼
∑
|γ|≥0

1
γ!
(
∂γξ pεD

γ
xaε
)
(x, ξ).

and we will show that (σε − 1)ε in S−∞lsc . We write

σε −
∑
|γ|<N

1
γ!
Dγ
xaε∂

γ
ξ pε

= σε −
∑
|γ|<N

1
γ!
Dγ
xaε

∑
l<N

∂γξ p−m−l,ε +
∑
|γ|<N

1
γ!
Dγ
xaε

∑
l≥N

∂γξ p−m−l,ε.

Since the left-hand side and the last sum on the right-hand side are in S−Nlsc we
obtain (

σε −
∑
|γ|<N

1
γ!
Dγ
xaε

∑
l<N

∂γξ p−m−l,ε
)
ε
∈ S−Nlsc .

We now write∑
|γ|<N

1
γ!
Dγ
xaε

∑
l<N

∂γξ p−m−l,ε

= p−m,εaε +
N−1∑
k=1

{
p−m−k,εaε +

∑
|γ|+l=k
l<k

1
γ!
∂γξ p−m−l,εD

γ
xaε

}

+
∑

|γ|+l≥N
|γ|<N,l<N

1
γ!
∂γξ p−m−l,εD

γ
xaε,
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where the last expression is in S−Nlsc . The second sum on the right-hand side vanishes
for |ξ| ≥ 2rε and |ξ| ≤ rε by construction. So it remains to estimate this expression
on the set rε ≤ |ξ| ≤ 2rε. We observe for any l > 0 and α ∈ Nn that

sup
rε≤|ξ|≤2rε

|〈ξ〉l∂αξ ψ(ξ/rε)| = sup
rε≤|ξ|≤2rε

|〈ξ〉lr−|α|ε (∂αψ)(ξ/rε)| ≤ c(ψ)r−|α|ε 〈2rε〉l

and we conclude that this term is contained in S−Nlsc .
Using Step 1, i.e. (p−m,εaε)ε = 1 mod S−∞lsc , we obtain for every N ≥ 1(

σε −
∑
|γ|<N

1
γ!

(∂γξ pεD
γ
xaε)

)
ε

= (σε − 1)ε mod S−Nlsc

and the proof is complete. �

Recall that a ∈ S̃mlsc is called lsc-elliptic if one of its representatives (aε)ε is lsc-
elliptic. Then, the operator p(x,D) has the symbol (pε)ε +NS−m ∈ S̃−mlsc and (pε)ε
is as in Theorem 4.16. Furthermore, by Step 3 of the same theorem we obtain

p(x,D) ◦ a(x,D)u(x) =
(∫

ei(x−y)ξuε(y) dyd̄ξ
)
ε

+NH∞(Rn).

Therefore, we obtain the following result.

Theorem 4.17. Let a ∈ S̃mlsc be a logarithmic slow scale elliptic symbol of order
m. Then there exists a logarithmic slow scale elliptic pseudodifferential operator of
order −m with symbol p ∈ S̃−mlsc such that for all u ∈ GL2

a(x,D) ◦ p(x,D)u = u+ r(x,D)u

p(x,D) ◦ a(x,D)u = u+ s(x,D)u

where r(x,D) and s(x,D) are regularizing operators, that is they map GL2 into G∞L2

(see section 6).

5. A factorization procedure for the generalized strictly
hyperbolic wave operator

Concerning products of logarithmic slow scale pseudodifferential operators that
approximate the generalized operator L from (3.1), we will follow the ideas in [22,
Appendix II], [17, Chapter 23]. First we recall from (3.1),

L(x, z,Dt, Dx, Dz) = ∂z
1
ρ
∂z +

n−1∑
j=1

∂xj
1
ρ
∂xj −

1
ρ

1
c2
∂2
t =

=: ∂z
1
ρ
∂z +Aρ(x, z,Dt, Dx)

(5.1)

where the coefficients 1/ρ and 1/c2 are in Glsc∞,∞(Rn) in the variables (x, z). This
implies that L is an operator of class Ψ2

lsc(Rn × Rn+1) and a representative (lε)ε
of the symbol of L is in S2

lsc(Rn ×Rn+1). Furthermore, the symbol of the operator
Aρ is in S2

lsc(Rn × Rn) and is given by

Aρ(x, z,Dt, Dx) = −1
ρ

( 1
c2
∂2
t −

n−1∑
j=1

∂2
xj

)
+
n−1∑
j=1

(
∂xj

1
ρ

)
∂xj .
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Note that this operator is only a pseudodifferential operator in (x, t) depending
smoothly on the parameter z on the level of representatives for any fixed ε ∈ (0, 1].
We denote by aρ ∈ S̃2

lsc(Rn × Rn) the principal symbol of Aρ.
Moreover, we set

A(x, z,Dt, Dx) := − 1
c2

(x, z)∂2
t +

n−1∑
j=1

∂2
xj .

As already mentioned in section 3, the operator L is not globally strictly hyperbolic
but we can restrict the analysis to an appropriate space on which the operator
becomes strictly hyperbolic. In particular, we follow Stolk in [29] and introduce the
following set of points on which we will then establish the factorization. Therefore
we recall from section 3:

I ′θ :=
{

(x, z, τ, ξ) ∈ Rn × Rn : τ 6= 0, |c∗(x, z)τ−1ξ| ≤ sin θ
}

(5.2)

for some fixed θ ∈ (0, π/2) and c∗(x, z) = limε→0 cε(x, z) in C0,µ(Rn) as in section 3.
Then I ′θ is a subset of Rn × (Rn \ 0), independent of the regularization parameter
ε ∈ (0, 1] and conic with respect to (τ, ξ).

Fix θ ∈ (0, π/2) and denote by a the (principal) symbol of A, i.e.

aε(x, z, τ, ξ) :=
τ2

c2ε(x, z)
− |ξ|2 ε ∈ (0, 1].

Then a is logarithmic slow scale elliptic on I ′θ and the generalized roots [(ζj,ε)ε] of
the principal symbol of L are given by ζj,ε := ∓i

√
aε(x, z, τ, ξ) which satisfy (3.3)

on I ′θ, i.e.

|ζ1,ε(x, z, τ, ξ)− ζ2,ε(x, z, τ, ξ)| ≥ C|(τ, ξ)| on I ′θ, for |(τ, ξ)| ≥M
for some constants C > 0,M > 0 and all ε sufficiently small.

Indeed, on I ′θ we have

|aε(x, z, τ, ξ)| =
∣∣∣ τ2

c2ε(x, z)
− |ξ|2

∣∣∣ ≥ ∣∣∣∣∣ τ2

c∗2(x, z)
− |ξ|2

∣∣∣− ∣∣∣( 1
c2ε(x, z)

− 1
c∗2(x, z)

)
τ2
∣∣∣∣∣∣∣

≥ τ2

c∗2(x, z)
(1− sin2 θ)− Cω−µε τ2 ≥ C(τ2 + |ξ|2)

for some generic constant C > 0 and ε small enough. So, in particular aρ is
logarithmic slow scale elliptic, since the generalized function 1/ρ is strongly positive
(see assumption (ii) in section 3).

Remark 5.1. In the classical theory of pseudodifferential operators the character-
istic set plays an important role in microlocal analysis. We recall that the charac-
teristic set is defined as the set of points where the homogeneous principal symbol
of the operator vanishes. Concerning vanishing properties of the homogeneous prin-
cipal symbol in the generalized setting, we make the following remarks. We denote
by (lε)ε the principal symbol of L.

(1) First note that

lε(ζ;x, z, τ, ξ) = − 1
ρε(x, z)

ζ2 + aρ,ε(x, z, τ, ξ)

=
(
iζ − i

√
aε(x, z, τ, ξ)

) 1
ρε(x, z)

(
iζ + i

√
aε(x, z, τ, ξ)

)
= 0
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on I ′θ, |(τ, ξ)| ≥M for some constant M > 0 is not (classically, i.e. independent of
ε) solvable in T ∗Rn+1 as ε→ 0.

But for any (x, z, τ, ξ) ∈ I ′θ there exists two distinct ζε(x, z, τ, ξ) such that

lε(ζε;x, z, τ, ξ) = − 1
ρε(x, z)

ζ2
ε + aρ,ε(x, z, τ, ξ)

=
(
iζε − i

√
aε(x, z, τ, ξ)

) 1
ρε(x, z)

(
iζε + i

√
aε(x, z, τ, ξ)

)
= 0

for all |(τ, ξ)| ≥ M > 0 and ε ∈ (0, 1]. In particular, this is satisfied if we set for
fixed (x, z, τ, ξ) ∈ I ′θ

ζε(x, z, τ, ξ) := ±

√
τ2

c2ε(x, z)
− |ξ|2 → ζ(x, z, τ, ξ) := ±

√
τ2

c∗2(x, z)
− |ξ|2 as ε→ 0.

So, the equation has a generalized solution for fixed (x, z, τ, ξ) ∈ I ′θ.
Note that the generalized principal symbol can always be factorized, i.e.

lε(ζ;x, z, τ, ξ) = − 1
ρε(x, z)

ζ2 + aρ,ε(x, z, τ, ξ)

=
(
iζ + i

√
aε(x, z, τ, ξ)

) 1
ρε(x, z)

(
iζ − i

√
aε(x, z, τ, ξ)

)
on I ′θ, |(τ, ξ)| ≥M regardless of whether the symbol vanishes or not.

(2) The roots ζ1,ε(x, z, τ, ξ), ζ2,ε(x, z, τ, ξ) of the equation

− 1
ρε(x, z)

ζ2
ε + aρ,ε(x, z, τ, ξ) = 0

are called the generalized characteristic roots.

Before we state the main theorem of this section, we give a few more details
about notation. In the following we will study operators of the form

S =
2∑
j=0

Sj(x, z,Dt, Dx)∂2−j
z

on Rn+1 where the coefficients are operators with symbols Sj ∈ S
kj
lsc for some real

numbers kj , j = 0, 1, 2. Further, we write

S =
2∑
j=0

Sj(x, z,Dt, Dx)∂2−j
z on I ′θ

when the symbols of the coefficients Sj are restricted to the set I ′θ.
We will now establish the factorization procedure in order to write the operator

L in terms of two first-order pseudodifferential operators of the form Lj = ∂z +Aj
on I ′θ where Aj are pseudodifferential operators with generalized symbols in S̃1

lsc,
j = 1, 2. We are now in the position to show the following result.

Theorem 5.2. Let L = ∂z
1
ρ∂z + Aρ(x, z,Dt, Dx) and I ′θ be as in (5.1) and (5.2)

respectively. Then, on the set I ′θ there are generalized roots {(ζ1,ε)ε, (ζ2,ε)ε} of the
principal symbol of (Lε)ε that fulfill the separation property

|ζ1,ε(x, z, τ, ξ)− ζ2,ε(x, z, τ, ξ)| ≥ C|(τ, ξ)| on I ′θ, for |(τ, ξ)| ≥M
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for some constants C > 0,M > 0, η ∈ (0, 1] and all ε ∈ (0, η]. Furthermore, the
operator L can be factorized into

L = L1
1
ρ
L2 +R on I ′θ (5.3)

where Lj is written as Lj = ∂z + Aj and Aj = Aj(x, z,Dt, Dx) is a parameter-
dependent logarithmic slow scale (classical) generalized pseudodifferential operator
of order 1 in (t, x). The principal symbol of Aj can be chosen either equal to
(−iζj,ε)ε = (∓i√aε)ε, j = 1, 2 or equal to (iζj,ε)ε = (∓i√aε)ε, j = 1, 2 on I ′θ.
Furthermore, the remainder is given by R = Γ1 + Γ2∂z for some pseudodifferential
operators Γj = Γj(x, z,Dt, Dx) with parameter z and generalized symbol γj in S̃−∞lsc

on I ′θ, j = 1, 2.

Remark 5.3. Note that the product L1
1
ρL2 in (5.3) is not a pseudodifferential

operator on Rn+1. But one can overcome this by introducing a generalized cut-off
ψ(t, x, z,Dt, Dx, Dz) such that the difference ψL1

1
ρL2 − L1

1
ρL2 is insignificant on

some adequate subdomain of the phase space T ∗Rn+1 under a microlocal point of
view. This will be specified in the next section where we introduce a generalized
version of microlocal analysis.

5.1. Technical Preliminaries. As already mentioned above, the symbol (aε)ε is
logarithmic slow scale elliptic on I ′θ, θ ∈ (0, π/2), i.e. for any (x0, z0, τ0, ξ0) ∈
I ′θ there exist a relatively compact open neighborhood U of (x0, z0) and a conic
neighborhood Γ of (τ0, ξ0) such that for some (rε)ε ∈ Πlsc, (sε)ε ∈ Πlsc and a
constant η ∈ (0, 1] we have

|aε(x, z, τ, ξ)| ≥
1
sε
〈(τ, ξ)〉2 for (x, z, τ, ξ) ∈ U × Γ, |(τ, ξ)| ≥ rε, ε ∈ (0, η].

As demonstrated in Proposition 4.4, we have stability under lower order logarithmic
slow scale perturbations, and therefore the total symbol of the operator (Aρ,ε)ε itself
is logarithmic slow scale elliptic on I ′θ.

To describe a factorization for the operator L, we have to give a meaning to the
square root of the symbol of A on the set I ′θ.

Note that the square root of (aε)ε is prescribed on the set I ′θ. Outside of I ′θ it is
in general not defined but we choose it without the singularity of the square root.
We remark that such an extension is equal to (

√
aε)ε when restricted to I ′θ.

To cut off singularities of the square root of (aε)ε, we define a generalized symbol
(χε(x, z, τ, ξ))ε ∈ S0

lsc(Rn× (R \ 0)×Rn−1) homogeneous of degree 0 for |(τ, ξ)| ≥ 1
and such that

χε(x, z, τ, ξ) =

{
1 on I ′θ1
0 outside I ′θ2

for angles θ1, θ2 ∈ (0, π/2), θ1 < θ2. Then, (χε
√
aε)ε ∈ S0

lsc(Rn × (R \ 0) × Rn−1)
and its restriction to I ′θ1 is equal to (

√
aε)ε. Moreover, (χε

√
aε)ε vanishes outside

I ′θ2 .

Remark 5.4. For the construction of χε we define for every fixed ε ∈ (0, 1] the
function

fε(x, z, τ, ξ) := cε(x, z)ξτ−1 on Rn × (R \ 0)× Rn−1.
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Then, for every fixed ε ∈ (0, 1] we let χε be the smooth function defined on Rn ×
(R \ 0)× Rn−1, 0 ≤ χε ≤ 1, which is given by

χε(x, z, τ, ξ) :=


0, |fε| ≥ sin γ2

1, |fε| ≤ sin γ1

1− 1

1+e
1

|fε|−sin γ1
− 1

sin γ2−|fε|
, sin γ1 < |fε| < sin γ2

(5.4)

for some fixed angles γ1, γ2 with 0 < θ1 < γ1 < γ2 < θ2 < π/2.
We therefore get χε = 1 on I ′θ1 since there exists η ∈ (0, 1] such that

I ′θ1 ⊆ {(x, z, τ, ξ) : τ 6= 0, |cε(x, z)ξ/τ | ≤ sin γ1} ε ∈ (0, η].

To show the inclusion, let (x, z, τ, ξ) ∈ I ′θ1 and f(x, z, τ, ξ) := limε→0 fε(x, z, τ, ξ).
Then there exists a constant C > 0 such that

|fε(x, z, τ, ξ)| ≤ |(fε − f)(x, z, τ, ξ)|+ |f(x, z, τ, ξ)|
≤ |(cε(x, z)− c∗(x, z))ξ/τ |+ |c∗(x, z)ξ/τ |
≤ sin θ1(1− Cω−µε )

Since ω−µε tends to 0 as ε → 0 and θ1 < γ1, there exists η ∈ (0, 1] such that the
right-hand side of the last equation is bounded from above by sin γ1.

Similarly, one can show that there exists η ∈ (0, 1] such that for all ε ∈ (0, η]:

{(x, z, τ, ξ) : τ 6= 0, |c∗(x, z)ξ/τ | ≥ sin θ2}
⊆ {(x, z, τ, ξ) : τ 6= 0, |cε(x, z)ξ/τ | ≥ sin γ2}

and hence χε = 0 outside I ′θ2 (note χε is defined only for τ 6= 0). Indeed

|fε(x, z, τ, ξ)| ≥ |f(x, z, τ, ξ)| − |(fε − f)(x, z, τ, ξ)|

≥ |c∗(x, z)ξ/τ |
(

1−
∣∣∣cε(x, z)− c∗(x, z)

c∗(x, z)

∣∣∣)
≥ sin θ2(1− Cω−µε ) ≥ sin γ2

as ε→ 0. Now, since 1
c2 ∈ G

lsc
∞,∞ and for every ε ∈ (0, 1] the function χε is smooth

on Rn× (R\0)×Rn−1 and homogeneous of order 0 for |(τ, ξ)| ≥ 1, we can conclude
that χε ∈ S0

lsc(Rn × (R \ 0)× Rn−1) ([14, Example 1.2]).

5.2. Factorization procedure. The aim is to decompose the operator L as an-
nounced in (5.3) in Theorem 5.2. Therefore, we give a construction scheme for
the generalized symbols (aj,ε)ε of the operators Aj , j = 1, 2 by means of their
asymptotic expansions (in the sense of Definition 2.14), that is

aj(x, z, τ, ξ) ∼
∞∑
µ=0

b
(µ)
j (x, z, τ, ξ) in S̃1

cl,lsc(I
′
θ) (5.5)

where the sequence {b(µ)
j }µ∈N consists of appropriate elements b(µ)

j ∈ S1−µ
lsc (I ′θ),

j = 1, 2 and will be constructed recursively. Recall that (5.5) means that there are
representatives (aj,ε)ε of aj and (b(µ)

j,ε )ε of b(µ)
j such that for any cut-off ϕ equal to

1 near the origin we have(
aj,ε −

N−1∑
µ=0

(1− ϕ)b(µ)
j,ε

)
ε
∈ S1−N

lsc (I ′θ). (5.6)
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Proof of Theorem 5.2. For the proof we apply a decomposition method similar to
[22, Appendix II] and [17, Chapter 23]. In the following, we will show the desired
factorization in the case that the principal symbol of Aj is equal to (−iζj,ε)ε =
(∓i√aε)ε, j = 1, 2. The proof for the second possible choice of the principal symbol
of Aj is essentially the same.

We now give a construction scheme for the symbols aj of the operator Aj , j =
1, 2, by means of their asymptotic expansions. To begin with, let ζj,ε = ±√aε,
j = 1, 2 and ε ∈ (0, 1]. For j = 1, 2 we set on I ′θ

b
(0)
j,ε := −iζj,ε, a

(1)
j,ε := b

(0)
j,ε , A

(1)
j,ε := Op(a(1)

j,ε )

where A(1)
j,ε should be thought of as the operator whose symbol has the classical

asymptotic expansion a
(1)
j,ε on I ′θ. We emphasize that A(1)

j,ε is intrinsically the re-
striction of a globally defined operator restricted to the set I ′θ as the symbol can
always be multiplied by a generalized cut-off function (χε)ε of the form as indicated
in (5.4) which is identically 1 on I ′θ (with θ1 equal θ). Moreover, the function ϕ as
in (5.6) cuts off the singularities near τ = 0.

We define L(1)
j,ε := ∂z + A

(1)
j,ε , j = 1, 2, ε ∈ (0, 1]. Using L

(1)
1,ε

1
ρε
L

(1)
2,ε as a first

approximation to Lε we obtain an error of the form

L
(1)
1,ε

1
ρε
L

(1)
2,ε − Lε

=
(
∂z +A

(1)
1,ε

) 1
ρε

(
∂z +A

(1)
2,ε

)
− ∂z

1
ρε
∂z −Aρ,ε

=
(
A

(1)
1,ε

1
ρε

+
1
ρε
A

(1)
2,ε

)
∂z + ∂z

( 1
ρε
A

(1)
2,ε

)
+A

(1)
1,ε

1
ρε
A

(1)
2,ε −Aρ,ε

=:
2∑
j=1

Γ(1)
j,ε∂

2−j
z on I ′θ.

(5.7)

Since A
(1)
1 and −A(1)

2 have the same principal symbol on I ′θ it follows that the
symbols of the operators Γ(1)

j = Γ(1)
j (x, z,Dt, Dx) are in Sj−1

cl,lsc on I ′θ, j = 1, 2.
To improve this approximation we proceed by induction. For convenience of

the reader, we also compute the second order approximation of L. Therefore let
ε ∈ (0, 1] be fixed and define

a
(2)
j,ε := a

(1)
j,ε + b

(1)
j,ε , A

(2)
j,ε := Op(a(2)

j,ε ), L
(2)
j,ε := ∂z +A

(2)
j,ε .

Here b(1)
j,ε will be specified immediately and in such a way that the symbol of A(2)

j,ε

with classical asymptotic expansion
(
a

(2)
j,ε

)
ε

is in S1
cl,lsc. From the above we already

know that

L
(1)
1

1
ρ
L

(1)
2 − L =

2∑
j=1

Γ(1)
j ∂2−j

z .

We can formally write on I ′θ,

L
(2)
1,ε

1
ρε
L

(2)
2,ε − Lε

=
(
L

(1)
1,ε +B

(1)
1,ε

) 1
ρε

(
L

(1)
2,ε +B

(1)
2,ε

)
− Lε
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=
2∑
j=1

Γ(1)
j,ε∂

2−j
z +

(
∂z +A

(1)
1,ε

) 1
ρε
B

(1)
2,ε +B

(1)
1,ε

1
ρε

(
∂z +A

(1)
2,ε

)
+B

(1)
1,ε

1
ρε
B

(1)
2,ε

=
2∑
j=1

Γ(1)
j,ε∂

2−j
z +

(
B

(1)
1,ε

1
ρε

+
1
ρε
B

(1)
2,ε

)
∂z + ∂z

( 1
ρε
B

(1)
2,ε

)
+B

(1)
1,ε

1
ρε
A

(1)
2,ε +A

(1)
1,ε

1
ρε
B

(1)
2,ε +B

(1)
1,ε

1
ρε
B

(1)
2,ε

We now specify
(
b
(1)
1,ε

)
ε
,
(
b
(1)
2,ε

)
ε

as follows: as
(
a

(1)
j,ε

)
ε

= ∓
(
i
√
aε

)
ε

(j = 1, 2) is

non-vanishing on I ′θ the matrix

1
ρε

(
1 1
a

(1)
2,ε a

(1)
1,ε

)
is invertible on I ′θ.

Then on I ′θ,

− ρε
1

a
(1)
1,ε − a

(1)
2,ε

(
a

(1)
1,ε −1
−a(1)

2,ε 1

)(
γ

(1)
1,ε

γ
(1)
2,ε

)
=

(
b
(1)
1,ε

b
(1)
2,ε

)
(5.8)

where the net (ρε)ε has the same properties as the net (1/ρε)ε.
Recall that ∃C > 0,∃η ∈ (0, 1] such that

|a(1)
1,ε(x, z, τ, ξ)| ≥ C|(τ, ξ)| on I ′θ, ε ∈ (0, η]

and for all α, β ∈ Nn there exists (ωε)ε ∈ Πlsc,∀(x, z, τ, ξ) ∈ I ′θ

|∂α(τ,ξ)∂
β
(x,z)a

(1)
1,ε(x, z, τ, ξ)| = O(ωε)|(τ, ξ)|1−|α| for |(τ, ξ)| ≥ 1 as ε→ 0.

So
(
a

(1)
1,ε
−1
)
ε
∈ S−1

cl,lsc on I ′θ. Then, modulo S−∞lsc (I ′θ) there are uniquely determined

symbols
(
b
(1)
1,ε

)
ε
,
(
b
(1)
2,ε

)
ε
∈ S0

lsc on I ′θ homogeneous for |(τ, ξ)| ≥ 1 solving the system

−γ(1)
1,ε = b

(1)
1,ε

1
ρε

+
1
ρε
b
(1)
2,ε

−γ(1)
2,ε = b

(1)
1,ε

1
ρε
a

(1)
2,ε + a

(1)
1,ε

1
ρε
b
(1)
2,ε

on the set I ′θ where
(
γ

(1)
j,ε

)
ε

denotes the principal symbol of Γ(1)
j , j = 1, 2. Note that(

b
(1)
j,ε

)
ε
∈ S0

lsc(I ′θ) and is homogeneous for |(τ, ξ)| ≥ 1. Since (a(1)
j,ε )ε is logarithmic

slow scale elliptic and (b(1)
j,ε )ε is of lower order, we conclude that (a(2)

j,ε )ε is also
logarithmic slow scale elliptic.

We write B(1)
j,ε := Op(b(1)

j,ε ) and obtain

L
(2)
1

1
ρ
L

(2)
2 − L =

2∑
j=1

Γ(2)
j ∂2−j

z

with Γ(2)
j = Γ(2)

j (x, z,Dt, Dx) having symbols in Sj−2
cl,lsc on I ′θ, j = 1, 2.
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For N ≥ 1 assume
(
b
(µ)
j,ε

)
ε
∈ S1−µ

lsc (I ′θ) is homogeneous of order 1−µ for |(τ, ξ)| ≥
1 and determined for all µ < N , j = 1, 2. For ε ∈ (0, 1] we set

a
(N)
j,ε :=

N−1∑
µ=0

b
(µ)
j,ε , A

(N)
j,ε := Op(a(N)

j,ε ), L
(N)
j,ε := ∂z +A

(N)
j,ε .

Again, here A(N)
j is the polyhomogeneous generalized pseudodifferential operator

with symbol
(
a

(N)
j,ε

)
ε

in S1
cl,lsc. Furthermore, we assume

L
(N)
1

1
ρ
L

(N)
2 − L =

2∑
j=1

Γ(N)
j ∂2−j

z

with Γ(N)
j = Γ(N)

j (x, z,Dt, Dx) having symbols in Sj−Ncl,lsc on I ′θ, j = 1, 2.

For the induction step we specify b
(N)
1 , b

(N)
2 as follows: We denote by

(
γ

(N)
j,ε

)
ε

the top order symbol of Γ(N)
j . Since

(
a

(1)
j,ε

)
ε

is logarithmic slow scale elliptic on I ′θ,
j = 1, 2, the matrix

1
ρε

(
1 1
a

(1)
2,ε a

(1)
1,ε

)
is invertible on I ′θ and the system

−γ(N)
1,ε = b

(N)
1,ε

1
ρε

+
1
ρε
b
(N)
2,ε

−γ(N)
2,ε = b

(N)
1,ε

1
ρε
a

(1)
2,ε + a

(1)
1,ε

1
ρε
b
(N)
2,ε

is uniquely solvable for
(
b
(N)
1,ε

)
ε
,
(
b
(N)
2,ε

)
ε
∈ S1−N

lsc on I ′θ. Moreover, b(N)
2,ε are homo-

geneous for |(τ, ξ)| ≥ 1. We write B(N)
j,ε := Op(bNj,ε) and indeed we obtain

L
(N+1)
1,ε

1
ρε
L

(N+1)
2,ε − Lε

=
(
L

(N)
1,ε +B

(N)
1,ε

) 1
ρε

(
L

(N)
2,ε +B

(N)
2,ε

)
− Lε

=
2∑
j=1

Γ(N)
j,ε ∂

2−j
z +

(
∂z +A

(N)
1,ε

) 1
ρε
B

(N)
2,ε +B

(N)
1,ε

1
ρε

(
∂z +A

(N)
2,ε

)
+B

(1)
N,ε

1
ρε
B

(N)
2,ε

=
2∑
j=1

Γ(N)
j,ε ∂

2−j
z +

(
B

(N)
1,ε

1
ρε

+
1
ρε
B

(N)
2,ε

)
∂z + ∂z

( 1
ρε
B

(N)
2,ε

)
+B

(N)
1,ε

1
ρε
A

(N)
2,ε

+A
(N)
1,ε

1
ρε
B

(N)
2,ε +B

(N)
1,ε

1
ρε
B

(N)
2,ε

=:
2∑
j=1

Γ(N+1)
j,ε ∂2−j

z

where Γ(N+1)
j = Γ(N+1)

j (x, z,Dt, Dx) have symbols in S
j−(N+1)
cl,lsc on I ′θ.
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Then with aj , j = 1, 2, such that

aj ∼
∞∑
µ=0

b
(µ)
j on I ′θ

we found the desired operator Aj that solves the problem. �

Remark 5.5. Theorem 5.2 allows for two distinct factorizations, i.e.

L = (∂z +A11)
1
ρ

(∂z +A21) +R1 = (∂z +A12)
1
ρ

(∂z +A22) +R2 on I ′θ.

where the principal symbol of (Aj1,ε)ε is equal to (∓i√aε)ε, j = 1, 2 and that
of (Aj2,ε)ε is equal to (±i√aε)ε, j = 1, 2. R1 and R2 denote the corresponding
remainders of the factorizations.

For completeness, we will compute the zeroth-order term for the symbols of
(A11,ε)ε and (A12,ε)ε explicitly as they will be used later in section 7. First, we
calculate (A11,ε)ε. Recall from (5.7) that

γ
(1)
1,ε = −i

n−1∑
j=1

∂a
(1)
1,ε

∂ξj

∂ρ−1
ε

∂xj
= −a−1/2

ε

1
ρ2
ε

n−1∑
j=1

∂ρε
∂xj

ξj

and

γ
(1)
2,ε ≡ ∂z

( 1
ρε
a

(1)
2,ε

)
− a(1)

1,ε#(
1
ρε
a

(1)
2,ε)− aρ,ε − i

n−1∑
j=1

(
∂xj

1
ρε

)
ξj mod S0

lsc.

Hence

γ
(1)
2,ε = ∂z

( 1
ρε
a

(1)
2,ε

)
− i

ρε

n−1∑
j=1

∂a
(1)
1,ε

∂ξj

∂a
(1)
2,ε

∂xj
=

=
i

2
a

1/2
ρ,ε

ρ
1/2
ε

(∂aρ,ε
∂z

1
aρ,ε
− ∂ρε

∂z

1
ρε

)
+

i

ρε

n−1∑
j=1

∂a
1/2
ε

∂ξj

∂a
1/2
ε

∂xj
.

We set bε = a
1/2
ε and by (5.8) obtain

a11,ε = −ibε +
1

2bε

n−1∑
j=1

∂bε
∂ξj

∂bε
∂xj
− 1

4

(∂aρ,ε
∂z

1
aρ,ε
− ∂ρε

∂z

1
ρε

)

+
1
2

1
ρεbε

n−1∑
j=1

ξj
∂ρε
∂xj

+ order(−1).

(5.9)

Using the same arguments, for the operator A12 we obtain the expression

a12,ε = ibε −
1

2bε

n−1∑
j=1

∂bε
∂ξj

∂bε
∂xj
− 1

4

(∂aρ,ε
∂z

1
aρ,ε
− ∂ρε

∂z

1
ρε

)
−

− 1
2

1
ρεbε

n−1∑
j=1

ξj
∂ρε
∂xj

+ order(−1).

(5.10)



30 M. GLOGOWATZ EJDE-2018/42

6. Generalized wave front set

Given a pseudodifferential equation with smooth symbols, regularity properties
can be used to describe the behavior of the solution. To study propagation of
singularities the notion of the wave front set was introduced. We recall that the
complement of the classical wave front set of a distribution u is the set WF (u)c

and measures smoothness near a point in the sense that the Fourier transform of a
localized piece of u is rapidly decreasing in an open cone.

Another version is the Sobolev-based wave front set, where one studies subsets
WFm(u) of T ∗Rn \ 0, m ∈ N such that

(x0, ξ0) /∈WFm(u)

if there exists a P ∈ Ψm elliptic at (x0, ξ0) such that Pu ∈ L2(Rn). In this
sense, wave front sets give a description of local smoothness of a distribution since
WFm(u) = ∅ if and only if u ∈ Hm

loc(Rn). As pointed out in [32, Section 4], there
is the following relation between these two versions.

Theorem 6.1. Let u ∈ D′(Rn). Then

WF(u) = ∪kWFk(u).

Relating to the notion of wave front sets to pseudodifferential operators with
smooth symbols, it is well known that for any P ∈ Ψm with homogeneous principal
symbol Pm one has the following inclusion (on T ∗Rn \ 0)

WF(u) ⊆WF(Pu) ∪ Char(P )

where Char(P ) = P−1
m (0) ∩ T ∗Rn \ 0 is the characteristic set depending on the

principal symbol of the operator. Moreover, pseudodifferential operators do not
increase the wave front sets. For more information, we refer the reader to [17,
Section 18].

In the framework of Colombeau generalized functions in GL2(Rn), we follow this
idea and measure regularity by considering rapid decay on cones in the frequency
domain after localization in space. We refer to [23, 10, 11, 19] for more details on
the commonly used notion of a generalized wave front set based on G∞-regularity.

6.1. Generalized Microlocal Analysis. Recall that a function u ∈ GL2(Rn) is
regular, denoted by u ∈ G∞L2(Rn), if and only if there exists a representative (uε)ε
of u such that exists N ∈ N so that for all α ∈ Nn

‖Dαuε‖L2(Rn) = O(ε−N ) as ε→ 0.

As already indicated above, we introduce the following definition which is similar
to [10]:

Definition 6.2. A generalized function u ∈ GL2(Rn) is said to be microlocally
regular at (x0, ξ0) ∈ T ∗Rn \ 0 if there exist φ ∈ C∞c (Rn) with φ(x0) = 1 and a conic
neighborhood Γ ⊆ Rn \ 0 of ξ0 such that there exists N ∈ N for all l ∈ N:

‖〈ξ〉lF(φuε)‖L2(Γ) = O(ε−N ) as ε→ 0. (6.1)

For u ∈ GL2 we denote by WFg(u) ⊆ T ∗Rn \ 0 the generalized wave front set
of u which is defined as the complement of all points in phase space where u is
microlocally regular.
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Moreover, we say that two generalized functions u, v ∈ GL2(Rn) are microlocally
equivalent at (x0, ξ0) ∈ T ∗Rn \0 if and only if there are φ ∈ C∞c (Rn) with φ(x0) = 1
and a conic neighborhood Γ ⊆ Rn \ 0 of ξ0 such that exists N ∈ N for all l ∈ N:

‖〈ξ〉lF
(
φ(uε − vε)

)
‖L2(Γ) = O(ε−N ) as ε→ 0.

As a matter of fact, the localization of a function in GL2 allows us to replace the
L2-norm estimates in (6.1) by L∞-norm estimates. Indeed, let u ∈ GL2 such that
(6.1) holds. Further, let ψ ∈ C∞(Rn), 0 ≤ ψ ≤ 1, and supp(ψ) ⊆ Γ, ψ = 1 on
Γ′ for some open cone Γ′ ⊆ Γ. By the Sobolev embedding theorem we have that
Hm+j ⊆ CjB for all m > n/2 and hence we obtain for (uε)ε ∈ MH∞ that ∃N ∈ N
such that for every l ∈ N,

sup
ξ∈Γ′
〈ξ〉l|φ̂uε(ξ)|

≤ sup
ξ∈Rn
〈ξ〉lψ(ξ)|φ̂uε(ξ)| ≤ c max

|α|≤m
‖Dα〈ξ〉lψ φ̂uε‖L2

ξ(Rn)

≤ c max
|α|≤m

‖xα〈Dx〉l(ψφ̂uε) ˇ ‖L2
x(supp(φ)) ≤ c(φ,m)‖〈ξ〉lψφ̂uε(ξ)‖L2

ξ(Rn)

≤ c(φ,m)‖〈ξ〉lφ̂uε(ξ)‖L2
ξ(Γ) = O(ε−N ) as ε→ 0

for some positive constants c and c(φ,m).
On the other hand, we assume that a function u ∈ GL2 satisfies: there exists

N ∈ N for all l ∈ N:

sup
ξ∈Γ
〈ξ〉l|φ̂uε(ξ)| = O(ε−N ) as ε→ 0.

Then

‖〈ξ〉lφ̂uε‖2L2
ξ(Γ) =

∫
Γ

〈ξ〉2l|φ̂uε(ξ)|2 dξ ≤ cε−N
∫

Γ

〈ξ〉−n−1 dξ

for a certain N uniformly over all l ∈ N and all ε sufficiently small.
As we pointed out in subsection 4.3, one can construct a generalized parametrix

for a logarithmic slow scale elliptic operator A(x,D) ∈ Ψm
lsc modulo some regu-

larizing error in Ψ−∞lsc that maps GL2 into G∞L2 . This fact can be deduced by the
L2-boundedness theorem for operators with symbol of class S0, see [22, Theorem
4.1].

We now introduce the generalized microsupport of a symbol as follows: Let
p ∈ Smrg and (x0, ξ0) ∈ T ∗Rn \ 0. Then the symbol p is G∞L2 -smoothing at (x0, ξ0)
if there exist a representative (pε)ε ∈ p, a relatively compact open neighborhood
U of x0 and a conic neighborhood Γ of ξ0 such that ∃N ∈ N ∀m ∈ R ∀α, β ∈ Nn
∀(x, ξ) ∈ U × Γ:

|∂αξ ∂βxpε(x, ξ)| = O(ε−N )〈ξ〉m−|α| as ε→ 0.

The generalized microsupport of p, denoted by µ suppg(p), is defined as the com-
plement of the set of points (x0, ξ0) where p is G∞L2-smoothing.

In the sequel we give an essential overview of the concepts in [19] which will be
employed in this section more frequently, referring to [19] for the proofs of the main
results and for further explanations.

Moreover we follow the ideas made in [10] where the authors measured regularity
of a generalized function in u ∈ G(Ω) and Ω some open subset of Rn when acting
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on generalized pseudodifferential operators with slow scale symbols. Our definition
is (for u ∈ GL2) is now the following:

Definition 6.3. For any u ∈ GL2 we define

Wsc(u) := ∩p(x,D)∈prΨ0
sc

p(x,D)u∈G∞
L2

Ellsc(p)c

where Ellsc(p) denotes the set of points where p is slow-scale elliptic. Note that in
the manner described in [10] we have that for any slow scale elliptic symbol p ∈ S̃msc
there exists a parametrix q ∈ S̃−mrg such that p#q = q#p = 1 in S̃0

rg.

As in [10, Proposition 2.8] one can show the following result: Let π : T ∗(Rn)\0→
Rn : (x, ξ)→ x. Then for any u ∈ GL2 we have

π(Wsc(u)) = sing suppg(u)

where Rn \ sing suppg(u) := {x ∈ Rn : ∃Ux ⊆ Rn open such that u|Ux ∈ G∞L2}.
Before we proceed, let us briefly recall the three main theorems in [10, Theorem

3.6, Theorem 3.11, Theorem 4.1] but applied to the symbol classes and function
spaces we use. We renounce to give the proofs as they can be obtained by minor
changes in the arguments.

Theorem 6.4 ([10]). For any P = p(x,D) ∈ prΨm
rg and u ∈ GL2 we have

Wsc(p(x,D)u) ⊆Wsc(u) ∩ µ suppg(p).

Moreover, we have the following theorem.

Theorem 6.5 ([10]). For u ∈ GL2(Rn) we have

WFg(u) = Wsc(u) = ∩P∈prΨ0

Pu∈G∞
L2

Char(P ) (6.2)

We recall from [10] that a Colombeau generalized function u ∈ G is generalized
microlocal regular, or G∞-microlocally regular, at (x0, ξ0) ∈ T ∗Rn \0, and we write
(x0, ξ0) /∈ WFg(u), if there exists a φ ∈ C∞c (Rn) with φ(x0) = 1 and a conic
neighborhood Γ ⊆ Rn \ 0 of ξ0 such that: ∃N ∈ N such that for all l ∈ N we have

sup
ξ∈Γ
〈ξ〉l|F(φuε)(ξ)| = O(ε−N ) as ε→ 0.

Note that, instead of specifying the test function φ as above, one may equivalently
require the existence of an open neighborhood U of x0 such that for all φ ∈ C∞(U)
the estimate (6.2) holds.

Theorem 6.6 ([10]). Let P = p(x,D) ∈ prΨm
sc and u ∈ GL2 . Then

WFg(Pu) ⊆WFg(u) ⊆WFg(Pu) ∪ Ellsc(p)c.

In particular, this relation holds for any P ∈ prΨm
lsc.

7. Microlocal decomposition of the wave equation

The purpose of this section is to establish a microlocal diagonalization of the
operator L. In what follows, we will restrict our analysis to the following subset
Iθ2 of the phase space

Iθ2 := {(t, x, z, τ, ξ; ζ) ∈ T ∗Rn+1 \ 0 : (x, z, τ, ξ) ∈ I ′θ2 , |ζ| < C|τ |},
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assuming that WFg(U) ⊆ Iθ2 (cf. [29]). Recall that if LU = 0, then by section 4
and 6 we have that WFg(U) ⊆ Ellsc(L)c = Elllsc(L)c = Σ. The inequality |ζ| ≤
1
c∗ (x, z)|τ | on Σ implies |ζ| ≤ c−1

0 |τ | on Σ and explains the inequality |ζ| < C|τ | on
Iθ2 . The microlocal diagonalization will then be stated on the set Iθ2 .

To decompose LU = F microlocally on Iθ2 into a system of two first-order compo-
nents, we will consider (u+, u−) that are obtained from (U, 1

ρ∂zU) by an logarithmic
slow scale elliptic 2× 2 pseudodifferential operator matrix Q = Q(x, z,Dt, Dx), i.e.
there exists P = P (x, z,Dt, Dx) the generalized parametrix such that PQ = QP =
I modulo an operator with symbol in S−∞lsc . Then, with the change of variables(

u+

u−

)
:= Q−1

(
U

1
ρ∂zU

)
,

(
f+

f−

)
:= Q−1

(
0
F

)
(7.1)

we search for an equivalent model to the equation

LU = F microlocally on Iθ2

with U,F ∈ GL2(Rn+1) in terms of two first-order generalized pseudodifferential
equations of the form(

∂z − iB+(x, z,Dt, Dx)
)
u+ = f+ microlocally on Iθ2(

∂z − iB−(x, z,Dt, Dx)
)
u− = f− microlocally on Iθ2 ,

(7.2)

where u±, f± ∈ GL2(Rn+1) and B± = B±(x, z,Dt, Dx) are logarithmic slow scale
pseudodifferential operators of order 1. Note that the operators B± are acting
in (t, x) and depend on the parameter z. Moreover, we will show that there is a
choice of the normalization Q of the wave field such that the operators B± become
self-adjoint.

We start by rewriting the homogeneous equation LU = 0 in GL2 into a first-order
system with evolution parameter z:[

I∂z −
(

0 ρ
−Aρ 0

)](
U

1
ρ∂zU

)
= ~0 (7.3)

with U ∈ GL2(Rn+1), I the 2×2 identity matrix and

Aρ = Aρ(x, z,Dt, Dx) = −1
ρ

1
c2
∂2
t +

n−1∑
j=1

∂xj
1
ρ
∂xj .

Note that Aρ is a logarithmic slow scale elliptic pseudodifferential operator of order
2 on I ′θ2 . For brevity, we will drop the identity matrix I in equation (7.3).

Lemma 7.1. For suitable chosen Q and B± we can write

P

[
∂z −

(
0 ρ
−Aρ 0

)]
Q = ∂z −

(
iB+ 0

0 iB−

)
+R (7.4)

where R = R(x, z,Dt, Dx) is a 2×2 pseudodifferential operator matrix with entries
in S̃1

lsc and that are of order −∞ on I ′θ2 .

For the proof we introduce the following notation. Let R be a pseudodifferential
operator valued 2×2 error-matrix with entries of the form

2∑
j=1

Rj(x, z,Dt, Dx)∂2−j
z (7.5)
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and the symbol of Rj = Rj(x, z,Dt, Dx) is in S̃−∞lsc , j = 1, 2. In the following we
will sometimes write Ψ−∞1,lsc to denote an operator of the form (7.5). Similarly we
write Ψ−∞2,lsc for an operator of the form

2∑
j=0

Rj(x, z,Dt, Dx)∂2−j
z

with Rj = Rj(x, z,Dt, Dx) having symbols in S−∞lsc for j = 0, 1, 2.

Proof of Lemma 7.1. We will now search for appropriate choices of the operators
P,Q,R and B±, where Q,P,R are as above and B± as already indicated in (7.1)
and (7.2) such that equation (7.4) holds on I ′θ2 , i.e. R is of order −∞ on I ′θ2 .

We set P =
(
P11 P12

P21 P22

)
. We first apply the left-hand side of (7.4) to P

(
1

1
ρ∂z

)
and obtain

P

(
∂z −ρ
Aρ ∂z

)
QP

(
1

1
ρ∂z

)
=

(
P12(∂z 1

ρ∂z +Aρ) + S(1,+)

P22(∂z 1
ρ∂z +Aρ) + S(1,−)

)
(7.6)

on I ′θ2 , with S(1,±) in Ψ−∞2,lsc on I ′θ2 . Similarly, we compute for the right-hand side[(
∂z − iB+ 0

0 ∂z − iB−

)
+R

]
P

(
1

1
ρ∂z

)
=

(
(∂z − iB+)(P12

1
ρ∂z + P11) + S(2,+)

(∂z − iB−)(P22
1
ρ∂z + P21) + S(2,−)

)
on I ′θ2

(7.7)

where S(2,±) ∈ Ψ−∞2,lsc on I ′θ2 . Summarizing this, allows us to write

P12(∂z
1
ρ
∂z +Aρ) = (∂z − iB+)(P12

1
ρ
∂z + P11) +

2∑
j=0

R
(+)
j ∂2−j

z

P22(∂z
1
ρ
∂z +Aρ) = (∂z − iB−)(P22

1
ρ
∂z + P21) +

2∑
j=0

R
(−)
j ∂2−j

z

on I ′θ2 where R(±)
j = R

(±)
j (x, z,Dt, Dx) have symbols in S−∞lsc on I ′θ2 , j = 0, 1, 2.

Otherwise, in view of Theorem 5.2, the operator L = ∂z
1
ρ∂z +Aρ can be written

in the form

L =
(
∂z +A11

)1
ρ

(
∂z +A21

)
+

2∑
j=1

R
(∞)
j,1 ∂2−j

z on I ′θ2 (7.8)

with the symbols of Aj1 = Aj1(x, z,Dt, Dx) in S1
lsc on I ′θ2 , j = 1, 2. Here A11 and

−A21 have the same principal symbol equal to −i(√aε)ε, where aε := τ2

c2ε(x,z)
− |ξ|2

is the principal symbol of ρAρ. Also we obtain

L =
(
∂z +A12

)1
ρ

(
∂z +A22

)
+

2∑
j=1

R
(∞)
j,2 ∂2−j

z on I ′θ2 (7.9)

where the symbols of Aj2 = Aj2(x, z,Dt, Dx) are in S1
lsc on I ′θ2 , j = 1, 2. At this

point, A12 and −A22 have the same principal symbol equal to i(
√
aε)ε. Expansion
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of the right-hand side of (7.8), respectively (7.9), results in

∂z
1
ρ
∂z +Aρ = ∂z

1
ρ
∂z +

(
A1k

1
ρ

+
1
ρ
A2k

)
∂z + ∂z

(1
ρ
A2k

)
+A1k

1
ρ
A2k +

2∑
j=1

R
(∞)
j,k ∂

2−j
z

on I ′θ2 , k = 1, 2. Equating coefficients gives A2k = −ρA1k
1
ρ modulo an operator

S−∞lsc on I ′θ2 , k = 1, 2. Using this, equations (7.8) and (7.9) now read

∂z
1
ρ
∂z +Aρ =

(
∂z +A11

)(1
ρ
∂z −A11

1
ρ

)
(mod Ψ−∞1,lsc) (7.10)

=
(
∂z +A12

)(1
ρ
∂z −A12

1
ρ

)
(mod Ψ−∞1,lsc) (7.11)

on I ′θ2 . At this point we choose P12 and P22 such that the requirements of The-
orem 4.16 are satisfied on I ′θ2 and we denote by P−1

12 and P−1
22 the corresponding

parametrixes. Inserting P−1
12 P12 into (7.10) and P−1

22 P22 into (7.11) yields

∂z
1
ρ
∂z +Aρ =

(
∂z +A11

)
P−1

12

(
P12

1
ρ
∂z − P12A11

1
ρ

)
(mod Ψ−∞2,lsc)

=
(
∂z +A12

)
P−1

22

(
P22

1
ρ
∂z − P22A12

1
ρ

)
(mod Ψ−∞2,lsc).

on I ′θ2 . We define

−iB+ := P12A11P
−1
12 + P12∂z

(
P−1

12

)
on I ′θ2

−iB− := P22A12P
−1
22 + P22∂z

(
P−1

22

)
on I ′θ2

(7.12)

to denote the uniquely determined solutions to(
∂z +A11

)
P−1

12 = P−1
12

(
∂z − iB+

)(
∂z +A12

)
P−1

22 = P−1
22

(
∂z − iB−

)
,

modulo logarithmic slow scale smoothing operators on I ′θ2 . Consequently, B± are
operators with symbols in S1

lsc on I ′θ2 with real principal symbols. Note that B±
are only prescribed on I ′θ2 . Thus

∂z
1
ρ
∂z +Aρ = P−1

12

(
∂z − iB+

)(
P12

1
ρ
∂z − P12A11

1
ρ

)
(mod Ψ−∞2,lsc)

= P−1
22

(
∂z − iB−

)(
P22

1
ρ
∂z − P22A12

1
ρ

)
(mod Ψ−∞2,lsc)

on I ′θ2 . Further, if we choose for P from above P11 := −P12A11
1
ρ and P21 :=

−P22A12
1
ρ we obtain

P =

−P12A11
1
ρ P12

−P22A12
1
ρ P22

 =

P12 0

0 P22

−A11
1
ρ 1

−A12
1
ρ 1

 on I ′θ2 (7.13)

where P12 and P22 are logarithmic slow scale elliptic pseudodifferential operators
(in the sense of Theorem 4.16) on I ′θ2 .

Since the principal symbol of A11 is −i(√aε)ε and the principal symbol of A12

is i(
√
aε)ε, it follows that P is logarithmic slow scale elliptic (in the above sense)
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whenever P12 and P22 satisfy the requirements of Theorem 4.16. Furthermore, the
approximative inverse matrix Q of P is given by

Q =

 −C C

−A12
1
ρC 1 +A12

1
ρC

P−1
12 0

0 P−1
22

 on I ′θ2

where C is the generalized parametrix of A11
1
ρ−A12

1
ρ in the sense of Theorem 4.16.

We have therefore found appropriate operator-valued matrices P,Q,R and opera-
tors B± solving (7.4) on I ′θ2 .

Outside I ′θ2 , we choose P logarithmic slow scale elliptic and of the same order as
in (7.13) on I ′θ2 . Then Lemma 7.1 is satisfied also on the complement of I ′θ2 . �

We note that the derived one-way wave equations are not unique. Only the
principal symbol remains the same for any choice of P12 and P22. Recall that the
principal symbol of the operator B± is directly related to the generalized wave front
set of the full wave equation. In the smooth setting it turns out, that in order to
also describe the wave amplitudes, the subprincipal symbols of B± are needed (cf.
[33], [27]).

Moreover, by (5.9), (5.10) and (7.12) the zeroth-order terms of B± also depend
on the partial derivatives with respect to z of the coefficients, i.e. ∂zcε(x, z) and
∂zρε(x, z). In the following, we will show that for an appropriate choice of the
operator Q such zeroth-order terms can be eliminated. In particular, we have the
following result.

Lemma 7.2. Let Q, P , B± and R as in Lemma 7.1. Then there is a choice of
Q such that the operators B± become self-adjoint on I ′θ2 . Moreover, the symbols of
the operators B± are of the form

b±(x, z, τ, ξ) = ±
(
b+

i

2b

n−1∑
j=1

∂b

∂ξj

∂b

∂xj

)
+ order(−1) on I ′θ2 . (7.14)

Proof. In the following, we will restrict ourself to the set I ′θ2 and show that B± can
be chosen self-adjoint. The result follows by an argument used in [29].

We will tackle the problem by choosing generalized classical pseudodifferential
operators P12, P22 such that

Q−1 = P =
(

1 0
0 −1

)
Q∗
(

0 −i
i 0

)
(7.15)

is valid modulo a smoothing operator matrix and where Q∗ denotes the adjoint of
Q. We therefore explicitly compute the right hand side and obtain(

1 0
0 −1

)
Q∗
(

0 −i
i 0

)
=

(
−i(P−1

12 )∗C∗ 1
ρA
∗
12 i(P−1

12 )∗C∗

−i(P−1
22 )∗ − i(P−1

22 )∗C∗ 1
ρA
∗
12 i(P−1

22 )∗C∗

)
.

Then (7.15) is equivalent to the following two systems of equations

−P12A11
1
ρ

= −i(P−1
12 )∗C∗

1
ρ
A∗12

P12 = i(P−1
12 )∗C∗
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and

−P22A12
1
ρ

= −i(P−1
22 )∗ − i(P−1

22 )∗C∗
1
ρ
A∗12

P22 = i(P−1
22 )∗C∗.

Solving these systems is equivalent to solving the equations

i(A11
1
ρ
− 1
ρ
A∗11) = P−1

12 (P−1
12 )∗ − i(A12

1
ρ
− 1
ρ
A∗12) = P−1

22 (P−1
22 )∗

where we used the fact that 1
ρA
∗
11 − 1

ρA
∗
12 = (C−1)∗ = (C∗)−1.

As a next step, we will choose P−1
12 and P−1

22 equal to the self-adjoint square root
of i(A11

1
ρ −

1
ρA
∗
11) and −i(A12

1
ρ −

1
ρA
∗
12) respectively. We show that P−1

12 can be
chosen in such a way. The result for P−1

22 follows by the same method. We first
note that the operator T := i(A11

1
ρ −

1
ρA
∗
11) is self-adjoint. As we are searching

for the square root, we are interested in an asymptotic expansion X =
∑∞
j=0X

(j)

with X(j) ∈ Ψ1/2−j
lsc with X ∼ ±T 1/2 in S̃1

cl,lsc.

Therefore, let X(0)
ε :=

(
(bε 1

ρε
)1/2 + (bε 1

ρε
)1/2)∗

)
/2 be self-adjoint in S

1/2
lsc where

bε is the principal symbol of iA11,ε. Then

X(0)2
ε = Tε +R(0)

ε with R(0)
ε ∈ S0

lsc.

Moreover, the remainder R(0)
ε is self-adjoint. Suppose we have X(j)

ε , j = 0, . . . , N ,
such that

N∑
j=0

X(j)
ε = Tε +R(N)

ε (7.16)

with R
(N)
ε ∈ S−Nlsc self-adjoint. Then with X

(N+1)
ε := − 1

2
√
bε/ρε

R
(N)
ε , X(N+1)

ε is

self-adjoint since bε/ρε is real-valued and (7.16) holds with N + 1 instead of N .
We recall from (7.4) that

P

(
∂z −ρ
Aρ ∂z

)
Q = ∂z + P

(
0 −ρ
Aρ 0

)
Q+ P

∂Q

∂z
= ∂z − i

(
B+ 0
0 B−

)
+R.

Using (7.15) we obtain for the second term in the middle expression

P

(
0 −ρ
Aρ 0

)
Q = −

(
1 0
0 −1

)[
P

(
0 −ρ
Aρ 0

)
Q
]∗(1 0

0 −1

)
.

Now this term is the sum of an anti-self-adjoint diagonal matrix and a self-adjoint
off-diagonal matrix. Also we have

P
∂Q

∂z
= −

(
1 0
0 −1

)[
P
∂Q

∂z

]∗(1 0
0 −1

)
.

So this expression is again the sum of a self-adjoint off-diagonal part and an anti-
self-adjoint diagonal part. Hence −iB± are anti-self-adjoint and B± are self-adjoint.

It remains to show that B± has the form (7.14). To compute the zeroth order
term of B+, we need to incorporate the principal and the subprincipal symbol of
P−1

12 . We define the operator P−1
12 = Op(

√
2a1/4
ρ ρ−1/4) + R1 of order 1/2 and the
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symbol of R1 is in S
−1/2
lsc . Then the parametrix P12 has the following asymptotic

expansion

P12,ε = ψ
[ 1√

2
a−1/4
ρ,ε ρ1/4

ε − 1
2
R1a

−1/2
ρ,ε ρ1/2

ε

+
1√
2

( i
8
a−3/2
ε

n−1∑
j=1

∂aε
∂xj

ξj −
i

4
1
ρε
a−1/2
ε

n−1∑
j=1

∂ρε
∂xj

ξj

)
ρ1/2
ε a−3/4

ε

]
+

+ order(−5/2).

where ψ is a cut-off function as in the proof of Theorem 4.16. We obtain

P12,ε

∂P−1
12,ε

∂z
=

1
4

(
∂aρ,ε
∂z

1
aρ,ε
− ∂ρε

∂z

1
ρε

)
+ order(−1)

and after some calculation

P12,εA11,εP
−1
12,ε = A11,ε −

1
2

1
ρε
a−1/2
ε

n−1∑
j=1

∂ρε
∂xj

ξj + order(−1).

Using (5.9) and (5.10) from section 5we obtain

−ib+,ε = −ibε +
1

2bε

n−1∑
j=1

∂bε
∂ξj

∂bε
∂xj

+ order(−1)

where bε :=
√
aε. Similarly, if we write P−1

22 := Op(−
√

2a1/4
ρ ρ−1/4) + R2, R2 ∈

S
−1/2
lsc , then one can show that

−ib−,ε = ibε −
1

2bε

n−1∑
j=1

∂bε
∂ξj

∂bε
∂xj

+ order(−1).

So the proof is complete. �

Remark 7.3. We derived the decoupled system (7.2) by using the two different
exact factorizations of the full wave equation. Having factorized the equation,
we were able to write down the normalization matrix explicitly. As a result, we
obtained the decomposition in two first-order hyperbolic wave equations. Here, the
factorizations were shown by induction and we got a direct connection between the
exact factorizations of the wave equation and the decoupled first-order system.

This method is different to the one used in [29]. There, the first-order wave
equations were obtained by recursively defining a normalization matrix which diag-
onalizes the matrix in (7.3) in the sense of (7.4). Moreover, no exact factorization
of the wave equation is directly used as input data.

With this in mind, we are now in the position to state the following main result.

Theorem 7.4. Let L = ∂z
1
ρ∂z + Aρ(x, z,Dt, Dx) and U,F ∈ GL2(Rn+1). Then

there are first-order pseudodifferential operators B± and a globally elliptic pseudod-
iffential operator matrix Q as in Lemma 7.1 such that the equation

LU ≡ F microlocally on Iθ2 (7.17)

holds if and only if

L0,±u± :=
(
∂z − iB±(x, z,Dt, Dx)

)
u± ≡ f± microlocally on Iθ2 (7.18)
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where (
u+

u−

)
:= Q−1

(
U

1
ρ∂zU

)
,

(
f+

f−

)
:= Q−1

(
0
F

)
.

Here B± is as in (7.12) on I ′θ2 and Q as in (7.13) on I ′θ2 . Moreover, by Lemma 7.2
the matrix Q can be chosen such that B± become self-adjoint on I ′θ2 .

Proof. We define a microlocal cut-off ψ = ψ(x, z,Dt, Dx, Dz) around ξ = τ = 0. In
particular let ψ(x, z, τ, ξ, ζ) be a homogeneous symbol of degree 0 in (τ, ξ, ζ) outside
a compact set that satisfies

ψ(x, z, τ, ξ, ζ) =

{
0 |ζ| > 3C|τ |
1 |ζ| < 2C|τ |, |ζ| > 1.

We note that ψ satisfies the requirements of [16, Theorem 18.1.35] since it vanishes
if |ζ| > 3C|τ |.

So given an operator W ∈ Ψm
lsc on I ′θ2 the operator given by ψW is in Ψm

lsc on
Iθ2 by [17, Theorem 18.1.35]. Also, the symbol of ψW is equal to the symbol of W
modulo Ψ−∞lsc on Iθ2 .

As already announced in section 5, the operators Lj , j = 1, 2 in (5.3) are not
pseudodifferential operators on Rn+1. But, when applied to the cut-off function
ψ = ψ(x, z,Dt, Dx, Dz), we see that ψLj equals Ljψ and Ljψ equals Lj modulo
Ψ−∞lsc on Iθ2 , j = 1, 2.

We may regard (7.6) and (7.7) as microlocal equations on Iθ2 . Then LU ≡ F
microlocally on Iθ2 if and only if

ψP

(
∂z −ρ
Aρ ∂z

)
QP

(
U

1
ρ∂zU

)
≡ P

(
∂z −ρ
Aρ ∂z

)(
U

1
ρ∂zU

)
microlocally on Iθ2 ,

U ∈ GL2(Rn+1). On the other hand we achieve

ψ

[ (
∂z − iB+ 0

0 ∂z − iB−

)
+R

]
P

(
U

1
ρ∂zU

)
≡
(
∂z − iB+ 0

0 ∂z − iB−

)
P

(
U

1
ρ∂zU

)
microlocally on Iθ2

for U ∈ GL2(Rn+1). Thus

P

(
∂z −ρ
Aρ ∂z

)(
U

1
ρ∂zU

)
≡
(
∂z − iB+ 0

0 ∂z − iB−

)
P

(
U

1
ρ∂zU

)
holds microlocally on Iθ2 . Therefore equation (7.17) is equivalent to

P

(
0
F

)
≡
(
∂z − iB+ 0

0 ∂z − iB−

)
P

(
U

1
ρ∂zU

)
microlocally on Iθ2 .

�

8. Approximated first-order wave equations

One particular technique for wave modeling is the one-way wave equation which
is often used since it requires only one boundary condition, as it is a first-order evo-
lution equation. In the case that the background data is smooth, it also provides a
way to propagate in a predetermined direction [26]. Our background data involves
generalized functions and due to the lack of an available theory connecting propa-
gation of singularities with a generalized Hamiltonian flow we need a substitute.
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With view to Theorem 7.4, we now introduce approximated first-order equations
to (7.18) of the form

L±u± := (∂z − iB±(x, z,Dt, Dx) + C(x, z,Dt, Dx))u± = 0 z > z0 (8.1)

where the operator C has a symbol in S1
lsc and serves as a correction term which

should suppress certain singularities of the solutions. In detail, we choose the
principal symbol c = [(cε)ε] of C such that

cε(x, z, τ, ξ) = 0 on I ′θ1

cε(x, z, τ, ξ) ≥ η(τ2 + |ξ|2)
1
2 outside I ′θ2 .

for some positive constant η ∈ R, all ε ∈ (0, 1] and where 0 < θ1 < θ2 < π/2. The
precise definition of the damping operator will be given in the subsection below. In
this case, the operator C is chosen logarithmic slow scale elliptic outside I ′θ2 and
therefore C is also slow scale elliptic there. Without the operator C in (8.1) the
operator L± reduces to L0,± and is a standard first-order hyperbolic operator on
I ′θ2 . In the region where c is logarithmic slow scale elliptic the principal symbol
of L± is logarithmic slow scale elliptic and therefore c leads to a suppression of
singularities of the solution to L±u± = 0, z > z0. In detail, we have for the
singularities of the solution to L±u± = 0 , z > z0 that

WFg(u±) ⊆WFg(L±u±) ∪ Ellclsc(L±)

⊆ Ellclsc(L0,±) ∩ Ellclsc(C)

⊆ {(t, x, z, τ, ξ; ζ) ∈ T ∗Rn+1 \ 0 : (x, z, τ, ξ) ∈ I ′θ2 , |ζ| < C|τ |} z > z0

since L±u± = 0 for z > z0. So, C suppresses singularities outside I ′θ2 . Moreover,
having solutions u± to L±u± = 0, z > z0 with initial conditions u±(z0) = u±,0
then they are also approximations to L0,±u± ≡ 0 microlocally on Iθ1 for z > z0

with the same initial conditions. This can be seen by

WFg(L±u± − L0,±u±) = WFg(Cu±) ⊆WFg(u±) ∩ µ suppg(C) z > z0

where µ suppg(C) ⊆ I ′cθ1 and therefore

WFg(L±u± − L0,±u±) ∩ Iθ1 = ∅ z > z0.

We conclude that L±u± ≡ L0,±u± microlocally on Iθ1 , z > z0. Then

ψ

(
∂z − iB+ 0

0 ∂z − iB−

)(
u+

u−

)
≡ ~0 microlocally on Iθ1 , z > z0

and by the proof of Theorem 7.4 this is equivalent to

ψ

[
P

(
∂z −ρ
Aρ ∂z

)
Q−R

](
u+

u−

)
≡ ~0 microlocally on Iθ1 , z > z0. (8.2)

Since the entries of the pseudodifferential matrix R are operators with symbol in
S−∞lsc on I ′θ2 , we have

R

(
u+

u−

)
≡ ~0 microlocally on Iθ1 , z > z0.

We now define U being microlocally equivalent to Q+u+ + Q−u− on Iθ1 , z > z0

where we have set Q+ := Q11 and Q− := Q12, i.e.

U := Q+u+ +Q−u− + f̃
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for some f̃ ≡ 0 microlocally on Iθ1 , z > z0. Then(
U

1
ρ∂zU

)
≡ Q

(
u+

u−

)
microlocally on Iθ1 , z > z0

since u+ ≡ Q+u+ ≡ Q21u+ and u− ≡ Q−u− ≡ Q22u− microlocally on Iθ1 , z > z0.
Hence (8.2) holds if and only if

ψP

(
∂z −ρ
Aρ ∂z

)(
U

1
ρ∂zU

)
≡ ~0 microlocally on Iθ1 , z > z0

which means that LU ≡ 0 microlocally on Iθ1 , z > z0.
In summary,we obtain the following. If u± solves the problem

L±u± = 0 on (z0, Z)× Rn (8.3)

u±(z0) = u±,0 on Rn (8.4)

then U := Q+u+ + Q−u− + f̃ for some f̃ ≡ 0 microlocally on Iθ1 , z ∈ (z0, Z)
solves

LU ≡ 0 microlocally on Iθ1 , z ∈ (z0, Z).

8.1. Requirements on the damping operator. We now give sufficient condi-
tions on the damping operator C for the operator L± such that the Cauchy problems
in (8.3)-(8.4) are well-posed. The well-posedness will be the content of the next
section.

We define the principal symbol of c of C by

cε(x, z, τ, ξ) := ω(x, z, τ, ξ)(1− χε(x, z, τ, ξ))

with χε as in subsection 5.1 and ω is a smooth symbol homogeneous of degree 1
in (τ, ξ) and bounded below by some constant times (τ2 + |ξ|2)1/2. Then cε ∈
S1

lsc(Rn×Rn). Now, since cε(x, z, τ, ξ) is real-valued and homogeneous of degree 1,
there exists a self-adjoint symbol Cε ∈ S1

lsc(Rn × Rn) with principal symbol equal
to cε. This can easily seen by the following. Defining

Cε :=
cε + c∗ε

2
,

then Cε is the self-adjoint symbol as desired (cf. next section).
In the following, we will work with such a self-adjoint damping operator Cε =

C
(0)
ε + C

(1)
ε of order 1 with parameter z and C

(k)
ε ∈ S1−k

cl,lsc (k = 0, 1). We set

C
(0)
ε := cε and get

|∂β(x,z)∂
α
(τ,ξ)C

(k)
ε (x, z, τ, ξ)| ≤ Cωε(1 + |(τ, ξ)|)1−k−|α|

≤ Cωε(1 + |(τ, ξ)|)−|α|−k+
|α|+|β|
L (1 + cε(x, z, τ, ξ))1− |α|+|β|L

on the support of C(0)
ε = cε since we have 1 + cε(x, z, τ, ξ) ≥ 1 + η(τ2 + |ξ|2)1/2

there. We thus get
∀α, β ∈ Nn ∀L > |α|+ |β|+ 2k ∃ωε ∈ Πlsc ∃C > 0 ∃η ∈ (0, 1]:

|∂β(x,z)∂
α
(τ,ξ)C

(k)
ε (x, z, τ, ξ)| ≤ Cωε(1+|(τ, ξ)|)−|α|−k+

|α|+|β|
L (1+cε(x, z, τ, ξ))1− |α|+|β|L

for all ε ∈ (0, η], k = 0, 1.
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9. Well-posedness of the approximated first-order equations

To avoid an overkill through parameters, we will reduce the problem (8.3)-(8.4)
and show well-posedness for the generalized Cauchy problem

Pu := (∂z − iA(z, x,Dx) +B(z, x,Dx))u = f on (0, Z)× Rn (9.1)

u(0, ·) = u0 on Rn. (9.2)

where u = u(z, x) ∈ GL2(Rn+1) and f = f(z, x) ∈ GL2(Rn+1) under the following
assumptions:

(i) A is a generalized pseudodifferential operator with symbol in S̃1
lsc(Rn+1 ×

Rn).
(ii) B is a generalized pseudodifferential operator of order γ > 0 with non-

negative real homogeneous principal symbol b = B(0) = B(0)(z, x, ξ), i.e. b
is homogeneous for |ξ| ≥ 1 and in S̃−∞lsc for |ξ| ≤ 1.

(iii) Moreover, there are representatives (B(0)
ε )ε and (B(1)

ε )ε of B(0) and B(1) :=
B − B(0) respectively such that the derivatives of (B(0)

ε )ε and (B(1)
ε )ε can

be estimated as follows: ∀α ∈ Nn, for all β ∈ Nn+1, ∃ω0,ε, ω1,ε ∈ Πlsc such
that

|∂β(x,z)∂
α
ξ B

(0)
ε (x, z, ξ)| = O(ω0,ε)(1 + |ξ|)−|α|+

|α|+|β|
L γ(1 +B(0)

ε (x, z, ξ))1− |α|+|β|L

for |α|+ |β| < L as ε→ 0 and

|∂β(x,z)∂
α
ξ B

(1)
ε (x, z, ξ)| = O(ω1,ε)(1+|ξ|)−|α|−1+

|α|+|β|+2
L γ(1+B(0)

ε (x, z, ξ))1− |α|+|β|+2
L

for 2 + |α|+ |β| < L as ε→ 0.

Remark 9.1. In this section we construct a square root for the operator 1 + B

modulo a smoothing operator with symbol in S̃−∞lsc (Rn+1 ×Rn). Using this square
root we show that the Cauchy problem (9.1)-(9.2) has a unique solution that satisfies
an energy estimate.

Lemma 9.2. Assume that B(z, x,Dx) is a self-adjoint generalized pseudodifferen-
tial operator with symbol in S̃γlsc(Rn+1 × Rn), γ > 0, that satisfies (ii), (iii) and
2γ < L. Then, there exists Q(z, x,Dx) ∈ Ψγ/2

1− γL ,
γ
L ,lsc

(Rn) with ∂jzQ(z, x,Dx) ∈

Ψγ/2−jγ/L
1− γL ,

γ
L ,lsc

(Rn) such that Q is self-adjoint and Q2 = 1 + B + R where R is a

generalized pseudodifferential operator with symbol in S̃−∞lsc (Rn+1 × Rn).

Remark 9.3. In the proof we will use the following fact.
Let f : [0,∞] → R be a classical symbol of order δ, i.e. ∀k ∈ N, ∃Ck > 0 such

that |f (k)(y)| ≤ Ck(1 + y)δ−k, then f ◦B(0) is a symbol in S̃
γmax(δ,0)
1− γL ,

γ
L ,lsc

.

First note that |f(B(0))| ≤ C(1 +B(0))δ ≤ Cωε(1 + |ξ|)γmax(δ,0).
So let (α, β) 6= ~0. Using Fa di Bruno’s formula,we obtain that the expression

∂β(x,z)∂
α
ξ f(B(0)) is a sum of terms of the form

cf (k)(B(0))
k∏
j=1

∂
βj
(x,z)∂

αj
ξ B(0) (9.3)
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for some constant c and such that
∑
j αj = α,

∑
j βj = β and (αj , βj) 6= 0. Since

B(0) satisfies (iii) one can estimate the expression in (9.3) by

Cωε(1 + |ξ|)−|α|+
|α|+|β|
L γ(1 +B(0))δ−

|α|+|β|
L ≤ Cωε(1 + |ξ|)γmax(δ,0)−|α|+ |α|+|β|L γ

where the constant C and the logarithmic slow scale net ωε depend on α and β.

The proof of Lemma 9.2 follows the same lines as in [30, Lemma 3]. To get the
energy estimates, we will adapt a version of the sharp G̊arding inequality theorem
of Hrmander as stated in [17, Theorem 18.1.14].

Lemma 9.4 (Sharp G̊arding inequality). Suppose that a ∈ S̃1
lsc(Rn × Rn) has a

representative (aε)ε such that there exists η ∈ (0, 1],

Re aε(x, ξ) ≥ 0 ∀ε ∈ (0, η].

Then there exists a logarithmic slow scale net (ωε)ε ∈ Πlsc and a constant C > 0
such that

Re(aε(x,Dx)u, u) ≥ −Cωε‖u‖2L2 (9.4)
for all u ∈ S (Rn) and ε ∈ (0, η].

Proof. The proof follows the same lines as in [17, Theorem 18.1.14]. Let r ∈ S̃0
lsc

and (rε)ε ∈ r be a representative. Then, there exist a logarithmic slow scale net
(ωε)ε ∈ Πlsc, a constant C > 0 and an η ∈ (0, 1] such that

|(rε(x,D)u, u)| ≤ Cωε‖u‖2L2 ε ∈ (0, η]

and
Re(rε(x,D)u, u) ≥ −Cωε‖u‖2L2 ε ∈ (0, η]

Now let aε ∈ S1
lsc and write

aε = Re aε + i Im aε =
aε + a∗ε

2
+
aε − a∗ε

2
.

Then, since the second term on the right side is anti-self-adjoint it follows that

Re
(aε − a∗ε

2
u, u

)
= 0.

Moreover, since

Re(aε)−
aε + a∗ε

2
∈ S0

lsc

it suffices to show (9.4) with a replaced by Re a.
As a next step, we let φ ∈ C∞0 (R2n) be an even function with L2-norm equal

to 1. Also we define ψ ∈ S by ψ(x,D) := φ(x,D)∗φ(x,D). Then, ψ is even and∫∫
ψ(y, η) dy dη = 1.
The aim is to write aε as a superposition of two terms a1,ε and a0,ε where a1,ε

is of the form

a1,ε(x, ξ) :=
∫∫

ψ((x− y)q(η), (ξ − η)/q(η))aε(y, η) dy dη ε ∈ (0, 1]

with q(η) = (1 + |η|2)1/4. Then, one can show that there exists an η ∈ (0, 1] such
that

(a1,ε(x,D)u, u) ≥ 0 u ∈ S , ε ∈ (0, η]
and Dα

ξD
β
xa0,ε(x, ξ) = Dα

ξD
β
x(aε(x, ξ)− a1,ε(x, ξ)) is a finite sum of terms

b0,ε(x, ξ) =
∫∫

ψ1((x− y)q(η), (ξ − η)/q(η))bε(y, η) dy dη
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− bε(x, ξ)
∫∫

ψ1(y, η) dy dη ε ∈ (0, 1]

where ψ1 ∈ S is even and (bε)ε ∈ S1−|α|
lsc . Then, by the same arguments as in [17,

Theorem 18.1.14], one can show that if (bε)ε ∈ Sµlsc then there exists a logarithmic
slow scale net (ωε)ε such that |b0,ε(x, ξ)| = O(ωε)(1 + |ξ|)µ−1 as ε → 0. This
completes the proof. �

Remark 9.5. Suppose that r ∈ S̃0
lsc. Then there exist a representative (rε)ε ∈ r, a

logarithmic slow scale net (ω1,ε)ε ∈ Πlsc, a constant C1 > 0 and an η1 ∈ (0, 1] such
that |rε(x, ξ)| ≤ C1ω1,ε for all ε ∈ (0, η1]. Hence, the symbol (rε(x, ξ) + C1ω1,ε)ε
satisfies the requirements of Theorem 9.4, i.e.

Re(rε(x, ξ) + C1ω1,ε) ≥ 0 ε ∈ (0, η1].

We therefore can conclude that there exist (ω2,ε)ε ∈ Πlsc, a constant C2 > 0 and
an η2 ∈ (0, 1] such that for any u ∈ S and ε ∈ (0, η2] we have

Re((rε(x,Dx) + C1ω1,ε)u, u) ≥ −C2ω2,ε‖u‖2L2

which is equivalent to the following: there exists C > 0 and (ωε)ε ∈ Πlsc such that

Re(rε(x,Dx)u, u) ≥ −Cωε‖u‖2L2

for all u ∈ S and ε small enough.

Concerning the well-posedness of the Cauchy problem (9.1)-(9.2), we will first
show the following energy estimate as shown in [30], [17]. A slight change in the
proof shows that there is also an energy estimate when the symbols depend on ε.

Lemma 9.6. Let A and B satisfy (i), (ii), (iii) with 2γ < L. If s ∈ R and (λε)ε ∈
Πlsc is generalized real and larger than some logarithmic slow scale net depending
on s, then for every u ∈ C1([0, Z];Hs) ∩ C0([0, Z];Hs+γ̂) with γ̂ := max(γ, 1) and
every p ∈ [1,∞] we have(1

2

∫ Z

0

‖e−λεzu(z, ·)‖pHsλε dz
)1/p

≤ ‖u(0, ·)‖Hs + 2
∫ Z

0

e−λεz‖Pεu(z, ·)‖Hs dz

(9.5)
with the interpretation of the maximum when p =∞.

Proof. Let (Aε)ε be a representative of A. Since the principal symbol of A is real-
valued, we have

Re(−iAε(x, z, ξ)) ≥ −C1ω1,ε

for some constant C1 > 0 and some (ω1,ε)ε ∈ Πlsc, for all ε sufficiently small. Using
the sharp G̊arding inequality we obtain ∃(ω2,ε)ε ∈ Πlsc ∃C2 > 0 ∃η2 ∈ (0, 1] such
that

Re(−iAε(x, z,Dx)v, v) ≥ −C2ω2,ε‖v‖2L2 v ∈ H1 (9.6)

for z ∈ [0, Z], ε ∈ (0, η2].
Note that by Remark 9.5 the property (9.6) is invariant under zeroth-order per-

turbations of −iAε(x, z,Dx). Now using Lemma 9.2 we can write Bε = Q2
ε−1−Rε

for some self-adjoint Qε ∈ Sγ/21− γL ,
γ
L ,lsc

(Rn+1×Rn) and some Rε ∈ S−∞lsc (Rn+1×Rn).
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We therefore obtain: ∃(ωε)ε ∈ Πlsc ∃C > 0 ∃η ∈ (0, 1] such that

Re((−iAε +Bε)(x, z,Dx)v, v) = Re((−iAε − 1−Rε)(x, z,Dx)v, v) + (Q2
εv, v)

= Re((−iAε − 1−Rε)(x, z,Dx)v, v) + (Qεv,Qεv)

≥ −Cωε‖v‖2L2 v ∈ H γ̂

(9.7)
for any z ∈ [0, Z] and ε ∈ (0, η].

We first consider the corresponding L2-energy estimates, i.e. s = 0. Therefore,
set fε := ∂zu−(iAε−Bε)(x, z,Dx)u. Then, taking the scalar products with respect
to z we have

∂

∂z
e−2λεz‖u(z)‖2L2 = −2λεe−2λεz‖u(z)‖2L2 + e−2λεz2 Re

( ∂
∂z
u(z), u(z)

)
and hence

2 Re(fε(z), u(z))e−2λεz

=
∂

∂z
e−2λεz‖u(z)‖2L2 + 2 Re

((
(−iAε +Bε)(x, z,Dx) + λε

)
u(z), u(z)

)
e−2λεz

≥ ∂

∂z
e−2λεz‖u(z)‖2L2

under the requirement that (λε)ε ∈ Πlsc with λε ≥ Cωε, where C and ωε are as in
(9.7). Integration from 0 to z, z̄ ≤ z ≤ Z then gives

e−2λεz‖u(z)‖2L2 − ‖u(0)‖2L2 ≤ 2
∫ z

0

e−λεz̄‖fε(z̄)‖L2e−λεz̄‖u(z̄)‖L2 dz̄.

Setting
Mε(z) := sup

0≤z̄≤z
e−λεz̄‖u(z̄)‖L2

we obtain

Mε(z)2 ≤ ‖u(0)‖2L2 + 2Mε(z)
∫ z

0

e−λεz̄‖fε(z̄)‖L2 dz̄.

Hence(
Mε(z)−

∫ z

0

e−λεz̄‖fε(z̄)‖L2 dz̄
)2

≤
(
‖u(0)‖L2 +

∫ z

0

e−λεz̄‖fε(z̄)‖L2 dz̄
)2

which yields

e−λεz‖u(z)‖L2 ≤ ‖u(0)‖L2 + 2
∫ z

0

e−λεz̄‖fε(z̄)‖L2 dz̄. (9.8)

for all (λε)ε ∈ Πlsc with λε ≥ Cωε. In (9.8) we set λε = Cωε and multiply the
obtained result by the factor e(Cωε−λε)z. Then

e−λεz‖u(z)‖L2 ≤ e(Cωε−λε)z‖u(0)‖L2 + 2
∫ z

0

e−λεz̄‖fε(z̄)‖L2e(Cωε−λε)(z−z̄) dz̄.

If we choose (λε)ε ∈ Πlsc with λε > 2Cωε, then Cωε − λε ≤ −λε2 and hence

e−λεz‖u(z)‖L2 ≤ e−
λε
2 z‖u(0)‖L2 + 2

∫ z

0

e−λεz̄‖fε(z̄)‖L2e−
λε
2 (z−z̄) dz̄. (9.9)
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This shows the desired energy estimate in the case that p =∞. For 1 ≤ p <∞ we
observe for the Lp-norm of the first term on the right-hand side of (9.9):∫ Z

0

e−
λε
2 pz dz =

2
λεp

(
1− e−

λε
2 pZ

)
≤ 2
λεp

.

So,

‖e−
λε
2 z‖u(0)‖L2‖Lp ≤

( 2
λε

)1/p

‖u(0)‖L2 .

Concerning the Lp-norm of the second term on the right-hand side of (9.9), we
compute

2p
∫ Z

0

e−
λε
2 pz
(∫ z

0

e−λεz̄‖fε(z̄)‖L2e
λε
2 z̄ dz̄

)p
dz

= −2p
2
λεp

e−
λε
2 pz
(∫ z

0

e−λεz̄‖fε(z̄)‖L2e
λε
2 z̄ dz̄

)p∣∣∣Z
0

+

+ 2p
2
λε

∫ Z

0

e−
λε
2 pz
(∫ z

0

e−λεz̄‖fε(z̄)‖L2e
λε
2 z̄ dz̄

)p−1

e−λεz‖fε(z)‖L2e
λε
2 z dz

≤ 2p
2
λε

∫ Z

0

(∫ z

0

e−λεz̄‖fε(z̄)‖L2e−
λε
2 (z−z̄) dz̄

)p−1

e−λεz‖fε(z)‖L2 dz

≤ 2
λε

(
2
∫ Z

0

e−λεz‖fε(z)‖L2 dz
)p
.

Summarizing and using the Minkowski inequality, we obtain for every p ∈ [1,∞](∫ Z

0

‖e−λεzu(z, ·)‖pL2 dz
)1/p

≤
( 2
λε

)1/p(
‖u(0, ·)‖L2 + 2

∫ Z

0

e−λεz‖Pεu(z, ·)‖L2 dz
)

which shows the theorem in the case that s = 0.
The L2-energy estimate can now be used to obtain the Hs-energy estimates for

s ∈ R, s 6= 0. Therefore, let u ∈ C1([0, Z];Hs(Rn)) ∩ C0([0, Z];Hs+γ̂(Rn)). Then
〈Dx〉sPε〈Dx〉−s satisfies the same assumptions as Pε and

〈Dx〉su ∈ C1([0, Z];L2(Rn)) ∩ C0([0, Z];H γ̂(Rn)).

Note that in particular we have an estimate of the form (9.7) if we replace −iAε+Bε
by 〈Dx〉s(−iAε+Bε)〈Dx〉−s and v by 〈Dx〉su but now with a lower bound C(s)ωε(s)
depending on s. Using the L2-energy estimate we obtain(1

2

∫ Z

0

‖e−λεzu(z, ·)‖pHsλε dz
)1/p

=
(1

2

∫ Z

0

‖e−λεz〈Dx〉su(z, ·)‖L2)pλε dz
)1/p

≤ ‖〈Dx〉su(0, ·)‖L2 + 2
∫ Z

0

e−λεz‖〈Dx〉sPε〈Dx〉−s〈Dx〉su(z, ·)‖L2 dz

= ‖u(0, ·)‖Hs + 2
∫ Z

0

e−λεz‖Pεu(z, ·)‖Hs dz

since Pε〈Dx〉−s〈Dx〉s − Pε ∈ S−∞lsc . This completes the proof. �
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Theorem 9.7. Let A and B be generalized symbols with parameter z ∈ [0, Z] that
satisfy (i), (ii) and (iii) with 2γ < L. Then, for every f ∈ GL2((0, Z)×Rn) and u0 ∈
GL2(Rn) the Cauchy problem (9.1)-(9.2) has a unique solution u ∈ GL2((0, Z)×Rn)
and the energy estimate (9.5) remains valid for this solution.

Proof. Let (gε)ε ∈ g, (fε)ε ∈ f be representatives. We fix ε ∈ (0, 1] and consider
the smooth Cauchy problem

Pεuε = fε on (0, Z)× Rn

uε(0, ·) = u0,ε on Rn.
(9.10)

Then, by [17, Theorem 23.1.2] and [30, Theorem 5], we obtain the existence of a
solution uε ∈ C∞([0, Z];H∞(Rn)). Note that the additional regularity with respect
to z variable follows from (9.10).

Concerning uniqueness, assume that fε = 0 and u0,ε = 0. Furthermore, suppose
that moderateness of the solutions is already shown. We apply the energy estimate
(9.5) and get

e−λεZ‖uε(z, ·)‖Hs ≤ max
z∈[0,Z]

‖e−λεzuε(z, ·)‖Hs = 0 ∀s ≥ 0

Therefore, uε = 0.
It remains to show that (uε)ε ∈ EM,L2((0, Z) × Rn). For moderateness with

respect to z ∈ [0, Z] we note that ‖uε‖L2((0,Z)×Rn) ≤ Z supz∈[0,Z] ‖uε‖L2(Rn).
Since (9.5) is applicable for uε ∈ C∞([0, Z];H∞(Rn)), we obtain

e−λεZ‖uε(z, ·)‖Hs ≤ max
z∈[0,Z]

‖e−λεzuε(z, ·)‖Hs

≤ ‖uε(0, ·)‖Hs + 2
∫ Z

0

e−λεz‖Pεuε(z, ·)‖Hs dz.

Hence

‖uε(z, ·)‖Hs ≤ eλεZ
(
‖uε(0, ·)‖Hs + 2

∫ Z

0

e−λεz‖Pεuε(z, ·)‖Hs dz
)
.

and therefore uε is moderate with respect to x if and only if λε is of log-type, which
is indeed satisfied because of the assumption (λε)ε ∈ Πlsc. Recall that a net rε is
of log-type if |rε| = O

(
log( 1

ε )
)

as ε→ 0.
Concerning the z-derivatives, we write

∂z〈Dx〉suε = 〈Dx〉s(iAε −Bε)(x, z,Dx)uε + 〈Dx〉sfε
and obtain that for every s ≥ 0 there exists an N ∈ N such that ‖∂z〈Dx〉suε‖L2 =
O(ε−N ) uniformly in z. For the higher order z-derivatives one uses an induction
argument when differentiating the equation (9.10). �
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[14] A. Grigis, J. Sjöstrand; Microlocal analysis for differential operators. Cambridge University

Press, 1994.

[15] M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer; Geometric theory of gen-
eralized functions. Kluwer, Dordrecht, 2001.
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