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Abstract. In this article, using variational methods, we study the existence of

solutions for the Kirchhoff-type problem involving tempered fractional deriva-
tives

M
“Z

R
|Dα,λ+ u(t)|2dt

”
Dα,λ− (Dα,λ+ u(t)) = f(t, u(t)), t ∈ R,

u ∈Wα,2
λ (R),

where Dα,λ± u(t) are the left and right tempered fractional derivatives of order

α ∈ (1/2, 1], λ > 0, Wα,2
λ (R) represent the fractional Sobolev space, f ∈

C(R× R,R) and M ∈ C(R+,R+).

1. Introduction

Fractional calculus is a natural extension of ordinary calculus, where integrals
and derivatives are defined for arbitrary real orders. Since 17th century, when
fractional calculus was born, several kinds of fractional derivatives have been pro-
posed. Examples include Riemann-Liouville, Hadamard, Grunwald-Letnikov, Ca-
puto, tempered, etc. [4, 5, 9, 11, 12, 13, 14, 17, 19], each of them having its own
advantages and disadvantages. The choice of an appropriate fractional derivative,
depending on the system under consideration, has led to a variety of researches for
fractional differential equations involving different fractional derivatives. For details
and examples, we refer the reader to a series of papers [2, 3, 26, 27, 30, 31, 32, 33, 34,
35] and the references cited therein. One of the simplest description of a fractional
derivative relies on Fourier transform. If f(x) is a function with Fourier transform
f̂(w), then the Riemann-Liouville fractional derivative Dαf(x) is the function with
Fourier transform (iw)αf̂(w), which is an extension of familiar integer-order for-
mula [9, 17]. The foregoing arguments have motivated the researchers to investigate
the tempered fractional derivative Dα,λf(t), defined in terms of a function having
Fourier transform (λ+ iw)αû(w) with the tempered fractional integral Iα,λf(t) as
its inverse, having Fourier transform (λ+iw)−αf̂(w) [4, 5, 12, 13, 19]. In this paper,
we apply variational methods to establish the existence of infinitely many solutions
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to the following Kirchhoff-type problem involving tempered fractional derivatives:

M
(∫

R
|Dα,λ+ u(t)|2dt

)
Dα,λ− (Dα,λ+ u(t)) = f(t, u(t)), t ∈ R,

u ∈Wα,2
λ (R),

(1.1)

where Dα,λ± u(t) denote the left and right tempered fractional derivatives of order
α ∈ (1/2, 1], λ > 0, f ∈ C(R× R,R) and M ∈ C(R+,R+).

In recent years, there has been a growing interest in the study of fractional
differential equations by means of variational methods and critical point theory.
One of the pioneering works in this direction was due to Jiao and Zhou [7], who
investigated the following fractional boundary value problem by using Mountain
Pass Theorem,

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 t
D−βT (u′(t))

)
+∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where 0D
−β
t and tD

−β
T are the left and right Riemann-Liouville fractional integrals

of order 0 ≤ β < 1 respectively. For more examples, we refer the reader to a series
of papers [8, 22, 23, 24, 28, 29, 15, 16, 36] and the references cited therein.

In the sequel, we need the following assumptions:

(A1) M ∈ C(R+,R+) and there exists Υ > 1 such that M(t)t ≤ ΥM̂(t) for all
t ∈ [0,∞), and for all δ > 0 there exists % = %(δ) > 0 such that M(t) ≥ %

for all t ≥ δ, where M̂(t) =
∫ t

0
M(s)ds;

(A2) M ∈ C(R+,R+) and there exist three constants 0 < m1 ≤ m2 < ∞ and
1 < β <∞ such that

m1t
β ≤ M̂(t) ≤ m2t

β , ∀t ∈ R+; (1.2)

(A3) f(t, u) = o(|u|) as |u| → 0 uniformly for t ∈ R,
(A4) f ∈ C(R×R,R) such that there exist b ∈ C(R,R+) with limt→+∞ b(t) = 0

and 2 < q < +∞ such that

f(t, s) ≤ b(t)|s|q−1, ∀(t, s) ∈ R× R;

(A5) There exist µ > 2Υ with Υ > 1 such that

0 < µF (t, ζ) ≤ ζf(t, ζ), ∀ζ > 0,

where F (t, u) =
∫ u

0
f(t, s)ds;

(A6) limζ→0
F (t,ζ)
|ζ|2Υ = 0 uniformly for a.e. t ∈ R;

(A7) There exist two constants b1 > 0, 1 < γ0 < 2 such that

F (t, s) ≥ b1|s|γ0 , ∀(t, s) ∈ R× R;

(A8) f is odd in x, i.e. f(t,−x) = −f(t, x), ∀(t, x) ∈ R× R.

The rest of the paper is organized as follows. In Section 2, we describe some
basic concepts related to our main results (Theorems 3.7–3.12). In Section 3, the
existence of infinitely many solutions to the problem (1.1) is established.
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2. Preliminaries

Let us recall some basic definitions and lemmas that we need in the forthcoming
analysis.

Definition 2.1. For any λ > 0, we define the positive tempered fractional integral
of a function f ∈ Lp(R) with 1 ≤ p <∞ as

Iα,λ+ f(x) =
1

Γ(α)

∫ x

−∞
f(ξ)(x− ξ)α−1e−λ(x−ξ)dξ, (2.1)

and the negative tempered fractional integral by

Iα,λ− f(x) =
1

Γ(α)

∫ +∞

x

f(ξ)(ξ − x)α−1e−λ(ξ−x)dξ. (2.2)

If λ = 0, these formulae reduce to the well-known Riemann-Liouville fractional
integrals [9, 14].

Definition 2.2. The positive and negative tempered fractional derivatives of order
0 < α < 1 for a function f : R→ R are defined by

Dα,λ+ f(x) = λαf(x) +
α

Γ(1− α)

∫ x

−∞

f(x)− f(ξ)
(x− ξ)α+1

e−λ(x−ξ)dξ, (2.3)

Dα,λ− f(x) = λαf(x) +
α

Γ(1− α)

∫ +∞

x

f(x)− f(ξ)
(ξ − x)α+1

e−λ(ξ−x)dξ, (2.4)

for any λ > 0.

Define the fractional space

Wα,2
λ (R) =

{
f ∈ L2(R) :

∫
R

(λ2 + ω2)α|f̂(ω)|2dω <∞
}
, (2.5)

which is a Banach space with the norm

‖f‖α,λ =
(∫

R
(λ2 + ω2)α|f̂(ω)|2dω

)1/2

. (2.6)

For any f ∈ Wα,2
λ (R), let Dα,λ± f(x) denote the functions with Fourier transform

(λ± iω)αf̂(ω) ([20]), where the Fourier transform of u(x) is defined as follows

F(u)(ξ) =
∫ ∞
−∞

e−ix·ξu(x)dx.

Now we state the following known results.

Lemma 2.3 (See [20]). (i) For any α, λ > 0 and f ∈ L2(R), we have

Dα,λ± Iα,λ± f(x) = f(x), (2.7)

and for any f ∈Wα,2
λ (R), we have

Iα,λ± Dα,λ± f(x) = f(x). (2.8)

(ii) For any α, λ > 0 and f, g ∈Wα,2
λ (R), we have

〈f,Dα,λ+ g〉L2(R) = 〈Dα,λ− f, g〉L2(R). (2.9)
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Lemma 2.4 (See [12]). (i) For any α, λ > 0 and p ≥ 1, Iα,λ± : Lp(R)→ Lp(R) are
bounded linear operators with

‖Iα,λ± f‖Lp(R) ≤ λ−α‖f‖Lp(R). (2.10)

(ii) For any α, β, λ > 0 and f ∈ Lp(R), we have

Iα,λ± Iβ,λ± f(x) = Iα+β,λ
± f(x). (2.11)

(iii) For any α, λ > 0 and f, g ∈ L2(R), we have

〈f, Iα,λ+ g〉L2(R) = 〈Iα,λ− f, g〉L2(R). (2.12)

Next, for 0 < α < 1, we define fractional Sobolev space Hα(R) as follows

Hα(R) = C∞0 (R)
‖·‖α

,

endowed with the norm

‖u‖α = (
∫

R
|u(t)|2dt+

∫
R
|ω|2α|û(ω)|2dω)1/2. (2.13)

For 0 < α < 1, we have

2
α−1

2 ‖u‖α ≤ ‖u‖α,1 ≤ ‖u‖α, (2.14)

‖u‖α,1 ≤ ‖u‖α,λ ≤ λα‖u‖α,1, (2.15)

‖u‖α,λ ≤ ‖u‖α,1 ≤ λ−α‖u‖α,λ, (2.16)

where ‖u‖α,1 is the norm on Wα,2
1 (R) and so Wα,2

1 (R) = Hα(R) with equivalent
norms.

Lemma 2.5 (See [1]). Let α > 1/2. Then any u ∈Wα,2
λ (R) is uniformly continu-

ous, bounded and there exists a constant C = Cα such that

sup
t∈R
|u(t)| ≤ C‖u‖α,λ. (2.17)

Remark 2.6. From Lemma 2.5 and (2.13)-(2.15), we have the following implica-
tion: if u ∈Wα,2

λ with 1
2 < α < 1, then u ∈ Lq(R) for all q ∈ [2,∞) as∫

R
|u(t)|qdt ≤ ‖u‖q−2

∞ ‖u‖2L2(R) ≤ 21−αCq−2‖u‖qα,λ.

Remark 2.7 ([21]). The imbedding of Wα,2
λ in Lq(−T, T ) is compact for q ∈ (2,∞)

and any T > 0.

3. Main results

Definition 3.1. For every u, v ∈Wα,2
λ (R), a weak solution of problem (1.1) is

M
(∫

R
|Dα,λ+ u(t)|2dt

)∫
R

(λ2 + ω2)αû(ω)v̂(ω)dω =
∫

R
f(t, u(t))v(t)dt,

that is,

M
(∫

R
|Dα,λ+ u(t)|2dt

)∫
R

Dα,λ+ u(t)Dα,λ+ v(t)dt =
∫

R
f(t, u(t))v(t)dt.

Definition 3.2. We say that the functional Φ satisfies the Palais-Smale condition
if any sequence {un}n∈N ⊂ X has a convergent subsequence provided {Φ(un)}n∈N
is bounded and Φ′(un)→ 0 as n→ +∞.



EJDE-2018/34 VARIATIONAL METHODS FOR KIRCHHOFF TYPE PROBLEMS 5

Theorem 3.3 ([6, Theorem 2.2]). Let X be a real infinite dimensional Banach
space and K ∈ C1(X) be a functional satisfying the Palais-Smale condition and
that

(i) K(0) = 0 and there exist two constants α̃ > 0 and ρ > 0 such that ϕ|∂Bρ ≥
α̃, where Bρ = {u ∈ X : ‖u‖ < ρ};

(ii) K is even;
(iii) for all finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) such that

ϕ(u) ≤ 0 on X \BR( eX).

Then the functional K possess an unbounded sequence of critical values character-
ized by a minimax argument.

Consider a functional Φ : Wα,2
λ (R)→ R defined by

Φ(u) =
1
2
M̂
(∫

R
|Dα,λ+ u(t)|2dt

)
−
∫

R
F (t, u(t))dt, ∀u ∈Wα,2

λ (R), (3.1)

where M̂(t) =
∫ t

0
M(s)ds. Obviously, by the conditions (A1) (or (A2)) and (A4),

Φ ∈ C1(Wα,2
λ (R),R), and

Φ′(u)v = M
(∫

R
|Dα,λ+ u(t)|2dt

)∫
R

(
Dα,λ+ u(t)Dα,λ+ v(t)

)
dt

−
∫

R
f(t, u(t))v(t)dt,

(3.2)

for every u, v ∈Wα,2
λ (R).

Lemma 3.4. Assume that (A1), (A4)-(A6) hold. Then there exist ρ, β > 0 such
that

Φ(u) ≥ β, ∀u ∈Wα,2
λ (R), ‖u‖α,λ = ρ.

Proof. In view of (A6), for all ε > 0 there exists δ = δ(ε) > 0 such that

|F (t, u)| ≤ ε|u|2Υ, ∀ (t, u) ∈ R× [0, δ). (3.3)

Also, by (A4), for u > δ, there is a T > 0 such that

|F (t, u)| ≤ ε|u|q, (3.4)

for |t| > T . Set bT := maxt∈[−T,T ] b(t), then we have

|F (t, u)| ≤ bε|u|q, (3.5)

for u > δ, where bε = max{bT , ε}.
As F (t, ·) is even, it follows by (3.3) and (3.5) that for all ε > 0, there is a bε > 0

such that
|F (t, u)| ≤ ε|u|2Υ + bε|u|q, for all (t, u) ∈ R× R. (3.6)

Moreover, from (2.6) and (A1), we have M(t) > 0 for all t > 0 and

M̂(t) ≥ M̂(1)tΥ, for all t ∈ [0, 1]. (3.7)

From (3.6) and (3.7), for all u ∈Wα,2
λ (R) with ‖u‖α,λ ≤ 1, we get

Φ(u) ≥ 1
2
M̂(
∫

R
|Dα,λ+ u(t)|2dt)− ε

∫
R
|u(t)|2Υdt− aε

∫
R
|u(t)|qdt

≥ 1
2
M̂(1)‖u‖2Υ

α,λ − ε21−αC2Υ−2‖u‖2Υ
α,λ − aε21−αCq−2‖u‖qα,λ.

(3.8)
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Choosing

ε :=
M̂(1)

421−αC2Υ−2
,

one obtains

Φ(u) ≥ M̂(1)
4
‖u‖2Υ

α,λ − aε21−αCq−2‖u‖qα,λ

≥ ‖u‖2Υ
α,λ

(M̂(1)
4
− aε21−αCq−2‖u‖q−2Υ

α,λ

)
.

Hence, for all u ∈Wα,2
λ (R) with ‖u‖α,λ = ρ and 0 < ρ < 1 small enough, we have

M̂(1)
4
− aε21−αCq−2ρq−2Υ > 0.

Therefore, by taking

β := ρ2Υ
(M̂(1)

4
− aε21−αCq−2ρq−2Υ

)
,

we get Φ(u) ≥ β for all u ∈Wα,2
λ (R), ‖u‖α,λ = ρ. Thus the conclusion is achieved.

�

Lemma 3.5. Assume that (A1), (A3)–(A6) hold. Then, for any finite dimensional
subspace E of Wα,2

λ , there exists R1 = R1(E) > 0 such that

Φ(u) ≤ 0, ∀u ∈Wα,2
λ (R) \BR1(E),

where BR1(E) = {u ∈Wα,2
λ : ‖u‖α,λ < R1}.

Proof. In a straightforward manner, one can obtain F (t, ζ) ≥ K|ζ|µ, where

K :=
1
rµ

inf
ζ∈R,|ζ|=r

F (t, ζ) > 0.

Then, by (A3)–(A5), there exists M > 0 such that

F (t, ζ) ≥ K|ζ|µ −M |ζ|2, for all (t, ζ) ∈ R× R. (3.9)

Also, by assumption (A1), we have

M̂(t) ≤ M̂(1)tΥ. (3.10)

Let E ⊂Wα,2
λ (R) be a fixed finite dimensional. Now, for any u ∈ E with ‖u‖α,λ =

1, by Remark 2.6, (3.9) and (3.10), we have

Φ(su) =
1
2
M̂(s2)−

∫
R
F (t, su(t))dt

≤ 1
2
s2ΥM̂(1)−Ksµ

∫
R
|u(t)|µdt+M

∫
R
|u(t)|2dt

≤ 1
2
s2ΥM̂(1)−KsµMµ

E‖u‖
µ
α,λ +M21−α‖u‖2α,λ

=
1
2
s2ΥM̂(1)−KsµMµ

E +M21−α → −∞, as s→∞,

where ME > 0 such that ‖u‖Lp ≥ME‖u‖α,λ for all u ∈ E. As R1 →∞, we have

sup
u∈E,‖u‖α,λ=R1

Φ(u) = sup
u∈E,‖u‖α,λ=1

Φ(R1u)→ −∞.
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Therefore, there exists R0 > 0 large enough such that Φ(u) ≤ 0 for all u ∈ E with
‖u‖α,λ = R1 and R1 ≥ R0. This completes the proof. �

Lemma 3.6. Assume that (A1), (A4), (A5) hold. Then Φ satisfies Palais-Smale
condition.

Proof. Assume that {un}n∈N ⊂ Wα,2
λ (R) is a sequence such that {Φ(un)}n∈N is

bounded and Φ′(un)→ 0 as n→∞. Then there exists a constant D > 0 such that

|Φ(un)| ≤ D and ‖Φ′(un)‖(Wα,2
λ (R))∗ ≤ D, (3.11)

for any n ∈ N, where (Wα,2
λ (R))∗ is the dual space of Wα,2

λ (R).
Firstly, we show that {un}n∈N is bounded. Without loss of generality, we assume

that infn ‖un‖α,λ = η > 0, denote by % = %(η) the number corresponding to δ = η2

in (A1) such that
M(‖un‖2α,λ) ≥ % for all n. (3.12)

In view of (A5) and (3.12), one gets

D +D‖un‖α,λ ≥ Φ(un)− 1
µ

Φ′(un)un

=
1
2
M̂(‖un‖2α,λ)− 1

µ
M(‖un‖2α,λ)‖un‖2α,λ

− 1
µ

∫
R

(µF (t, un(t))− f(t, un(t))un(t))dt

≥
( 1

2Υ
− 1
µ

)
M(‖un‖2α,λ)‖un‖2α,λ

≥ %
( 1

2Υ
− 1
µ

)
‖un‖2α,λ.

Since µ > 2Υ, the boundedness of {un}n∈N follows directly. So, there exist a
subsequence {un}n∈N, and u ∈Wα,2

λ such that

un ⇀ u weakly in Wα,2
λ (R), (3.13)

which yields

Φ′(un)(un − u) = M(‖un‖2α,λ)
∫

R

(
Dα,λ+ unDα,λ+ (un − u)

)
dt

−
∫

R
f(t, un)(un − u)dt→ 0 as n→∞.

(3.14)

Now we show that limn→∞
∫

R f(t, un)(un − u)dt = 0. To this end, by (3.13), there
is some constant d > 0 such that

‖un‖α,λ < d and ‖u‖α,λ < d, for n ∈ N,
un → u strongly in Lq(R) and a.e. in R.

Moreover, for any ε > 0, (A4) implies that there exists T > 0 such that

f(t, un) ≤ ε|un|q−1, for |t| > T. (3.15)

Then, for n large enough, from (2.17), Remark 2.6 and Young inequality, we obtain∣∣ ∫
R
f(t, un)(un − u)dt

∣∣
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≤
∫

R
|f(t, un)||un − u|dt

≤
∫ T

−T
|f(t, un)||un − u|dt+

∫
|t|>T

|f(t, un)||un − u|dt

≤ ε‖un‖∞ + ε

∫
|t|>T

|un|q−1|un − u|dt

≤ εC‖un‖α,λ + ε

∫
|t|>T

(q − 1
q
|un|q +

1
µ
|un − u|q

)
dt

≤ εC‖un‖α,λ +
q − 1
q

ε21−αCq−2‖un‖qα,λ + ε
1
µ

21−αCq−2‖un − u‖qα,λ

≤ εCd+
q − 1
q

ε21−αCq−2dq + ε
1
µ

21−αCq−2‖un − u‖qα,λ.

Then

lim
n→∞

∫
R
f(t, un)(un − u)dt = 0.

Therefore, by (3.14), we have

M(‖un‖2α,λ)
∫

R

(
Dα,λ+ unDα,λ+ (un − u)

)
dt→ 0, as n→∞.

Thus, by (3.12) and the boundedness of M(‖un‖2α,λ), one can get∫
R

(
Dα,λ+ unDα,λ+ (un − u)

)
dt→ 0, as n→∞. (3.16)

In a similar manner, we can get∫
R

(
Dα,λ+ uDα,λ+ (un − u)

)
dt→ 0, as n→∞. (3.17)

Combining (3.16) and (3.17), we obtain∫
R

(
Dα,λ+ (un − u)Dα,λ+ (un − u)

)
dt→ 0, as n→∞.

Hence, ‖un−u‖α,λ → 0 as n→∞ and then Φ satisfies Palais-Smale condition. �

Theorem 3.7. Assume that (A1), (A3)–(A6), (A8) hold. Then problem (1.1) has
infinitely many nontrivial solutions.

Proof. Assumption (A8) implies that F (t, ·) is even in R and so is Φ. Since Φ(0) = 0,
it follows from Lemmas 3.4-3.6 and Theorem 3.3 that there exists an unbounded
sequence of weak solutions of problem (1.1). �

To prove our second result, we will use the genus properties. So we recall the
following definitions and results (see [18]). Let X be a Banach space, g ∈ C1(X,R)
and c ∈ R. Set

Σ = {A ⊂ X \ {0} : A is closed in X and symmetric with respect to 0)},
Kc = {x ∈ X : g(x) = c, g′(x) = 0},

gc = {x ∈ X : g(x) ≤ c}.
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Definition 3.8 ([10]). For A ∈ Σ, we say genus of A is j (denoted by γ(A) = j)
if there is an odd map ψ ∈ C(A,Rj \ {0}), and j is the smallest integer with this
property.

Theorem 3.9. Let g be an even C1 functional on X which satisfies the Palais-
Smale condition. For j ∈ N, let

Σj = {A ∈ Σ : γ(A) ≥ j}, cj = inf
A∈Σj

sup
u∈A

g(u).

(i) If Σj 6= ∅ and cj ∈ R, then cj is a critical value of g.
(ii) If there exists r ∈ N such that cj = cj+1 = · · · = cj+r = c ∈ R and c 6= g(0),

then γ(Kc) ≥ r + 1.

Lemma 3.10. Assume that (A1) and (A4) hold. Then Φ is bounded from below
and satisfies the Palais-Smale condition.

Proof. By a method similar to the one in [25, Lemma 3.3], for all ε > 0, it follows
from (A4) that

|F (t, u(t))| ≤ ε|u(t)|2, for all t ∈ R. (3.18)

For any u ∈Wα,2
λ (R), by (3.18), we get

Φ(u) ≥ 1
2
M̂(‖u‖2α,λ)−

∫
R
F (t, u(t))dt

≥ 1
2
M̂(‖u‖2α,λ)− ε

∫
R
|u(t)|2dt

≥ 1
2
M̂(‖u‖2α,λ)− ε‖u‖2α,λ.

If ‖u‖α,λ ≤ 1, then by (3.7), we have

Φ(u) ≥ M̂(1)
2
‖u‖2Υ

α,λ − ε‖u‖2α,λ ≥ −ε. (3.19)

If ‖u‖α,λ > 1, then by (A1) and ε = %
4 , we get

Φ(u) ≥ %

2
‖u‖2α,λ − ε‖u‖2α,λ ≥

%

4
‖u‖2α,λ. (3.20)

Combining (3.19) and (3.20), one can infer that Φ is coercive. Thus Φ is bounded
from below and satisfies the Palais-Smale condition. �

Theorem 3.11. Assume that (A1), (A4), (A7), (A8) hold. Then problem (1.1)
has infinitely many nontrivial solutions.

Proof. The assumption (A8) implies that Φ is even and Φ(0) = 0, and by Lemma
3.10, J ∈ C1(Xα,R) is bounded from below and satisfies the Palais-Smale condi-
tion. We make use of Theorem 3.9 to complete the proof. First, we show that there
exists ε > 0 such that

γ(Φ−ε) ≥ n for any n ∈ N. (3.21)

For each k, we take k disjoint open sets Ki such that ∪ki=1Ki ⊂ R. For i = 1, . . . , k,
letting ui ∈ (Wα,2

λ (R) ∩ C∞0 (Ki)) \ {0} with ‖ui‖α,λ = 1, we set

Xα
n = span{u1, . . . , un}, Sn = {u ∈ Xα

n : ‖u‖α,λ = 1}. (3.22)
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For an u ∈ Xα
n , we can write

u(t) =
n∑
i=1

λiui(t) for t ∈ R, (3.23)

for some λi ∈ R, i = 1, 2, . . . , n. So

‖u‖Lγ0 =
(∫

R
|u(t)|γ0dt

)1/γ0

=
( n∑
i=1

|λi|γ0

∫
R
|ui(t)|γ0dt

)1/γ0

, (3.24)

and

‖u‖2α,λ =
∫

R
|Dα,λ+ u(t)|2dt =

n∑
i=1

λ2
i

∫
R
|Dα,λ+ ui(t)|2dt

=
n∑
i=1

λ2
i ‖ui‖2α,λ =

n∑
i=1

λ2
i .

(3.25)

Since all norms of a finite dimensional normed space are equivalent, there exists a
constant Θ > 0 such that

Θ‖u‖α,λ ≤ ‖u‖Lγ0 for u ∈ Xα
n . (3.26)

From (A7), for u ∈ Sn, we can take some Λ0 such that∫
R
F (t, u(t))dt =

∫
R
F
(
t,

n∑
i=1

λiui(t)
)
dt ≥ b1

∫
Λ0

∣∣∣ n∑
i=1

λiui(t)
∣∣∣γ0

dt := %. (3.27)

We claim that % > 0. To this end, suppose otherwise, for any bounded open set
Λ ⊂ R, there exists {uk}k∈N ∈ Sn such that∫

Λ

|uk(t)|γ0dt = b1

∫
Λ

∣∣∣ n∑
i=1

λikui(t)
∣∣∣γ0

dt→ 0,

as k → +∞, where uk =
∑n
i=1 λikui(t) with

∑n
i=1 λ

2
ik = 1. Then we have

lim
k→+∞

λik := λi0 ∈ [0, 1] and
n∑
i=1

λ2
i0 = 1.

Thus, for any bounded open set Λ ⊂ R, we get∫
Λ

∣∣∣ n∑
i=1

λi0ui(t)
∣∣∣γ0

dt = 0.

Since Λ is arbitrary, therefore u0 =
∑n
i=1 λi0ui(t) = 0 a.e. on R, which contradicts

that ‖u0‖Xα = 1. Hence∫
R
F (t, u(t))dt =

∫
R
F
(
t,

n∑
i=1

λiui(t)
)
dt ≥ b1

∫
Λ0

∣∣∣ n∑
i=1

λiui(t)
∣∣∣γ0

dt = % > 0.

(3.28)
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From (A7), (3.24)-(3.26) and (3.28), we have

Φ(su) =
1
2
M̂(‖su‖2α,λ)−

∫
R
F (t, su(t))dt

≤ 1
2

max
0≤l≤1

M(l)s2 −
n∑
i=1

∫
Ki

F (t, sui(t))dt

≤ 1
2

max
0≤l≤1

M(l)s2 − b1sγ0

n∑
i=1

|λi|γ0

∫
I0

|ui(t)|γ0dt

≤ 1
2

max
0≤l≤1

M(l)s2 − b1sγ0‖u‖γ0
Lγ0

≤ 1
2

max
0≤l≤1

M(l)s2 − b1(Θs)γ0‖u‖γ0
α,λ

≤ 1
2

max
0≤l≤1

M(l)s2 − b1(Θs)γ0 , ∀u ∈ Sn, 0 < s < δ,

(3.29)

which implies that there exist ε > 0 and σ > 0 such that

Φ(σu) < −ε ∀u ∈ Sn. (3.30)

Let

Sσn = {σu : u ∈ Sn}, Ω =
{

(λ1, . . . , λn) ∈ Rn :
n∑
i=1

λ2
i < σ2

}
.

Then it follows from (3.30) that

Φ(u) < −ε ∀u ∈ Sσn . (3.31)

So, by (3.31) and the fact that Φ ∈ C1(Wα,2
λ (R),R) and is even, we get

Sσn ⊂ Φ−ε ∈ Σ. (3.32)

On the other hand, in view of (3.23) and (3.25), there exists an odd homeomorphism
mapping Ψ ∈ C(Sσn , ∂Ω). Using properties of the genus (see [18, 3◦ of Propositions
7.5 and 7.7 ]), one can obtain

γ(Φ−ε) ≥ γ(Sσn) = n. (3.33)

Hence (3.21) is obtained. Set

cn = inf
A∈Σn

sup
u∈A

Φ(u).

As Φ is bounded from below on Xα and (3.33) implies that −∞ < cn ≤ −ε <
0, therefore cn (for all n ∈ N) is a real negative number. Thus it follows from
Theorem 3.9 that Φ has infinitely many nontrivial critical points, which correspond
to infinitely many nontrivial solutions to system (1.1). The proof is complete. �

Theorem 3.12. Assume that (A2), (A4), (A7), (A8) hold. Then, for 2 < q < 2β
and 1 < γ0 < 2β, problem (1.1) has infinitely many nontrivial solutions.

Proof. In view of (A2) and (A4) with 2 < q < 2β, one can show that the functional
Φ is bounded from below and satisfies the Palais-Smale condition. The rest of the
proof is similar to that of Theorem 3.11, so we omit it. �
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[22] H. R. Sun, Q. G. Zhang; Existence of solutions for fractional boundary value problem via

the Mountain Pass method and an iterative technique, Comput. Math. Appl., 64 (2012),
3436-3443.

[23] C. Torres; Ground state solution for differential equations with left and right fractional
derivatives, Math. Methods Appl. Sci., 38 (2015), 5063-5073.

[24] C. Torres; Mountain pass solution for a fractional boundary value problem, J. Fract. Calc.
Appl, 5 (2014), 1-10.

[25] C. Torres; Tempered fractional differential equation: variational approach, Math. Methods
Appl. Sci., 40 (2017), 4962-4973.



EJDE-2018/34 VARIATIONAL METHODS FOR KIRCHHOFF TYPE PROBLEMS 13

[26] J. R. Wang, M. Feckan, Y. Zhou; A survey on impulsive fractional differential equations,

Fract. Calcu. Appl. Anal., 19 (2016), 806-831.

[27] J. R. Wang, M. Feckan, Y. Zhou; Center stable manifold for planar fractional damped equa-
tions, Appl. Math. Comput., 296 (2017), 257-269.

[28] Z. Zhang, R. Yuan; Solutions for subquadratic fractional Hamiltonian systems without coer-

cive conditions, Math. Methods Appl. Sci., 37 (2014), 2934-2945.
[29] Z. Zhang, R. Yuan; Variational approach to solutions for a class of fractional Hamiltonian

systems, Math. Methods Appl. Sci., 37 (2014), 1873-1883.

[30] Y. Zhou; Attractivity for fractional differential equations, Appl. Math. Letters, 75 (2018),
1-6.

[31] Y. Zhou, B. Ahmad, A. Alsaedi; Existence of nonoscillatory solutions for fractional neutral

differential equations, Appl. Math. Letters, 72 (2017), 70-74.
[32] Y. Zhou, L. Peng; Weak solution of the time-fractional Navier-Stokes equations and optimal

control, Comput. Math. Appl., 73 (2017), 1016-1027.
[33] Y. Zhou, L. Peng; On the time-fractional Navier-Stokes equations, Comput. Math. Appl., 73

(2017), 874-891.

[34] Y. Zhou, L. Peng, B. Ahmad, et al.; Topological properties of solution sets of fractional
stochastic evolution inclusions, Adv. Difference Equ., 2017 (2017), 90, 20pp.

[35] Y. Zhou, V. Vijayakumar, R. Murugesu; Controllability for fractional evolution inclusions

without compactness, Evol. Equ. Control Theory, 4 (2015), 507-524.
[36] Y. Zhou, L. Zhang; Existence and multiplicity results of homoclinic solutions for fractional

Hamiltonian systems, Comput. Math. Appl., 73.6 (2017), 1325-1345.

Nemat Nyamoradi

Department of Mathematics, Faculty of Sciences, Razi University, Kermanshah 67149,
Iran

E-mail address: neamat80@yahoo.com

Yong Zhou (corresponding author)

Faculty of Mathematics and Computational Science, Xiangtan University, Hunan 411105,

China.
Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Sci-

ence, King Abdulaziz University, Jeddah 21589, Saudi Arabia
E-mail address: yzhou@xtu.edu.cn

Bashir Ahmad

Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Sci-
ence, King Abdulaziz University, Jeddah 21589, Saudi Arabia

E-mail address: bashirahmad qau@yahoo.com

Ahmed Alsaedi

Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Sci-

ence, King Abdulaziz University, Jeddah 21589, Saudi Arabia
E-mail address: aalsaedi@hotmail.com


	1. Introduction
	2. Preliminaries
	3. Main results
	Acknowledgements

	References

