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BLOW-UP FOR A SEMILINEAR HEAT EQUATION WITH
MOVING NONLINEAR REACTION
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Abstract. We study the behavior of solutions of the semilinear problem

ut = uxx + (1 + (T − t)−αχ{|x|<(T−t)1/2})u
p, x ∈ R, t ∈ (0, T ),

u(x, 0) = u0(x) ≥ 0, x ∈ R,
with α > 0 and p > 0. We describe, in terms of the parameters when the

solution is bounded and when it blows up. For blowing up solutions we find
the blow-up rate and the blow-up set.

1. Introduction

In this article we study the Cauchy problem, for the equation

ut = uxx + h(x, t)up, (1.1)

with α > 0, p > 0 and

h(x, t) = 1 + (T − t)−αχ{|x|<(T−t)1/2}.

Moreover, we assume that u0 is a nonnegative, nontrivial regular function.
Existence of a solution can be easily achieved, and it is given by the representa-

tion formula

u(x, t) =
∫

R
Γ(x− y, t)u0(y) dy +

∫ t

0

∫
R

Γ(x− y, t− s)up(y, s) dy ds

+
∫ t

0

∫
{|y|<(T−s)1/2}

Γ(x− y, t− s)up(y, s)(T − s)−α dy ds.

where Γ(x, t) = (4πt)−1/2e−x
2/4t is the heat Kernel.

Uniqueness is standard for p ≥ 1, but for 0 < p < 1 the reaction term f(x, t, u) =
h(x, t)up is non-Lipschitz on u and the uniqueness fails, see [1]. Nevertheless, in
this case we can we can construct a maximal solution just by taking the limit

u = lim
ε→0

u(ε),
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where u(ε) is the unique solution to our problem with initial condition u(ε)(x, 0) =
u0(x) + ε, and with the reaction f(x, t, u) replaced by

f(ε)(x, t, u) = h(x, t)

{
up if s ≥ ε,
εp−1u if s < ε,

see [10]. We note that the maximal solution satisfies the above representation
formula. Moreover, a comparison principle among maximal solutions can be easily
obtained.

Equation (1.1) can be considered in some way as a perturbation of the system

ut = uxx + up1vq1

vt = vxx + up2vq2

Indeed, if we assume that the v component blows up in a finite time T , typically
the behaviour near the blow-up time is

v ∼

{
(T − t)−q |x| < (T − t)1/2

1 |x| > (T − t)1/2

see [4], [13] (f ∼ g means that there exist finite positive constants c1, c2 such that
c1g ≤ f ≤ c2g). Now including this behaviour on the equation of u, we obtain an
equation like (1.1).

Systems of this kind are common in population dynamics. In this context u
and v represent two different species with a symbiotic behaviour. The cooperation
between them is represented by the coupled reaction terms.

Probably the first study in blow-up for the semilinear heat equation is given by
Fujita, [6], where the case h = 1 is studied. He proves that for 1 < p < 1+2/n every
non-trivial positive solution blows up in finite time, while for p > 1 + 2/n there are
both blow up and global solutions. The values pg = 1 and pc = 1 + 2/n are called
the critical global exponent and the critical blow-up exponent, respectively. In the
border case p = pc every positive solution blow up, see [9, 15].

For the case of localized reaction (h(x, t) = h(x) with compact support) it is
known that pg = 1 and pc = 2 if n = 1 while pg = pc = 1 for n ≥ 2, see [11]. For
further result on the blow-up phenomena in one dimensional case with localized
reaction we refer to [5].

If the coefficient reaction is given by h(x, t) = ts|x|σ, Qi shows in [12] that pg = 1
and pc = 1 + (2 + 2s + σ)/n. Since, in our problem, the reaction coefficient blows
up as t→ T , the critical exponents are independent of p, see Theorem 1.1 below.

Blow-up phenomena has attracted an increasing interest among researchers in
the last years, not only for its wide variety of applications, but also motivated by the
mathematical analysis behind those kind of equations, see for instance the books
[7, 14] and the surveys [3, 8].

Our first objective is to identify when either the solution is bounded or it blows
up.

Theorem 1.1. (i) If p ≤ 1 and α < 1 all the solutions to problem (1.1) are
bounded;

(ii) If p ≤ 1and α ≥ 1 all the solutions to problem (1.1) blow up a time t = T ;
(iii) If p > 1 and α ≥ 1 all the solutions to problem (1.1) blow up a time T ∗ < T ;
(iv) If p > 1 and α < 1 solutions may blow up at time T ∗ ≤ T or not depending

on the size of initial data.
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Once we have characterized the exponents giving rise to either blow-up or bounded
solutions, we want to study the way the blowing up solutions behave as approaching
the blow-up time. This means that we must investigate the speed at which they
blow up, the blow-up rate and where the solutions blow up, the blow-up set.

We note that if the blow-up time T ∗ < T , the reaction coefficient h(x, t) is
bounded. Then, in the study of the blow up does not play any role and the solution
behaves like the solution of

wt = wxx + wp,

see [2]. Thus, we only study the range p ≤ 1 ≤ α where the maximal solution blows
up at time T independently of initial data.

Theorem 1.2. Let u be the maximal solution of (1.1). As t approaches T we have
that

(i) For p < 1 and α > 1,

‖u(·, t)‖∞ ∼ (T − t)−
α−1
1−p .

(ii) For p < 1 and α = 1,

‖u(·, t)‖∞ ∼
(

log
( T

T − t
)) 1

(1−p)
.

(iii) For p = 1 and α > 1,

lim
t→T

(T − t)1−α log ‖u(·, t)‖∞ =
1

1− α
.

(iv) For p = 1 = α, there exists γ∗ ∈ (0, 1) such that for all ε > 0

Cε(T − t)−γ∗+ε ≤ ‖u(·, t)‖∞ ≤ C2(T − t)−γ∗ .

Finally, we study the blow-up set. Which it is defined by

B(u) = {x ∈ R : ∃xn → x, tn ↗ T with u(xn, tn)→∞}.

Theorem 1.3. Let u a blow-up solution of (1.1). Then, B(u) = {0} for p < 1 ≤ α,
while for p = 1 we have

B(u) =


(−∞,∞) for α > 2
[−2, 2] for α = 2
{0} for α ∈ [1, 2)

This paper is organized as follows. In the next Section, we study in terms of
the parameters p and α, when the solution is bounded and it blows up, namely we
prove Theorem 1.1. In Section 3 we find the blow rate for the range p ≤ 1 ≤ α,
Theorem 1.2. Finally, in Section 4 Theorem 1.3 are proved.

2. Blow-up versus boundedness

Lemma 2.1. If α < 1 and p ≤ 1 then the solution u is bounded.

Proof. It follows by comparison with the flat supersolution

w′(t) = (1 + (T − t)−α)wp, t > 0,

w(0) = ‖u0‖∞.
(2.1)
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Which is given by

v(t) =


(
v1−p
0 + (1− p)

(
t− 1

1−α
(
(T − t)1−α − T 1−α)))1/(1−p)

, p < 1,

v0 exp
(
t− 1

1−α
(
(T − t)1−α − T 1−α)), p = 1.

(2.2)

�

Lemma 2.2. If α < 1 and p > 1, then there are both: bounded and blow-up
solutions.

Proof. The fact that for small initial data the solution is bounded follows by com-
parison with the flat supersolution (2.1).

On the other hand, the blow-up, is given by comparison with the problem

vt = vxx + vp (x, t) ∈ (−L,L)× (0, T )

v(±L, t) = 0 t ∈ (0, T )

v(x, 0) = v0(x) x ∈ (−L,L)

Applying Kapplan’s method it is well known that we can take v0 large enough to
ensure that v blows up before time T . �

Lemma 2.3. Let α ≥ 1 then the solution blows up at a finite time T ∗ ≤ T .
Moreover, if T ∗ = T , then u(0, t)→∞ as t→ T .

Proof. First we observe that by comparison with the heat equation we get that
there exists m > 0 such that

u ≥ m (x, t) ∈ (−T 1/2, T 1/2)× (0, T ]. (2.3)

Using the representation formula, we get

u(x, t) =
∫

R
Γ(x− y, t)u0(y) dy +

∫ t

0

∫
R

Γ(x− y, t− s)up(y, s) dy ds

+
∫ t

0

∫
R

Γ(x− y, t− s)up(y, s)(T − s)−αχ{|y|<(T−s)1/2} dy ds

≥
∫ t

0

∫
R

Γ(x− y, t− s)mp(T − s)−αχ{|y|<(T−s)1/2} dy ds.

Now, we observe that for x = 0 and t = T the above integral becomes

C

∫ T

0

(T − t)−α
∫
|y|<(T−s)1/2

1
(T − s)1/2

e−y
2/(4(T−s)) dy ds

= C

∫ T

0

(T − t)−α
∫ 1/2

−1/2

e−r
2
dr ds.

Which is divergent for α ≥ 1. �

Lemma 2.4. Let α ≥ 1. If p ≤ 1 the maximal solution u blows up at time T ∗ = T ,
while for p > 1 the blow up time satisfies that T ∗ < T .

Proof. The fact that for p ≤ 1 the solution blows up at time T , is given by com-
parison with the flat supersolution given in (2.1).

Now, for p > 1 we assume that u blows up at time T and we define

v(ξ, τ) = u(x, t) ξ = x(T − t)−1/2, τ = − log
(T − t

T

)
,
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which satisfies the equation

vτ = vξξ −
1
2
ξvξ +

(
Te−τ + T 1−αe(α−1)τχ{|ξ|≤1}

)
vp.

Notice that
• As v is symmetric and decreasing for ξ > 0 the term −ξvξ is non-negative.
• From (2.3) we have that v > m in [−1, 1]× [0,∞].
• α ≥ 1 implies that eα−1τ ≥ 1.

Therefore, for all 1 < q < p the function v is a supersolution of the problem

wτ = wξξ + T 1−αχ{|ξ|≤1}m
p−qwq R× (τ0,∞)

w(ξ, τ0) = v(ξ, τ0)

For this problem it is well know that for all non-negative initial data the solution
blows up at finite time if 1 < q ≤ 2, see [5, 11]. Then, the function u blows up
before time T . �

3. Blow-up rates

Since for α ≥ 1 and p ≤ 1 the solution of Problem (1.1) blows up at time T , the
comparison with the flat supersolution defined in (2.1) gives us the upper blow-up
rate. However, as we see below, this is not the correct blow-up rate in the linear
case p = α = 1. More precisely,

Lemma 3.1. Let u be a solution of (1.1). Then, there exists C > 0 such that

‖u(·, t)‖∞ ≤ C


(T − t)−

α−1
1−p p < 1 < α

e
(T−t)1−α

α−1 p = 1 < α(
log
(

1
T−t

)) 1
1−p p < 1 = α

To study the lower blow-up rate we consider different cases.

Lemma 3.2. Let p < 1 and α > 1. Then

‖u(·, t)‖∞ ≥ (T − t)−
α−1
1−p .

Proof. Let φ1 be the first eigenfunction of the Laplacian in (−1, 1) normalized
according to ‖φ1‖∞ = 1, and consider the function

u(x, t) = A(T − t)−
α−1
1−p φ1(x(T − t)−1/2).

To see that u is subsolution we need:
• Comparison of the initial data. Notice that u is a supersolution of the heat

equation, then u(x, t) ≥ m > 0 in (−T 1/2, T 1/2) × (0, T ). Thus taking A small
enough, u(x, 0) ≤ u0(x).
• An inequality for the equation: substituting u in the equation we need that

A
α− 1
1− p

φ(ξ) +
A

2
ξφ′1(ξ) ≤ −λ1Aφ1(ξ) + ((T − t)α + 1)Apφp1(ξ)

where ξ = x(T − t)−1/2. Observe that A
2 ξφ

′
1(ξ) < 0 and (T − t)αApφp1(ξ) > 0,

therefore the above inequality holds provided that

A1−pφ1−p
1 (ξ)

(α− 1
1− p

+ λ1

)
≤ 1.

Thus, taking A small enough we are done.
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This implies that u(x, t) ≥ u(x, t) and lower blow-up rate follows. �

Lemma 3.3. Let p = 1 and α > 1. Then, for A > 0 small enough

‖u(·, t)‖∞ ≥ A(T − t)π
2
4 e

(T−t)1−α
α−1 .

Proof. As in the previous Lemma, we use a comparison argument. In this case we
consider the subsolution

u = A(T − t)λ1e
(T−t)1−α

α−1 φ1(x(T − t)−1/2), γ > 0,

where λ1 = π2/4 and φ1 are the first eigenvalue and the first eigenfunction of the
Laplacian in (−1, 1). �

We remark that in this case the extra term, (T − t)π2/4 appears. We conjecture
that this extra term is technical and it can be avoided. Using the comparison with
the function w given in (2.1) it is easy to obtain the following blow-up rate.

Corollary 3.4. Let p = 1 and α > 1. Then

lim
t→T

(T − t)1−α log(u(0, t)) =
1

α− 1
.

Lemma 3.5. Let α = 1 and p < 1. Then

‖u(·, t)‖∞ ≥
(

log
( T

T − t
)) 1

(1−p)

Proof. Using the representation formula

u(x, t) =
∫

R
Γ(x− y, t)u0(y) dy +

∫ t

0

∫
R

Γ(x− y, t− s)up(y, s) dy ds

+
∫ t

0

∫
{|y|<(T−s)1/2}

Γ(x− y, t− s)up(y, s)(T − s)−1 dy ds.

Observe that the first two integrals are positive, then

u(x, t) ≥
∫ t

0

∫
{|y|<(T−s)1/2}

Γ(x− y, t− s)up(y, s)(T − s)−1 dy ds

=
1√
π

∫ t

0

∫ x+(T−s)1/2

2(t−s)1/2

x−(T−s)1/2

2(t−s)1/2

up(x− 2(t− s)1/2z, s) 1
T − s

e−z
2
dz ds.

As 0 < s < t < T , we note that for 0 ≤ x ≤ (T − t)1/2,

x− (T − s)1/2

2(t− s)1/2
≤ 0 and

x+ (T − s)1/2

2(t− s)1/2
≥ (T − s)1/2

2(t− s)1/2
≥ 1

2
,

Therefore,

u(x, t) ≥ 1√
π

∫ t

0

∫ 1/2

0

up(x− 2(t− s)1/2z, s) 1
T − s

e−z
2
dz ds. (3.1)

On the other hand, by comparison with the heat equation, there exists C0 > 0
such that

u(x, t) ≥ C0, x ∈ (−T 1/2, T 1/2), t ∈ (0, T ). (3.2)
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Since −T 1/2 ≤ x − t1/2 ≤ x − 2(t − s)1/2z ≤ x ≤ T 1/2, we can use this lower
estimate in (3.1) to improve it as follows

u(x, t) ≥ Cp0√
π

∫ t

0

∫ 1/2

0

1
T − s

e−z
2
dz ds = C1 log

( T

T − t
)
,

where

C1 = ACp0 and A =
1

T
√
π

∫ 1/2

0

e−z
2
dz.

Which is a better lower estimate. Using this new lower estimate in (3.1)

u(x, t) ≥ Cp1√
π

∫ t

0

∫ 1/2

0

(
log
( T

T − s
))p 1

T − s
e−z

2
dz ds

= Cp1
A

2

(
log
( T

T − t
))p+1

.

Iterating this procedure we get that

u(x, t) ≥ Ck
(

log
( T

T − t
))γk

,

with γ0 = 0, C0 given in (3.2) and

γk+1 = pγk + 1, Ck+1 = Cpk
A

γk+1
.

It is easy to see that as k →∞,

γk =
k−1∑
j=0

pj → 1
1− p

and Ck →
(

(1− p)A
) 1

1−p
.

Therefore, for 0 ≤ x ≤ (T − t)1/2,

u(x, t) ≥
(

(1− p)A
) 1

1−p
(

log
( T

T − t
)) 1

1−p

and the proof is complete. �

For the linear case p = α = 1 we perform the self-similar change of variables

u(x, t) = Aet(T − t)−γv(ξ, τ) ξ = |x|(T − t)−1/2, τ = log
( 1
T − t

)
.

It is easy to see that the rescaled function satisfies

vτ = vξξ −
1
2
ξvξ + (χ1 − γ)v. (3.3)

Lemma 3.6. There exits a unique (γ∗, F∗) such that γ∗ ∈ (0, 1) and F∗ is an even,
positive non-increasing (for ξ > 0) stationary solution of (3.3).

Proof. We look for solutions of the problem

F ′′γ −
1
2
ξF ′γ + (χ1 − γ)Fγ = 0, ξ > 0,

Fγ(0) = 1, F ′γ(0) = 0.
(3.4)

To study this problem, we use a shooting method. We define

Λ+ =
{
γ ∈ (0, 1) : Fγ > 0 and there exists xγ such that Fγ(xγ) > 1

}
Λ− =

{
γ ∈ (0, 1) : there exists xγ such that Fγ(xγ) < 0

}
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Λ∗ =
{
γ ∈ (0, 1) : Fγ ≥ 0 and F ′γ ≤ 0

}
.

Notice that these sets are disjoint. Moreover, by continuous dependence of the
solution with respect to the parameter γ both sets, Λ+ and Λ− are open sets.
Then, if we prove that both sets are non-empty, we get that Λ∗ is a non-empty
closed set and the result follows.

To prove that we consider the boundary cases γ = 1 and γ = 0.
(i) For γ = 1 it is trivial to see that F1(ξ) = 1 for 0 ≤ ξ ≤ 1. Moreover

F ′′1 (1+) = 1, then the profile F1(ξ) > 1 for ξ > 1. Now, applying the continuous
dependence of the solution with respect to the parameter γ, we get that γ ∈ Λ+

for γ ∼ 1.
(ii) For γ = 0 we rewrite the equation (3.4) as

(e−ξ
2/4F ′0)′ = −χ1F0e

−ξ2/4,

to get that for 0 ≤ ξ ≤ 1, the profile satisfies that F ′0 < 0 in the positivity set of F0.
Therefore if there exists ξ0 ∈ (0, 1] such that F0(ξ0) = 0, the profile is negative in
(ξ0, ξ0 + ε). On the other hand, if F0(ξ) > 0 in 0 ≤ ξ ≤ 1, we have that F ′0(1) < 0
and

F ′0(ξ) = F ′0(1)e
ξ2−1

4 < 0, ξ > 1.

Therefore, the profile crosses the axis at some point ξ0. The continuous dependence
of the solution with respect to the parameter γ implies that γ ∈ Λ− for γ ∼ 0.

The uniqueness follows from the fact that Gγ = e−ξ
2/4Fγ is a solution of

G′′γ +
1
2
ξG′γ + (χ1 +

1
2
− γ)Gγ = 0.

Let us suppose that there exists γ1 6= γ2 in Λ∗. Then

γ1

∫
R
Fγ1Gγ2 dξ =

∫
R

(F ′′γ1 −
1
2
ξF ′γ1 + χ1Fγ1)Gγ2 dξ

=
∫

R
F1(G′′γ2 +

1
2
ξG′γ2 + (χ1 +

1
2

)Gγ2) dξ

= γ2

∫
R
Fγ1Gγ2 dξ,

which is a contradiction. �

Remark 3.7. The parameter γ∗ can be seen as the first eigenvalue of the operator
L(w) = w′′ − 1

2ξw
′ + χ1w. Then

−γ∗ = inf
w∈X

∫
R |w

′|2e−ξ2/4 dξ −
∫

R χ1w
2e−ξ

2/4 dξ∫
R w

2e−ξ2/4 dξ
,

where X is the weighted H1
ρ(R) space with weight ρ(ξ) = e−ξ

2/4.

Lemma 3.8. Let v be a solution of (3.3) with γ = γ∗. Then, v is bounded.

Proof. Let us define

H(v) =
∫

R
|vξ|2e−ξ

2/4 dξ −
∫

R
(χ1 − γ∗)v2e−ξ

2/4 dξ.
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Notice that by the definition of γ∗ in Remark 3.7, H(v) ≥ 0. On the other hand,
multiplying the equation (3.3) by eξ

2/4v we get

∂

∂τ
2
∫

R
v2e−ξ

2/4 dξ = −H(v) ≤ 0.

This monotonicity implies that v is bounded almost everywhere. Therefore, there
exists ξ0 ∈ R \ [−1, 1] such that v(ξ0, τ) ≤ C. Now we observe that for ξ > ξ0, the
function v is a subsolution of

wτ = wξξ −
1
2
ξwξ − γ∗w ξ > ξ0, τ > 0

w(ξ0, τ) = C

w(ξ, 0) = v0(ξ).

But for this problem w(ξ) = C is a supersolution. Then, v is uniformly bounded
for ξ ≥ ξ0. The same argument provides that v is uniformly bounded for ξ ≤ −ξ0.
Finally, for ξ ∈ [−ξ0, ξ0], v is a subsolution of the problem

wτ = wξξ −
1
2
ξwξ + (χ1 − γ∗)w ξ ∈ (−ξ0, ξ0), τ > 0

w(±ξ0, τ) = C

w(ξ, 0) = v0(ξ).

Observe that the function w(ξ) = AF∗(ξ) is a supersolution for A large enough.
Thus, v is uniformly bounded. �

From these results we obtain the following blow-up rates.

Lemma 3.9. Let p = α = 1 and (γ∗, F∗) given in Lemma 3.6. Then, there exists
a positive constant C1 such that

‖u(·, t)‖∞ ≤ C1(T − t)−γ∗ .

Moreover:

(1) If for some 0 ≤ t0 < T , u(x, t0) > F∗(x) for x large, then there exists
C2 > 0 such that

‖u(·, t)‖∞ ≥ C2(T − t)−γ∗ .

(2) In the general case, we have that for all ε > 0 there exists Cε > 0 such that

‖u(·, t)‖∞ ≥ Cε(T − t)−γ∗+ε.

Proof. The upper blow-up rate follows by the fact that v is bounded.
If for some time t0 and x large enough u(x, t0) > F∗(x), we only note that for A

small enough the function u = A(T − t)−γ∗F∗(x(T − t)−1/2) is a subsolution of the
problem (1.1). Then, the lower blow-up rate follows.

For the general case we can use the profiles given in Lemma 3.6 with γ ∈ Λ− to
obtain the subsolution u = A(T − t)−γ max{F (x(T − t)1/2), 0}. �
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4. Blow-up set

Using the blow-up rate we can construct subsolutions and supersolutions which
determine the blow-up set. We consider the problem

wt = wxx + λw x > x0 , 0 < t < T

w(x0, t) = K(T − t)νe
(T−t)−n
α−1 0 < t < T

w(x, 0) = w0(x) x > x0

(4.1)

It is well know that, see for instance [7],

B(w) =


[x0,∞) for n > 1[
x0, x0 + 2

(
1

α−1

)1/2] for n = 1
{x0} for n ∈ (0, 1)
{x0} for n = 0 and ν < 0

Notice that for fixed n > 0 the blow-up set is independent of ν and K.

Lemma 4.1. Let p < 1 ≤ α. Then the blow-up set of a solution of (1.1) is the
origin, that is, B(u) = {0}.

Proof. We first note that u is a supersolution of the equation

vt = vxx + vp.

Since p < 1 we get that v ≥ ((1− p)t)1/(1−p), see [1]. Then

u(x, t) ≥ v(x, t) ≥ ((1− p)t)1/(1−p). (4.2)

Now, we assume that x1 > 0 is a blow-up point, that is x1 ∈ B(u), and define
0 < x0 < x1 and t0 such that x0 = (T − t0)1/2. Using the estimate (4.2),

up(x, t) ≤ λu, λ =
(p− 1

t0

)−1

,

for t ≥ t0. On the other hand, from the upper blow-up rate is

u(x0, t) ≤ C(T − t)−(α−1)/(1−p) for α < 1,

while

u(x0, t) ≤ C
(

log
( T

T − t
)) 1

1−p ≤ C(T − t)−
1

1−p , for α = 1.

Summing up we obtain that for α ≤ 1 the solution u is a subsolution of the problem

vt = vxx + λv, (x0,∞)× (t0, T )

v(x0, t) = K(T − t)−γ

v(x, t0) = u(x, t0)

Note that this is problem (4.1) with λ = ((p − 1)t0)−1, ν = γ and n = 0. Then,
B(v) = {x0}. Hence, by comparison u(x1, t) is bounded. A contradiction. �

Lemma 4.2. Let p = 1 and u a solution of (1.1). Then, the blow-up set is

B(u) =


(−∞,∞) for α > 2
[−2, 2] for α = 2
{0} for α ∈ [1, 2)
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Proof. Note that from Lemmas 3.9 and 3.1, u is a subsolution of (4.1) with λ = 1,
ν = γ∗, n = α− 1 > 0 and k large enough. Arguing as in the previous Lemma we
obtain B(u) = {0} for α ∈ [1, 2). While for α = 2 we get that if x0 ∈ B(u) then
u(x, t) is bounded for x > x0 + 2.

On the other hand, Lemma 3.3 provides a lower bound of u(0, t), then u is a
supersolution of (4.1) with λ = 1, ν = π2/4, n = α− 1 and k small enough. Then,
R = B(w) ⊂ B(u) for α > 2, while for α = 2 we have that [−2, 2] = B(w) ⊂ B(u).

Finally, for the critical case α = 2, we observe that for all ε > 0, the point
x0 = ε ∈ B(u), then u(x, t) is bounded for x ∈ (ε + 2,∞). Passing to the limit as
ε→ 0 we obtain that B(u) = [−2, 2]. �
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