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COMPOSITION AND CONVOLUTION THEOREMS FOR
µ-STEPANOV PSEUDO ALMOST PERIODIC FUNCTIONS AND
APPLICATIONS TO FRACTIONAL INTEGRO-DIFFERENTIAL

EQUATIONS

EDGARDO ALVAREZ

Abstract. In this article we establish new convolution and composition the-
orems for µ-Stepanov pseudo almost periodic functions. We prove that the

space of vector-valued µ-Stepanov pseudo almost periodic functions is a Ba-
nach space. As an application, we prove the existence and uniqueness of µ-

pseudo almost periodic mild solutions for the fractional integro-differential

equation

Dαu(t) = Au(t) +

Z t

−∞
a(t− s)Au(s) ds+ f(t, u(t)),

where A generates an α-resolvent family {Sα(t)}t≥0 on a Banach space X,

a ∈ L1
loc(R+), α > 0, the fractional derivative is understood in the sense of

Weyl and the nonlinearity f is a µ-Stepanov pseudo almost periodic function.

1. Introduction

Ezzinbi et al. [1] defined the space of µ-Sp-pseudo almost periodic functions.
This space contains the space of Stepanov-like weighted pseudo almost periodic
functions (see [8, 11]) and the space of µ-pseudo almost periodic functions (see [5]).
Several composition theorems and their applications in the context of Stepanov-like
almost periodic, Stepanov-like pseudo almost periodic and Stepanov-like weighted
pseudo almost periodic functions appear for example in [2, 9, 10, 12, 14]. Here we
generalize the composition theorem given by Zhao et al. for the space of Stepanov-
like weighted pseudo almost periodic functions (see [14, Th. 2.15]). Also, we recover
the composition result given by Ezzinbi et al. for µ-Sp-pseudo almost periodic
functions (see [1, Th. 2.29]). Moreover, we establish another composition theorem
that does not require Lipschitzian nonlinearities (Theorem 3.5 and Theorem 3.8).

In Theorem 3.10 we prove that the convolution of a strongly continuous family
{S(t)}t≥0 with a µ-Sp-pseudo almost periodic function F , (S ∗ f)(t) =

∫ t
−∞ S(t −

s)F (s)ds, is a µ-pseudo almost periodic function. We prove that the collection
of µ-Sp-pseudo almost periodic functions is a Banach space with a natural norm
(Theorem 3.3), and combine our results to prove the existence and uniqueness
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of µ-pseudo almost periodic solutions to a class of abstract fractional differential
equations

Dαu(t) = Au(t) +
∫ t

−∞
a(t− s)Au(s) ds+ f(t, u(t)), (1.1)

where A generates an α-resolvent family {Sα(t)}t≥0 on a Banach space X, a ∈
L1

loc(R+), α > 0, the fractional derivative is understood in the sense of Weyl and
provided that the nonlinear term f is µ-Stepanov pseudo almost periodic.

2. Preliminaries

Throughout this article (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) denote complex Banach spaces
and B(X,Y ) the Banach space of bounded linear operators from X to Y ; when
X = Y we write B(X).

We denote by BC(R, X) the Banach space of X-valued bounded and continuous
defined functions on R, with norm

‖f‖ = sup{‖f(t)‖X : t ∈ R}. (2.1)

Definition 2.1 ([6]). A function f ∈ C(R, X) is called (Bohr) almost periodic if
for each ε > 0 there exists l = l(ε) > 0 such that every interval of length l contains
a number τ with the property that

‖f(t+ τ)− f(t)‖ < ε (t ∈ R).

The collection of all such functions will be denoted by AP (R, X).

This definition is equivalent to the so-called Bochner’s criterion, namely, f ∈
AP (R, X) if and only if for every sequence of reals (s′n) there exists a subsequence
(sn) such that (f(·+ sn)) is uniformly convergent on R.

Definition 2.2 ([6]). A function f ∈ C(R×Y,X) is called (Bohr) almost periodic
in t ∈ R uniformly in y ∈ K where K ⊂ Y is any compact subset if for each ε > 0
there exists l = l(ε) > 0 such that every interval of length l contains a number τ
with the property that

‖f(t+ τ, y)− f(t, y)‖ < ε (t ∈ R, y ∈ K).

The collection of such functions will be denoted by AP (R× Y,X).

Let B denote the Lebesgue σ-field of R, see [4]. Let M stand for the set of all
positive measures ν on B satisfying µ(R) = ∞ and µ([a, b]) < ∞ for all a, b ∈ R.
Throughout this paper will consider the following hypotheses:

(H1) For all a, b and c ∈ R, such that 0 ≤ a < b ≤ c, there exist τ0 ≥ 0 and
α0 > 0 such that

|τ | ≤ τ0 ⇒ µ((a+ τ, b+ τ)) ≥ α0µ([τ, c+ τ ]).

(H2) For all τ ∈ R, there exist β > 0 and a bounded interval I such that
µ({a+ τ, a ∈ A}) ≤ βµ(A) if A ∈ B satisfies A ∩ I = ∅.

Note that Hypothesis (H2) implies (H1), see [5, Lemma 2.1].

Definition 2.3 ([4]). Let µ ∈M. A function f ∈ BC(R, X) is said to be µ-ergodic
if

lim
T→+∞

1
µ([−T, T ])

∫
[−T,T ]

‖f(t)‖dµ(t) = 0.
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We denote by E(R, X, µ) the set of such functions. A function f ∈ BC(R×X,X)
is said to be µ-ergodic if

lim
T→+∞

1
µ([−T, T ])

∫
[−T,T ]

‖f(t, x)‖dµ(t) = 0,

uniformly in x ∈ X. Denote by E(R×X,X, µ) the set of such functions.

Definition 2.4 ([5]). Let µ ∈ M. A function f ∈ C(R, X) is said to be µ-pseudo
almost periodic if it can be decomposed as f = g + ϕ, where g ∈ AP (R, X) and
ϕ ∈ E(R, X, µ). Denote by PAP (R, X, µ) the collection of such functions.

Definition 2.5 ([11]). The Bochner transform f b(t, s) with t ∈ R, s ∈ [0, 1] of a
function f : R→ X is defined by

f b(t, s) := f(t+ s).

Definition 2.6 ([11]). The Bochner transform f b(t, s, u) with t ∈ R, s ∈ [0, 1],
u ∈ X of a function f : R×X → X is defined by

f b(t, s, u) := f(t+ s, u) for all u ∈ X.

Definition 2.7 ([11]). Let p ∈ [1,∞). The space BSp(R, X) of all Stepanov
bounded functions, with exponent p, consist of all measurable functions f : R→ X
such that f b ∈ L∞(R, Lp(0, 1;X)). This is a Banach space with the norm

‖f‖BSp(R,X) := ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖p dτ
)1/p

.

Definition 2.8 ([8]). A function f ∈ BSp(R, X) is called Stepanov almost periodic
if f b ∈ AP (R, Lp(0, 1;X)). We denote the set of all functions by APSp(R, X).

Definition 2.9 ([8]). A function f : R×X → Y with f(·, u) ∈ BSp(R, Y ), for each
u ∈ X, is called Stepanov almost periodic function in t ∈ R uniformly for u ∈ X
if, for each ε > 0 and each compact set K ⊂ X there exists a relatively dense set
P = P (ε, f,K) ⊂ R such that

sup
t∈R

(∫ 1

0

‖f(t+ s+ τ, u)− f(t+ s, u)‖ ds
)1/p

< ε,

for each τ ∈ P and each u ∈ K. We denote by APSp(R × X,Y ) the set of such
functions.

Definition 2.10 ([1]). Let µ ∈M. A function f ∈ BSp(R, X) is said µ-Stepanov-
like pseudo almost periodic (or µ-Sp-pseudo almost periodic) if it can be expressed
as f = g+φ, where g ∈ APSp(R, X) and φb ∈ E(R, Lp(0, 1;X), µ). In other words,
a function f ∈ Lploc(R, X) is said µ-Sp-pseudo almost periodic relatively to measure
µ, if its Bochner transform f b : R → Lp(0, 1;X) is µ-pseudo almost periodic in
the sense that there exist two functions g, φ : R → X such that f = g + φ, where
g ∈ APSp(R, X) and φb ∈ E(R, Lp(0, 1;X), µ), that is φb ∈ BC(R, Lp(0, 1;X)) and

lim
T→+∞

1
µ([−T, T ])

∫
[−T,T ]

(
∫ t+1

t

‖φ(s)‖pds)1/pdµ(t) = 0.

We denote by PAPSp(R, X, µ) the set of all such functions.
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Definition 2.11 ([1]). Let µ ∈ M. A function f : R × Y → X with f(·, u) ∈
Lploc(R, X) for each u ∈ Y , is said to be µ-Stepanov-like pseudo almost periodic
(or µ-Sp-pseudo almost periodic) if it can be expressed as f = g + φ, where g ∈
APSp(R × Y,X) and φb ∈ E(R × Y, Lp(0, 1;X), µ). We denote by PAPSp(R ×
Y,X, µ) the set of all such functions.

3. Main results

For 1 ≤ p <∞, we define B : BSp(R, X)→ L∞(R, Lp(0, 1;X)) by

f 7→ (Bf)(t)(s) = f b(t, s) = f(t+ s) (t ∈ R, s ∈ [0, 1]),

see [2].

Remark 3.1. It follows from its definition that the operator B is a linear isometry
between BSp(R, X) and L∞(R, Lp(0, 1;X)). More precisely,

‖Bf‖L∞(R,Lp) = ‖f‖BSp(R,X).

Remark 3.2. The definition of µ-Stepanov-like pseudo almost periodic functions
can be written using the preceding notation. Thus, for µ ∈M, we say that a func-
tion f is said to be µ-Stepanov-like pseudo almost periodic (or µ-Sp-pseudo almost
periodic) if and only if f ∈ B−1(AP (R, Lp(0, 1;X))) + B−1(E(R, Lp(0, 1;X), µ)).
Thus,

PAPSp(R, X, µ) = B−1(AP (R, Lp(0, 1;X))) + B−1(E(R, Lp(0, 1;X), µ)). (3.1)

Also, assume that µ satisfies (H1). Since B is an isometry and AP (R, Lp(0, 1;X))∩
E(R, Lp(0, 1;X), µ) = {0} by [5, Cor. 2.29] we have that the sum is direct, that is,

PAPSp(R, X, µ) = B−1(AP (R, Lp(0, 1;X)))⊕ B−1(E(R, Lp(0, 1;X), µ)).

Based on the definition of the operator B, next we prove that PAPSp(R, X, µ)
is a Banach space.

Theorem 3.3. If µ ∈ M satisfies (H1), then PAPSp(R, X, µ) is a Banach space
with the norm

‖f‖PAPSp(R,X,µ) = ‖g‖BSp(R,X) + ‖h‖BSp(R,X)

where f = g + h with g ∈ B−1(AP (R, Lp(0, 1;X))), h ∈ B−1(E(R, Lp(0, 1;X), µ)).

Proof. Let (fn) be a Cauchy sequence in PAPSp(R, X, µ). Then

‖fn − fm‖PAPSp(R,X,µ) → 0 as n,m→∞.

Let fn = gn + hn and fm = gm + hm with gn, gm ∈ B−1(AP (R, Lp(0, 1;X))) and
hn, hm ∈ B−1(E(R, Lp(0, 1;X), µ)). If n,m→∞, then

‖Bgn − Bgm‖L∞(R,Lp) = ‖gn − gm‖BSp(R,X) ≤ ‖fn − fm‖PAPSp(R,X,µ) → 0,

‖Bhn − Bhm‖L∞(R,Lp) = ‖hn − hm‖BSp(R,X) ≤ ‖fn − fm‖PAPSp(R,X,µ) → 0.

This implies that (Bgn) and (Bhn) are Cauchy sequences in AP (R, Lp(0, 1;X)) and
E(R, Lp(0, 1;X), µ) respectively. Since AP (R, Lp(0, 1;X)) is a closed subspace of
BC(R, Lp(0, 1;X)) then it is a Banach space. Also, it follows from [5, Cor. 2.31]
that E(R, Lp(0, 1;X), µ) is a Banach space. Then there exist g ∈ AP (R, Lp(0, 1;X))
and h ∈ E(R, Lp(0, 1;X), µ) such that

‖Bgn − g‖L∞(R,Lp) → 0, ‖Bhn − h‖L∞(R,Lp) → 0 (n→∞).
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Let

f1 := B−1({g}) ∈ B−1(AP (R, Lp(0, 1;X)))

f2 := B−1({h}) ∈ B−1(E(R, Lp(0, 1;X), µ)).

Note that f1 and f2 are well defined because B is injective. Let f := f1 + f2 ∈
PAPSp(R, X, µ). Thus

‖fn − f‖PAPSp(R,X,µ) = ‖(gn + hn)− (f1 + f2)‖PAPSp(R,X,µ)

= ‖gn − f1‖BSp(R,X) + ‖hn − f2‖BSp(R,X)

= ‖Bgn − Bf1‖L∞(R,Lp) + ‖Bhn − Bf2‖L∞(R,Lp)

= ‖Bgn − g‖L∞(R,Lp) + ‖Bhn − h‖L∞(R,Lp) → 0 (n→∞).

Hence PAPSp(R, X, µ) is a Banach space. �

The following theorem is taken from [7, Theorem 2.1].

Theorem 3.4. Let µ ∈ M and I be a bounded interval (eventually ∅). Assume
that f(·) ∈ BSp(R, X). Then the following assertions are equivalent.

(a) f b(·) ∈ E(R, Lp(0, 1;X)), µ).
(b)

lim
T→∞

1
µ([−T, T ] \ I)

∫
µ([−T,T ]\I)

(∫ t+1

t

‖f(s)‖pds
)1/p

dµ(t) = 0.

(c) For any ε > 0,

lim
T→∞

µ
(
t ∈ [−T, T ] \ I :

( ∫ t+1

t
‖f(s)‖pds

)1/p
> ε
)

µ([−T, T ] \ I)
= 0.

The following theorem about composition of Stepanov-like type pseudo almost
periodic functions generalizes [14, Theorem 2.15].

Theorem 3.5. Let µ ∈ M and let f = g + φ ∈ PAPSp(R × X,X, µ) with g ∈
B−1(AP (R ×X,Lp(0, 1;X))) and φ ∈ B−1(E(R ×X,Lp(0, 1;X)), µ). Assume the
following conditions.

(a) f(t, x) is uniformly continuous in any bounded set K ′ ⊂ X uniformly for
t ∈ R,

(b) g(t, x) is uniformly continuous in any bounded set K ′ ⊂ X uniformly for
t ∈ R,

(c) for every bounded subset K ′ ⊂ X, the set {f(·, x) : x ∈ K ′} is bounded in
PAPSp(R×X,X, µ).

If x = α + β ∈ PAPSp(R, X, µ) ∩ B(R, X), with α ∈ B−1(AP (R, Lp(0, 1;X))),
β ∈ B−1(E(R, Lp(0, 1;X), µ)) and Q = {x(t) : t ∈ R}, Q1 = {α(t) : t ∈ R} are
compact, then f(·, x(·)) ∈ PAPSp(R, X, µ).

Proof. Let
f(t, x(t)) = G(t) +H(t) +W (t),

where

G(t) = g(t, α(t)), H(t) = f(t, x(t))− f(t, α(t)), W (t) = φ(t, α(t)).
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Since g satisfies condition (b) and Q1 = {α(t) : t ∈ R} is compact, by [3, Prop. 1]
we have G ∈ B−1(AP (R, Lp(0, 1;X))). To show that f(·, x(·)) ∈ PAPSp(R, X, µ)
it is sufficient to show that H,W ∈ B−1(E(R, Lp(0, 1;X))).

First, we see that H ∈ B−1(E(R, Lp(0, 1;X))). Since x(·) and α(·) are bounded,
we can choose a bounded subsetK ′ ⊂ X such that x(R), α(R) ⊂ K ′. By assumption
(c) we have that H(·) ∈ BSp(R, X) and by assumption (a) we obtain that f is
uniformly continuous on the bounded set K ′ ⊂ X uniformly t ∈ R. Then, given
ε > 0, there exists δ > 0, such that u, v ∈ K ′ and ‖u − v‖ < δ imply that
‖f(t, u)− f(t, v)‖ ≤ ε for all t ∈ R. Then, we have(∫ t+1

t

‖f(s, u)− f(s, v)‖pds
)1/p

≤ ε.

Hence, for each t ∈ R, ‖β(s)‖BSp(R,X) < δ, s ∈ [t, t+ 1] implies that for all t ∈ R,(∫ t+1

t

‖H(s)‖pds
)1/p

=
(∫ t+1

t

‖f(s, x(s))− f(s, α(s))‖pds
)1/p

≤ ε.

Therefore,

µ
(
t ∈ [−T, T ] :

( ∫ t+1

t
‖f(s, x(s))− f(s, α(s))‖pds

)1/p
> ε
)

µ([−T, T ])

≤
µ
(
t ∈ [−T, T ] :

( ∫ t+1

t
‖β(s)‖pds

)1/p
> δ
)

µ([−T, T ])
.

Since β ∈ B−1(E(R, Lp(0, 1;X), µ)), then Theorem 3.4 implies that for the above
mentioned δ we have

lim
T→∞

µ
(
t ∈ [−T, T ] :

( ∫ t+1

t
‖f(s, x(s))− f(s, α(s))‖pds

)1/p
> ε
)

µ([−T, T ])
= 0.

By Theorem 3.4 we have that H ∈ B−1(E(R, Lp(0, 1;X))).
Now, we prove that W ∈ B−1(E(R, Lp(0, 1;X))). Since f and g satisfy (a) and

(b) respectively, then, given ε > 0, exists δ > 0, such that u, v ∈ Q1, ‖u − v‖ < δ
imply that (∫ t+1

t

‖f(s, u)− f(s, v)‖pds
)1/p

≤ ε

16
, t ∈ R,(∫ t+1

t

‖g(s, u)− g(s, v)‖pds
)1/p

≤ ε

16
, t ∈ R.

Let δ0 := min{ε, δ}. Then(∫ t+1

t

‖φ(s, u)− φ(s, v)‖pds
)1/p

≤
(∫ t+1

t

‖f(s, u)− f(s, v)‖pds
)1/p

+
(∫ t+1

t

‖g(s, u)− g(s, v)‖pds
)1/p

≤ ε

8
,

for all t ∈ R, and u, v ∈ Q1, ‖u− v‖ < δ0.
Since Q1 = {α(t) : t ∈ R} is compact, there exist open balls Ok (k = 1, 2, . . . ,m)

with center in uk ∈ Q1 and radius δ0 given above, such that {α(t) : t ∈ R} ⊂
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∪mk=1Ok. Define and choose Bk such that Bk := {t ∈ R : ‖α(t) − uk‖ < δ0}, k =
1, 2, . . . ,m, R = ∪mk=1Bk and set C1 = B1, Ck = Bk \ (∪k−1

j=1Bj) (k = 2, 3, . . . ,m).
Then R = ∪mk=1Ck where Ci ∩ Cj = ∅, i 6= j, 1 ≤ i, j ≤ m. Let us define the
function u : R → X by u(t) = uk for t ∈ Ck, k = 1, . . . ,m. Then ‖α(t) − u‖ < δ0
for all t ∈ R and ( m∑

k=1

∫
Ck∩[t,t+1]

‖φ(s, α(s))− φ(s, uk)‖pds
)1/p

=
(∫ t+1

t

‖φ(s, α(s))− φ(s, u(s))‖pds
)1/p

<
ε

8
.

Since φ ∈ B−1(E(R×X,Lp(0, 1;X)), µ), there exists T0 > 0 such that

1
µ([−T, T ])

∫
[−T,T ]

(∫ t+1

t

‖φ(s, uk)‖p dσ
)1/p

dµ(t) <
ε

8m2
,

for all T > T0 and 1 ≤ k ≤ m. Therefore,

1
µ([−T, T ])

∫
[−T,T ]

(∫ t+1

t

‖W (s)‖p ds
)1/p

dµ(t)

=
1

µ([−T, T ])

∫
[−T,T ]

( m∑
k=1

∫
Ck∩[t,t+1]

‖φ(s, α(s))− φ(s, uk)

+ φ(s, uk)‖pds
)1/p

dµ(t)

≤ 21+ 1
p

µ([−T, T ])

∫
[−T,T ]

(∫
Ck∩[t,t+1]

‖φ(s, α(s))− φ(s, u(s))‖pds
)1/p

dµ(t)

+
21+ 1

p

µ([−T, T ])

∫
[−T,T ]

( m∑
k=1

∫
Ck∩[t,t+1]

‖φ(s, uk)‖pds
)1/p

dµ(t)

<
ε

2
+m1/p ε

2m
< ε.

Hence W ∈ B−1(E(R, Lp(0, 1;X))). The conclusion follows. �

From Theorem 3.5 we obtain the following result of [1].

Corollary 3.6. Let µ ∈M and let f = g+φ ∈ PAPSp(R×X,X, µ) that satisfies
a Lipschitz condition in x ∈ X uniformly in t ∈ R, that is, there is a constant
L ≥ 0 such that ‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, for all x, y ∈ X and t ∈ R. If
x ∈ PAP (R, X, µ), then f(·, x(·)) ∈ PAPSp(R, X, µ).

To prove the next composition theorem, we need the following lemma.

Lemma 3.7 ([9]). Suppose that
(a) f ∈ APSp(R×X,X) with p > 1 and there exists a function Lf ∈ BSr(R,R)

(r ≥ max{p, p/p− 1}) such that

‖f(t, u)− f(t, v)‖ ≤ Lf (t)‖u− v‖ t ∈ R, u, v ∈ X.
(b) x ∈ APSp(R, X), and there exist a set E ⊂ R with meas(E) = 0 such that

K = {x(t) : t ∈ R \ E}
is compact in X.
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Then there exist q ∈ [1, p) such that f(·, x(·)) ∈ APSq(R, X).

The next result of composition is new.

Theorem 3.8. Let µ ∈ M, p > 1, f = g + φ ∈ PAPSp(R × X,X, µ) with
g ∈ B−1(AP (R ×X,Lp(0, 1;X))) and φ ∈ B−1(E(R ×X,Lp(0, 1;X), µ)). Assume
that

(i) there exist nonnegative functions Lf , Lg in the space APSr(R,R), with r ≥
max{p, p/p− 1}, such that

‖f(t, u)− f(t, v)‖ ≤ Lf (t)‖u− v‖, ‖g(t, u)− g(t, v)‖ ≤ Lg(t)‖u− v‖
for t ∈ R and u, v ∈ X.

(ii) h = α+ β ∈ PAPSp(R, X, µ) with

α ∈ B−1(AP (R, Lp(0, 1;X))), β ∈ B−1(E(R, Lp(0, 1;X), µ))

and there exist a set E ⊂ R with meas(E) = 0 such that the set K =
{α(t) : t ∈ R \ E} is compact in X.

Then there exist q ∈ [1, p) such that f(·, h(·)) ∈ PAPSq(R, X, µ).

Proof. We can decompose

f(t, h(t)) = g(t, α(t)) + f(t, h(t))− f(t, α(t)) + φ(t, α(t)).

Set

F (t) := g(t, α(t)), G(t) := f(t, h(t))− f(t, α(t)), H(t) := φ(t, α(t)).

Since r ≥ p
p−1 then there exists q ∈ [1, p) such that r = pq

p−q . Let p′ = p/p− q and
q′ = p/q. Therefore 1

p′ + 1
q′ = 1. Since α ∈ APSp(R, X) and g ∈ APSp(R×X,X)

then by assumptions and Lemma 3.7 we obtain that F ∈ B−1(AP (R, Lq(0, 1;X))).
Next we show that G ∈ B−1(E(R, Lq(0, 1;X), µ)). By Hölder inequality we have∫ t+1

t

‖G(σ)‖q dσ =
∫ t+1

t

‖f(σ, h(σ))− f(σ, α(σ))‖q dσ

≤
∫ t+1

t

Lqf (σ)‖h(σ)− α(σ)‖q dσ

=
∫ t+1

t

Lqf (σ)‖β(σ)‖q dσ

≤
(∫ t+1

t

Lqp
′

f (σ) dσ
)1/p′(∫ t+1

t

‖β(σ)‖qq
′
dσ
)1/q′

=
[( ∫ t+1

t

Lrf (σ) dσ
)1/r]r/p′[( ∫ t+1

t

‖β(σ)‖p dσ
)1/p]p/q′

≤ ‖Lf‖qBSr
[( ∫ t+1

t

‖β(σ)‖p dσ
)1/p]q

.

Then
1

µ([−T, T ])

∫
[−T,T ]

(∫ t+1

t

‖G(σ)‖q dσ
)1/q

dµ(t)

≤ ‖Lf‖BSr
µ([−T, T ])

∫
[−T,T ]

(∫ t+1

t

‖β(σ)‖p dσ
)1/p

dµ(t).
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Since β ∈ B−1(E(R, Lp(0, 1;X), µ)) we obtain that G ∈ B−1(E(R, Lq(0, 1;X), µ)).
Next, we prove that H ∈ B−1(E(R, Lq(0, 1;X), µ)).
Since φ ∈ B−1(E(R, Lp(0, 1;X), µ)), for each ε > 0 there exist T0 > 0 such that

T > T0 implies that

1
µ([−T, T ])

∫
[−T,T ]

(∫ t+1

t

‖φ(σ, u)‖p dσ
)1/p

dµ(t) < ε (u ∈ X).

Since K is compact, we can find finite open balls Ok (k = 1, 2, 3, . . . ,m) with center
xk such that K ⊂ ∪mk=1Ok. Thus, for all u ∈ K there exist xk such that

‖φ(t+ σ, u)‖
≤ ‖φ(t+ σ, u)− φ(t+ σ, xk)‖+ ‖φ(t+ σ, xk)‖
≤ ‖f(t+ σ, u)− f(t+ σ, xk)‖+ ‖g(t+ σ, u)− g(t+ σ, xk)‖+ ‖φ(t+ σ, xk)‖
≤ Lf (t+ σ)ε+ Lg(t+ σ)ε+ ‖φ(t+ σ, xk)‖ (t ∈ R, σ ∈ [0, 1]).

Hence

sup
u∈K
‖φ(t+ σ, u)‖ ≤ Lf (t+ σ)ε+ Lg(t+ σ)ε+

m∑
k=1

‖φ(t+ σ, xk)‖.

Since r ≥ p then Lf , Lg ∈ APSr(R,R) ⊂ APSp(R,R) ⊂ BSp(R,R).
By Minkowskii’s inequality, we obtain[ ∫ 1

0

(sup
u∈K
‖φ(t+ σ, u)‖)p dσ

]1/p
≤ (‖Lf‖BSp + ‖Lg‖BSp)ε+

m∑
k=1

(∫ 1

0

(
sup
u∈K
‖φ(t+ σ, u)‖

)p
dσ
)1/p

.

For T > T0 we have

1
µ([−T, T ])

∫
[−T,T ]

(∫ 1

0

(
sup
u∈K
‖φ(t+ σ, u)‖

)p
dσ
)1/p

dµ(t)

≤ (‖Lf‖BSp + ‖Lg‖BSp +m)ε.

Hence

lim
T→∞

1
µ([−T, T ])

∫
[−T,T ]

(∫ 1

0

(
sup
u∈K
‖φ(t+ σ, u)‖

)p
dσ
)1/p

dµ(t) = 0.

On the other hand
1

µ([−T, T ])

∫
[−T,T ]

‖Hb(t)‖q dµ(t)

≤ 1
µ([−T, T ])

∫
[−T,T ]

‖Hb(t)‖p dµ(t)

=
1

µ([−T, T ])

∫
[−T,T ]

(∫ 1

0

‖φ(t+ σ, α(t+ σ))‖p dσ
)1/p

dµ(t)

≤ 1
µ([−T, T ])

∫
[−T,T ]

(∫ 1

0

(sup
u∈K
‖φ(t+ σ, u)‖)p dσ

)1/p

dµ(t)→ 0

as T → ∞. Hence H ∈ B−1(E(R, Lq(0, 1;X), µ)). It proves that f(·, h(·)) =
F (·) + [G(·) +H(·)] ∈ PAPSq(R, X, µ). �
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We recall the following convolution theorem.

Theorem 3.9 ([2, Theorem 3.1]). Let S : R → B(X) be strongly continuous.
Suppose that there exists a function φ ∈ L1(R) such that

(a) ‖S(t)‖ ≤ φ(t), t ∈ R;
(b) φ(t) is nonincreasing;
(c)

∑∞
n=1 φ(n) <∞.

If g ∈ APSp(R, X), then

(S ∗ g)(t) :=
∫ t

−∞
S(t− s)g(s) ds ∈ AP (R, X).

The next result is one of the original contributions of this work.

Theorem 3.10. Let µ ∈M be given and let S : R→ B(X) be strongly continuous.
Suppose that there exists a function φ ∈ L1(R) such that

(a) ‖S(t)‖ ≤ φ(t) t ∈ R;
(b) φ(t) is nonincreasing;
(c)

∑∞
n=1 φ(n) <∞.

If f = g + h ∈ PAPSp(R, X, µ) with g ∈ B−1(AP (R, Lp(0, 1;X))) and h ∈
B−1(E(R, Lp(0, 1;X))), then

(S ∗ f)(t) :=
∫ t

−∞
S(t− s)f(s) ds ∈ PAP (R, X, µ).

Proof. Since

(S ∗ f)(t) :=
∫ t

−∞
S(t− s)f(s) ds =

∫ t

−∞
S(t− s)g(s) ds+

∫ t

−∞
S(t− s)h(s) ds,

and, from Theorem 3.9, (S ∗ g) ∈ AP (R, X) it remains to show that (S ∗ h) ∈
E(R, X, µ). Set

H(t) :=
∫ t

−∞
S(t− s)h(s) ds =

∫ t

−∞
S(s)h(t− s) ds,

and

Hn(t) :=
∫ t−n+1

t−n
S(t− σ)h(σ) dσ, n = 1, 2, . . . .

Note that Hn(t) is continuous and

‖Hn(t)‖ ≤
∫ t−n+1

t−n
‖S(t− σ)‖‖h(σ)‖ dσ

=
∫ n

n−1

‖S(σ)‖‖h(t− σ)‖ dσ

≤
∫ n

n−1

φ(s)‖h(t− σ)‖ dσ

≤ φ(n− 1)
(∫ n

n−1

‖h(t− σ)‖p dσ
)1/p

.

Hence, for T > 0,
1

µ([−T, T ])

∫
[−T,T ]

‖Hn(t)‖ dµ(t)
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≤ φ(n− 1)
1

µ([−T, T ])

∫
[−T,T ]

(∫ n

n−1

‖h(t− σ)‖p dσ
)1/p

dµ(t).

Using the fact that the space E(R, X, µ) is translation invariant, it follows that
t→ h(t− σ) belongs to E(R, X, µ). The above inequality leads to Hn ∈ E(R, X, µ)
for each n = 1, 2, . . . . The above estimate implies

‖Hn(t)‖ ≤ φ(n− 1)‖h‖BSp(R,X).

By hypothesis we have
∞∑
n=1

‖Hn(t)‖ ≤
∞∑
n=1

φ(n− 1)‖h‖BSp(R,X) < C‖h‖BSp(R,X) <∞.

It follows from Weierstrass test that the series
∑∞
n=1Hn(t) is uniformly convergent

on R. Moreover

H(t) =
∫ t

−∞
S(t− s)h(s) ds =

∞∑
n=1

Hn(t).

Since H ∈ C(R, X) and

‖H(t)‖ ≤
∞∑
n=1

‖Hn(t)‖ ≤ C‖h‖BSp(R,X),

we have

1
µ([−T, T ])

∫
[−T,T ]

‖H(t)‖ dµ(t) ≤ 1
µ([−T, T ])

∫
[−T,T ]

∥∥H(t)−
n∑
k=1

Hk(t)
∥∥ dµ(t)

+
n∑
k=1

1
µ([−T, T ])

∫
[−T,T ]

‖Hk(t)‖ dµ(t).

Since Hk(t) ∈ E(R, X, µ) and
∑n
k=1Hn(t) converges uniformly to H(t), it follows

that

lim
T→∞

1
µ([−T, T ])

∫
[−T,T ]

‖H(t)‖ dµ(t) = 0.

Hence H(·) =
∑∞
n=1Hn(t) ∈ E(R, X, µ). Therefore, (S∗f)(t) =

∫ t
−∞ S(t−s)f(s) ds

is µ-pseudo almost periodic. �

4. An application to fractional integro-differential equations

Given a function g : R → X, the Weyl fractional integral of order α > 0 is
defined by

D−αg(t) :=
1

Γ(α)

∫ t

−∞
(t− s)α−1g(s)ds, t ∈ R,

when this integral is convergent. The Weyl fractional derivative Dαg of order α > 0
is defined by

Dαg(t) :=
dn

dtn
D−(n−α)g(t), t ∈ R,

where n = [α] + 1. It is known that DαD−αg = g for any α > 0, and Dn = dn

dtn

holds with n ∈ N.
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Definition 4.1 ([13]). Let A be a closed and linear operator with domain D(A)
defined on a Banach space X, and α > 0. Given a ∈ L1

loc(R+), we say that A is the
generator of an α-resolvent family if there exist ω ≥ 0 and a strongly continuous
family Sα : [0,∞)→ B(X) such that { λα

1+â(λ) : Reλ > ω} ⊂ ρ(A) and for all x ∈ X,(
λα − (1 + â(λ))A

)−1
x =

1
1 + â(λ)

( λα

1 + â(λ)
−A

)−1

x =
∫ ∞

0

e−λtSα(t)x dt,

for Reλ > ω. In this case, {Sα(t)}t≥0 is called the α-resolvent family generated by
A.

Next, we consider the existence and uniqueness of µ-pseudo almost periodic mild
solutions for the fractional integro-differential equations

Dαu(t) = Au(t) +
∫ t

−∞
a(t− s)Au(s) ds+ f(t, u(t)), (4.1)

where A generates an α-resolvent family {Sα(t)}t≥0 on a Banach space X, a ∈
L1

loc(R+) and f ∈ PAPSp(R×X,X, µ) satisfies the Lipschitz condition.

Definition 4.2. A function u : R→ X is said to be a mild solution of (4.1) if

u(t) =
∫ t

−∞
Sα(t− s)f(s, u(s)) ds (t ∈ R)

where {Sα(t)}t≥0 is the α-resolvent family generated by A.

Theorem 4.3. Let µ ∈M, and assume (H2) holds. Let p > 1 and f ∈ PAPSp(R×
X,X, µ) be given. Suppose that

(H3) There exists Lf ≥ 0 such that

‖f(t, u)− f(t, v)‖ ≤ Lf‖u− v‖, t ∈ R, u, v ∈ X.

(H4) Operator A generates an α-resolvent family {Sα(t)}t≥0 such that ‖Sα(t)‖ ≤
ϕα(t), for all t ≥ 0, where ϕα(·) ∈ L1(R+) is nonincreasing such that
ϕ0 :=

∑∞
n=0 ϕα(n) <∞.

If Lf < ‖ϕα‖−1
1 , then (4.1) has a unique mild solution in PAP (R, X, µ).

Proof. Consider the operator Q : PAP (R, X, µ)→ PAP (R, X, µ) defined by

(Qu)(t) :=
∫ t

−∞
S(t− s)f(s, u(s)) ds, t ∈ R.

First, we show that Q(PAP (R, X, µ)) ⊂ PAP (R, X, µ). Let u ∈ PAP (R, X, µ).
Since f ∈ PAPSp(R ×X,X, µ) and satisfy (H3) we have from Corollary 3.6 that
f(·, u(·)) ∈ PAPSp(R, X, µ). Then, by assumption (h4) we obtain from Theorem
3.10 that Qu ∈ PAP (R, X, µ).

Let u, v ∈ PAP (R, X, µ). By conditions (H3) and (H4) we have

‖Qu−Qv‖∞ = sup
t∈R
‖(Qu)(t)− (Qv)(t)‖

= sup
t∈R
‖
∫ t

−∞
S(t− s)[f(s, u(s))− f(s, v(s))] ds‖

≤ Lf sup
t∈R

∫ ∞
0

‖S(s)‖‖u(t− s)− v(t− s)‖ ds
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≤ Lf‖u− v‖∞
∫ ∞

0

ϕα(s) ds

= Lf‖ϕα‖1‖u− v‖∞.

This proves that Q is a contraction, so by the Banach Fixed Point Theorem we
conclude that Q has unique fixed point. It follows that Qu = u ∈ PAP (R, X, µ)
and it is unique. Hence u is the unique mild solution of (4.1) which belongs to
PAP (R, X, µ). �

Theorem 4.4. Let µ ∈ M. Assume that (H2) holds. Let p > 1 and f = g + h ∈
PAPSp(R×X,X, µ) be given. Suppose that:

(H5) There exist nonnegative functions Lf (·), Lg(·) ∈ APSr(R,R) with r ≥
max{p, p

p−1} such that

‖f(t, u)− f(t, v)‖ ≤ Lf (t)‖u− v‖, ‖g(t, u)− g(t, v)‖ ≤ Lg(t)‖u− v‖,

for t ∈ R and u, v ∈ X.
(H6) Operator A generates an α-resolvent family {Sα(t)}t≥0 such that ‖Sα(t)‖ ≤

Me−ωt, for all t ≥ 0 and

‖Lf‖BSr <
1− e−ω

M
(

ωr0

1− e−ωr0
)1/r0

where 1
r + 1

r0
= 1.

Then (4.1) has a unique mild solution in PAP (R, X, µ).

Proof. Let u = u1 +u2 ∈ PAP (R, X, µ) where u1 ∈ AP (R, X) and u2 ∈ E(R, X, µ).
Then u ∈ PAPSp(R, X, µ). Since the range of almost periodic functions is relatively
compact set, then K = {u1(t) : t ∈ R} is compact in X. Thus, by conditions (H5)
and (H6) we have that all the hypotheses of Theorem 3.8 fulfilled, then there exists
q ∈ [1, p) such that f(·, u(·)) ∈ PAPSq(R, X, µ).

Consider the operator Q : PAP (R, X, µ)→ PAP (R, X, µ) such that

(Qu)(t) :=
∫ t

−∞
S(t− s)f(s, u(s)) ds, (t ∈ R).

Since f(·, u(·)) ∈ PAPSq(R, X, µ) it follows from Theorem 3.10 that Q maps
PAP (R, X, µ) into PAP (R, X, µ).

For any u, v ∈ PAP (R, X, µ) we have

‖(Qu)(t)− (Qv)(t)‖ ≤
∫ t

−∞
‖S(t− s)‖‖f(s, u(s)− f(s, v(s)))‖ ds

≤
∫ t

−∞
Me−ω(t−s)Lf (s)‖u(s)− v(s)‖ ds

≤ ‖u− v‖
∞∑
k=1

∫ t−k+1

t−k
Me−ω(t−s)Lf (s) ds

≤ ‖u− v‖
∞∑
k=1

(∫ t−k+1

t−k
Mr0e−ωr0(t−s)

)1/r0
ds‖Lf (s)‖BSr

=
M

1− e−ω
(1− e−ωr0

ωr0

)1/r0
‖u− v‖‖Lf (s)‖BSr .
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From Banach contraction mapping principle we have that Q has a unique fixed
point in PAP (R, X, µ) which is the unique mild solution of Equation (4.1). �

Example 4.5. We put A = −% in X = R, a(t) = %
4
tα−1

Γ(α) , % > 0, 0 < α < 1, and
f(t, u) = g(t, u) + h(t, u) where

g(t, u(t, x)) = [sin t+ sin(
√

2 t)] sin(u(t, x)), h(t, u(t, x)) = φ(t) sin(u(t, x)),

and φ(t) is such that |φ(t)et| ≤ K with K > 0.
Consider the measure µ whose Radon-Nikodym derivative is ρ(t) = et. Then µ ∈

M and satisfies the (H2) (see [5, Ex. 3.6]). Note that g ∈ B−1(AP (R, Lp(0, 1;X)))
and h ∈ B−1(E(R, Lp(0, 1;X), µ)). Hence f ∈ PAPSp(R×X,X, µ). Furthermore,

|f(t, u)− f(t, v)| ≤ L|u− v|,

where L := max{2,K}. Therefore f satisfies (C1).
Now, note that Equation (4.1) takes the form

Dαu(t) = −%u(t)− %2

4

∫ t

−∞

(t− s)α−1

Γ(α)
u(s)ds+ f(t, u(t)), t ∈ R. (4.2)

It follows from [13, Example 4.17] that A generates an α-resolvent family {Sα(t)}t≥0

such that

Ŝα(λ) =
λα

(λα + 2/%)2

λα−α/2

(λα + 2/%)2
· λα−α/2

(λα + 2/%)2
.

Thus, we obtain explicitly

Sα(t) = (r ∗ r)(t) t > 0,

with r(t) = t
α
2−1Eα,α2 (−%2 t

α), and where Eα,α2 (·) is the Mittag-Leffler function.
By properties of the Mittag-Leffler function we obtain that (H4) holds. Then,

by Theorem 4.3, (4.2) has a unique mild solution u ∈ PAP (R, X, µ) provided
‖Sα‖ < 1

2 . Finally we note that, for 0 < α < 1, % > 0 may be chosen so that
‖Sα‖ < 1

2 as in the proof of [13, Lemma 3.9].
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[6] S. Bochner; Beiträge zur theorie der fastperiodischen funktionen. Math. Ann., 96 (1927),
119–147.
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