COMPOSITION AND CONVOLUTION THEOREMS FOR μ-STEPANOV PSEUDO ALMOST PERIODIC FUNCTIONS AND APPLICATIONS TO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS

EDGARDO ALVAREZ

Abstract

In this article we establish new convolution and composition theorems for μ-Stepanov pseudo almost periodic functions. We prove that the space of vector-valued μ-Stepanov pseudo almost periodic functions is a Banach space. As an application, we prove the existence and uniqueness of μ pseudo almost periodic mild solutions for the fractional integro-differential equation $$
D^{\alpha} u(t)=A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s+f(t, u(t))
$$ where A generates an α-resolvent family $\left\{S_{\alpha}(t)\right\}_{t \geq 0}$ on a Banach space X, $a \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+}\right), \alpha>0$, the fractional derivative is understood in the sense of Weyl and the nonlinearity f is a μ-Stepanov pseudo almost periodic function

1. Introduction

Ezzinbi et al. [1 defined the space of μ - S^{p}-pseudo almost periodic functions. This space contains the space of Stepanov-like weighted pseudo almost periodic functions (see [8, 11]) and the space of μ-pseudo almost periodic functions (see [5]). Several composition theorems and their applications in the context of Stepanov-like almost periodic, Stepanov-like pseudo almost periodic and Stepanov-like weighted pseudo almost periodic functions appear for example in [2, 9, 10, 12, 14]. Here we generalize the composition theorem given by Zhao et al. for the space of Stepanovlike weighted pseudo almost periodic functions (see [14, Th. 2.15]). Also, we recover the composition result given by Ezzinbi et al. for μ - S^{p}-pseudo almost periodic functions (see [1, Th. 2.29]). Moreover, we establish another composition theorem that does not require Lipschitzian nonlinearities (Theorem 3.5 and Theorem 3.8).

In Theorem 3.10 we prove that the convolution of a strongly continuous family $\{S(t)\}_{t \geq 0}$ with a $\mu-S^{p}$-pseudo almost periodic function $F,(S * f)(t)=\int_{-\infty}^{t} S(t-$ $s) F(s) d s$, is a μ-pseudo almost periodic function. We prove that the collection of μ - S^{p}-pseudo almost periodic functions is a Banach space with a natural norm (Theorem 3.3), and combine our results to prove the existence and uniqueness

[^0]of μ-pseudo almost periodic solutions to a class of abstract fractional differential equations
\[

$$
\begin{equation*}
D^{\alpha} u(t)=A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s+f(t, u(t)) \tag{1.1}
\end{equation*}
$$

\]

where A generates an α-resolvent family $\left\{S_{\alpha}(t)\right\}_{t \geq 0}$ on a Banach space $X, a \in$ $L_{\text {loc }}^{1}\left(\mathbb{R}_{+}\right), \alpha>0$, the fractional derivative is understood in the sense of Weyl and provided that the nonlinear term f is μ-Stepanov pseudo almost periodic.

2. Preliminaries

Throughout this article $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ denote complex Banach spaces and $B(X, Y)$ the Banach space of bounded linear operators from X to Y; when $X=Y$ we write $B(X)$.

We denote by $B C(\mathbb{R}, X)$ the Banach space of X-valued bounded and continuous defined functions on \mathbb{R}, with norm

$$
\begin{equation*}
\|f\|=\sup \left\{\|f(t)\|_{X}: t \in \mathbb{R}\right\} \tag{2.1}
\end{equation*}
$$

Definition 2.1 (6$]$). A function $f \in C(\mathbb{R}, X)$ is called (Bohr) almost periodic if for each $\epsilon>0$ there exists $l=l(\epsilon)>0$ such that every interval of length l contains a number τ with the property that

$$
\|f(t+\tau)-f(t)\|<\epsilon \quad(t \in \mathbb{R})
$$

The collection of all such functions will be denoted by $A P(\mathbb{R}, X)$.
This definition is equivalent to the so-called Bochner's criterion, namely, $f \in$ $A P(\mathbb{R}, X)$ if and only if for every sequence of reals $\left(s_{n}^{\prime}\right)$ there exists a subsequence $\left(s_{n}\right)$ such that $\left(f\left(\cdot+s_{n}\right)\right)$ is uniformly convergent on \mathbb{R}.

Definition 2.2 ([6]). A function $f \in C(\mathbb{R} \times Y, X)$ is called (Bohr) almost periodic in $t \in \mathbb{R}$ uniformly in $y \in K$ where $K \subset Y$ is any compact subset if for each $\epsilon>0$ there exists $l=l(\epsilon)>0$ such that every interval of length l contains a number τ with the property that

$$
\|f(t+\tau, y)-f(t, y)\|<\epsilon \quad(t \in \mathbb{R}, y \in K)
$$

The collection of such functions will be denoted by $A P(\mathbb{R} \times Y, X)$.
Let \mathcal{B} denote the Lebesgue σ-field of \mathbb{R}, see [4]. Let \mathcal{M} stand for the set of all positive measures ν on \mathcal{B} satisfying $\mu(\mathbb{R})=\infty$ and $\mu([a, b])<\infty$ for all $a, b \in \mathbb{R}$. Throughout this paper will consider the following hypotheses:
(H1) For all a, b and $c \in \mathbb{R}$, such that $0 \leq a<b \leq c$, there exist $\tau_{0} \geq 0$ and $\alpha_{0}>0$ such that

$$
|\tau| \leq \tau_{0} \Rightarrow \mu((a+\tau, b+\tau)) \geq \alpha_{0} \mu([\tau, c+\tau])
$$

(H2) For all $\tau \in \mathbb{R}$, there exist $\beta>0$ and a bounded interval I such that $\mu(\{a+\tau, a \in A\}) \leq \beta \mu(A)$ if $A \in \mathcal{B}$ satisfies $A \cap I=\emptyset$.
Note that Hypothesis (H2) implies (H1), see [5, Lemma 2.1].
Definition 2.3 ([4). Let $\mu \in \mathcal{M}$. A function $f \in B C(\mathbb{R}, X)$ is said to be μ-ergodic if

$$
\lim _{T \rightarrow+\infty} \frac{1}{\mu([-T, T])} \int_{[-T, T]}\|f(t)\| d \mu(t)=0
$$

We denote by $\mathcal{E}(\mathbb{R}, X, \mu)$ the set of such functions. A function $f \in B C(\mathbb{R} \times X, X)$ is said to be μ-ergodic if

$$
\lim _{T \rightarrow+\infty} \frac{1}{\mu([-T, T])} \int_{[-T, T]}\|f(t, x)\| d \mu(t)=0
$$

uniformly in $x \in X$. Denote by $\mathcal{E}(\mathbb{R} \times X, X, \mu)$ the set of such functions.
Definition 2.4 ([5]). Let $\mu \in \mathcal{M}$. A function $f \in C(\mathbb{R}, X)$ is said to be μ-pseudo almost periodic if it can be decomposed as $f=g+\varphi$, where $g \in A P(\mathbb{R}, X)$ and $\varphi \in \mathcal{E}(\mathbb{R}, X, \mu)$. Denote by $P A P(\mathbb{R}, X, \mu)$ the collection of such functions.

Definition 2.5 ([11). The Bochner transform $f^{b}(t, s)$ with $t \in \mathbb{R}, s \in[0,1]$ of a function $f: \mathbb{R} \rightarrow X$ is defined by

$$
f^{b}(t, s):=f(t+s)
$$

Definition 2.6 ([11]). The Bochner transform $f^{b}(t, s, u)$ with $t \in \mathbb{R}, s \in[0,1]$, $u \in X$ of a function $f: \mathbb{R} \times X \rightarrow X$ is defined by

$$
f^{b}(t, s, u):=f(t+s, u) \quad \text { for all } u \in X
$$

Definition 2.7 (11). Let $p \in[1, \infty)$. The space $B S^{p}(\mathbb{R}, X)$ of all Stepanov bounded functions, with exponent p, consist of all measurable functions $f: \mathbb{R} \rightarrow X$ such that $f^{b} \in L^{\infty}\left(\mathbb{R}, L^{p}(0,1 ; X)\right)$. This is a Banach space with the norm

$$
\|f\|_{B S^{p}(\mathbb{R}, X)}:=\left\|f^{b}\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)}=\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\|f(\tau)\|^{p} d \tau\right)^{1 / p}
$$

Definition 2.8 (8). A function $f \in B S^{p}(\mathbb{R}, X)$ is called Stepanov almost periodic if $f^{b} \in A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)$. We denote the set of all functions by $A P S^{p}(\mathbb{R}, X)$.

Definition 2.9 (8). A function $f: \mathbb{R} \times X \rightarrow Y$ with $f(\cdot, u) \in B S^{p}(\mathbb{R}, Y)$, for each $u \in X$, is called Stepanov almost periodic function in $t \in \mathbb{R}$ uniformly for $u \in X$ if, for each $\epsilon>0$ and each compact set $K \subset X$ there exists a relatively dense set $P=P(\epsilon, f, K) \subset \mathbb{R}$ such that

$$
\sup _{t \in \mathbb{R}}\left(\int_{0}^{1}\|f(t+s+\tau, u)-f(t+s, u)\| d s\right)^{1 / p}<\epsilon
$$

for each $\tau \in P$ and each $u \in K$. We denote by $A P S^{p}(\mathbb{R} \times X, Y)$ the set of such functions.

Definition 2.10 (1). Let $\mu \in \mathcal{M}$. A function $f \in B S^{p}(\mathbb{R}, X)$ is said μ-Stepanovlike pseudo almost periodic (or $\mu-S^{p}$-pseudo almost periodic) if it can be expressed as $f=g+\phi$, where $g \in A P S^{p}(\mathbb{R}, X)$ and $\phi^{b} \in \mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)$. In other words, a function $f \in L_{\mathrm{loc}}^{p}(\mathbb{R}, X)$ is said μ - S^{p}-pseudo almost periodic relatively to measure μ, if its Bochner transform $f^{b}: \mathbb{R} \rightarrow L^{p}(0,1 ; X)$ is μ-pseudo almost periodic in the sense that there exist two functions $g, \phi: \mathbb{R} \rightarrow X$ such that $f=g+\phi$, where $g \in A P S^{p}(\mathbb{R}, X)$ and $\phi^{b} \in \mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)$, that is $\phi^{b} \in B C\left(\mathbb{R}, L^{p}(0,1 ; X)\right)$ and

$$
\lim _{T \rightarrow+\infty} \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{t}^{t+1}\|\phi(s)\|^{p} d s\right)^{1 / p} d \mu(t)=0
$$

We denote by $P A P S^{p}(\mathbb{R}, X, \mu)$ the set of all such functions.

Definition 2.11 ([1]). Let $\mu \in \mathcal{M}$. A function $f: \mathbb{R} \times Y \rightarrow X$ with $f(\cdot, u) \in$ $L_{\text {loc }}^{p}(\mathbb{R}, X)$ for each $u \in Y$, is said to be μ-Stepanov-like pseudo almost periodic (or μ - S^{p}-pseudo almost periodic) if it can be expressed as $f=g+\phi$, where $g \in$ $A P S^{p}(\mathbb{R} \times Y, X)$ and $\phi^{b} \in \mathcal{E}\left(\mathbb{R} \times Y, L^{p}(0,1 ; X), \mu\right)$. We denote by $P A P S^{p}(\mathbb{R} \times$ $Y, X, \mu)$ the set of all such functions.

3. Main Results

For $1 \leq p<\infty$, we define $\mathcal{B}: B S^{p}(\mathbb{R}, X) \rightarrow L^{\infty}\left(\mathbb{R}, L^{p}(0,1 ; X)\right)$ by

$$
f \mapsto(\mathcal{B} f)(t)(s)=f^{b}(t, s)=f(t+s) \quad(t \in \mathbb{R}, s \in[0,1])
$$

see 2.
Remark 3.1. It follows from its definition that the operator \mathcal{B} is a linear isometry between $B S^{p}(\mathbb{R}, X)$ and $L^{\infty}\left(\mathbb{R}, L^{p}(0,1 ; X)\right)$. More precisely,

$$
\|\mathcal{B} f\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)}=\|f\|_{B S^{p}(\mathbb{R}, X)} .
$$

Remark 3.2. The definition of μ-Stepanov-like pseudo almost periodic functions can be written using the preceding notation. Thus, for $\mu \in \mathcal{M}$, we say that a function f is said to be μ-Stepanov-like pseudo almost periodic (or μ - S^{p}-pseudo almost periodic) if and only if $f \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)+\mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)$. Thus,

$$
\begin{equation*}
\operatorname{PAPS}^{p}(\mathbb{R}, X, \mu)=\mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)+\mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right) \tag{3.1}
\end{equation*}
$$

Also, assume that μ satisfies (H1). Since \mathcal{B} is an isometry and $A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right) \cap$ $\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)=\{0\}$ by [5, Cor. 2.29] we have that the sum is direct, that is,

$$
P A P S^{p}(\mathbb{R}, X, \mu)=\mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right) \oplus \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)
$$

Based on the definition of the operator \mathcal{B}, next we prove that $P A P S^{p}(\mathbb{R}, X, \mu)$ is a Banach space.
Theorem 3.3. If $\mu \in \mathcal{M}$ satisfies (H1), then $\operatorname{PAPS}^{p}(\mathbb{R}, X, \mu)$ is a Banach space with the norm

$$
\|f\|_{P A P S^{p}(\mathbb{R}, X, \mu)}=\|g\|_{B S^{p}(\mathbb{R}, X)}+\|h\|_{B S^{p}(\mathbb{R}, X)}
$$

where $f=g+h$ with $g \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right), h \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)$.
Proof. Let $\left(f_{n}\right)$ be a Cauchy sequence in $\operatorname{PAPS}(\mathbb{R}, X, \mu)$. Then

$$
\left\|f_{n}-f_{m}\right\|_{P A P S^{p}(\mathbb{R}, X, \mu)} \rightarrow 0 \quad \text { as } n, m \rightarrow \infty
$$

Let $f_{n}=g_{n}+h_{n}$ and $f_{m}=g_{m}+h_{m}$ with $g_{n}, g_{m} \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$ and $h_{n}, h_{m} \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)$. If $n, m \rightarrow \infty$, then

$$
\begin{aligned}
\left\|\mathcal{B} g_{n}-\mathcal{B} g_{m}\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)} & =\left\|g_{n}-g_{m}\right\|_{B S^{p}(\mathbb{R}, X)} \leq\left\|f_{n}-f_{m}\right\|_{P A P S^{p}(\mathbb{R}, X, \mu)} \rightarrow 0 \\
\left\|\mathcal{B} h_{n}-\mathcal{B} h_{m}\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)} & =\left\|h_{n}-h_{m}\right\|_{B S^{p}(\mathbb{R}, X)} \leq\left\|f_{n}-f_{m}\right\|_{P A P S^{p}(\mathbb{R}, X, \mu)} \rightarrow 0
\end{aligned}
$$

This implies that $\left(\mathcal{B} g_{n}\right)$ and $\left(\mathcal{B} h_{n}\right)$ are Cauchy sequences in $A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)$ and $\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)$ respectively. Since $A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)$ is a closed subspace of $B C\left(\mathbb{R}, L^{p}(0,1 ; X)\right)$ then it is a Banach space. Also, it follows from [5, Cor. 2.31] that $\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)$ is a Banach space. Then there exist $g \in A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)$ and $h \in \mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)$ such that

$$
\left\|\mathcal{B} g_{n}-g\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)} \rightarrow 0, \quad\left\|\mathcal{B} h_{n}-h\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Let

$$
\begin{aligned}
f_{1} & :=\mathcal{B}^{-1}(\{g\}) \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right) \\
f_{2} & :=\mathcal{B}^{-1}(\{h\}) \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)
\end{aligned}
$$

Note that f_{1} and f_{2} are well defined because \mathcal{B} is injective. Let $f:=f_{1}+f_{2} \in$ $P_{A P S}(\mathbb{R}, X, \mu)$. Thus

$$
\begin{aligned}
\left\|f_{n}-f\right\|_{P A P S^{p}(\mathbb{R}, X, \mu)} & =\left\|\left(g_{n}+h_{n}\right)-\left(f_{1}+f_{2}\right)\right\|_{P A P S^{p}(\mathbb{R}, X, \mu)} \\
& =\left\|g_{n}-f_{1}\right\|_{B S^{p}(\mathbb{R}, X)}+\left\|h_{n}-f_{2}\right\|_{B S^{p}(\mathbb{R}, X)} \\
& =\left\|\mathcal{B} g_{n}-\mathcal{B} f_{1}\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)}+\left\|\mathcal{B} h_{n}-\mathcal{B} f_{2}\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)} \\
& =\left\|\mathcal{B} g_{n}-g\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)}+\left\|\mathcal{B} h_{n}-h\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)} \rightarrow 0 \quad(n \rightarrow \infty) .
\end{aligned}
$$

Hence $P A P S^{p}(\mathbb{R}, X, \mu)$ is a Banach space.
The following theorem is taken from [7, Theorem 2.1].
Theorem 3.4. Let $\mu \in \mathcal{M}$ and I be a bounded interval (eventually \emptyset). Assume that $f(\cdot) \in B S^{p}(\mathbb{R}, X)$. Then the following assertions are equivalent.
(a) $\left.f^{b}(\cdot) \in \mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X)\right), \mu\right)$.
(b)

$$
\lim _{T \rightarrow \infty} \frac{1}{\mu([-T, T] \backslash I)} \int_{\mu([-T, T] \backslash I)}\left(\int_{t}^{t+1}\|f(s)\|^{p} d s\right)^{1 / p} d \mu(t)=0
$$

(c) For any $\epsilon>0$,

$$
\lim _{T \rightarrow \infty} \frac{\mu\left(t \in[-T, T] \backslash I:\left(\int_{t}^{t+1}\|f(s)\|^{p} d s\right)^{1 / p}>\epsilon\right)}{\mu([-T, T] \backslash I)}=0
$$

The following theorem about composition of Stepanov-like type pseudo almost periodic functions generalizes [14, Theorem 2.15].

Theorem 3.5. Let $\mu \in \mathcal{M}$ and let $f=g+\phi \in \operatorname{PAPS}^{p}(\mathbb{R} \times X, X, \mu)$ with $g \in$ $\mathcal{B}^{-1}\left(A P\left(\mathbb{R} \times X, L^{p}(0,1 ; X)\right)\right)$ and $\phi \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R} \times X, L^{p}(0,1 ; X)\right), \mu\right)$. Assume the following conditions.
(a) $f(t, x)$ is uniformly continuous in any bounded set $K^{\prime} \subset X$ uniformly for $t \in \mathbb{R}$,
(b) $g(t, x)$ is uniformly continuous in any bounded set $K^{\prime} \subset X$ uniformly for $t \in \mathbb{R}$,
(c) for every bounded subset $K^{\prime} \subset X$, the set $\left\{f(\cdot, x): x \in K^{\prime}\right\}$ is bounded in $P A P S^{p}(\mathbb{R} \times X, X, \mu)$.
If $x=\alpha+\beta \in \operatorname{PAPS}^{p}(\mathbb{R}, X, \mu) \cap B(\mathbb{R}, X)$, with $\alpha \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$, $\beta \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)$ and $Q=\overline{\{x(t): t \in \mathbb{R}\}}, Q_{1}=\overline{\{\alpha(t): t \in \mathbb{R}\}}$ are compact, then $f(\cdot, x(\cdot)) \in P A P S^{p}(\mathbb{R}, X, \mu)$.

Proof. Let

$$
f(t, x(t))=G(t)+H(t)+W(t)
$$

where

$$
G(t)=g(t, \alpha(t)), \quad H(t)=f(t, x(t))-f(t, \alpha(t)), \quad W(t)=\phi(t, \alpha(t))
$$

Since g satisfies condition (b) and $Q_{1}=\overline{\{\alpha(t): t \in \mathbb{R}\}}$ is compact, by 3, Prop. 1] we have $G \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$. To show that $f(\cdot, x(\cdot)) \in P A P S^{p}(\mathbb{R}, X, \mu)$ it is sufficient to show that $H, W \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$.

First, we see that $H \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$. Since $x(\cdot)$ and $\alpha(\cdot)$ are bounded, we can choose a bounded subset $K^{\prime} \subset X$ such that $x(\mathbb{R}), \alpha(\mathbb{R}) \subset K^{\prime}$. By assumption (c) we have that $H(\cdot) \in B S^{p}(\mathbb{R}, X)$ and by assumption (a) we obtain that f is uniformly continuous on the bounded set $K^{\prime} \subset X$ uniformly $t \in \mathbb{R}$. Then, given $\epsilon>0$, there exists $\delta>0$, such that $u, v \in K^{\prime}$ and $\|u-v\|<\delta$ imply that $\|f(t, u)-f(t, v)\| \leq \epsilon$ for all $t \in \mathbb{R}$. Then, we have

$$
\left(\int_{t}^{t+1}\|f(s, u)-f(s, v)\|^{p} d s\right)^{1 / p} \leq \epsilon
$$

Hence, for each $t \in \mathbb{R},\|\beta(s)\|_{B S^{p}(\mathbb{R}, X)}<\delta, s \in[t, t+1]$ implies that for all $t \in \mathbb{R}$,

$$
\left(\int_{t}^{t+1}\|H(s)\|^{p} d s\right)^{1 / p}=\left(\int_{t}^{t+1}\|f(s, x(s))-f(s, \alpha(s))\|^{p} d s\right)^{1 / p} \leq \epsilon
$$

Therefore,

$$
\begin{aligned}
& \frac{\mu\left(t \in[-T, T]:\left(\int_{t}^{t+1}\|f(s, x(s))-f(s, \alpha(s))\|^{p} d s\right)^{1 / p}>\epsilon\right)}{\mu([-T, T])} \\
& \leq \frac{\mu\left(t \in[-T, T]:\left(\int_{t}^{t+1}\|\beta(s)\|^{p} d s\right)^{1 / p}>\delta\right)}{\mu([-T, T])}
\end{aligned}
$$

Since $\beta \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)$, then Theorem 3.4 implies that for the above mentioned δ we have

$$
\lim _{T \rightarrow \infty} \frac{\mu\left(t \in[-T, T]:\left(\int_{t}^{t+1}\|f(s, x(s))-f(s, \alpha(s))\|^{p} d s\right)^{1 / p}>\epsilon\right)}{\mu([-T, T])}=0
$$

By Theorem 3.4 we have that $H \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$.
Now, we prove that $W \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$. Since f and g satisfy (a) and (b) respectively, then, given $\epsilon>0$, exists $\delta>0$, such that $u, v \in Q_{1},\|u-v\|<\delta$ imply that

$$
\begin{aligned}
& \left(\int_{t}^{t+1}\|f(s, u)-f(s, v)\|^{p} d s\right)^{1 / p} \leq \frac{\epsilon}{16}, \quad t \in \mathbb{R} \\
& \left(\int_{t}^{t+1}\|g(s, u)-g(s, v)\|^{p} d s\right)^{1 / p} \leq \frac{\epsilon}{16}, \quad t \in \mathbb{R}
\end{aligned}
$$

Let $\delta_{0}:=\min \{\epsilon, \delta\}$. Then

$$
\begin{aligned}
& \left(\int_{t}^{t+1}\|\phi(s, u)-\phi(s, v)\|^{p} d s\right)^{1 / p} \\
& \leq\left(\int_{t}^{t+1}\|f(s, u)-f(s, v)\|^{p} d s\right)^{1 / p}+\left(\int_{t}^{t+1}\|g(s, u)-g(s, v)\|^{p} d s\right)^{1 / p} \\
& \leq \frac{\epsilon}{8}
\end{aligned}
$$

for all $t \in \mathbb{R}$, and $u, v \in Q_{1},\|u-v\|<\delta_{0}$.
Since $Q_{1}=\overline{\{\alpha(t): t \in \mathbb{R}\}}$ is compact, there exist open balls $O_{k}(k=1,2, \ldots, m)$ with center in $u_{k} \in Q_{1}$ and radius δ_{0} given above, such that $\{\alpha(t): t \in \mathbb{R}\} \subset$
$\cup_{k=1}^{m} O_{k}$. Define and choose B_{k} such that $B_{k}:=\left\{t \in \mathbb{R}:\left\|\alpha(t)-u_{k}\right\|<\delta_{0}\right\}, k=$ $1,2, \ldots, m, \mathbb{R}=\cup_{k=1}^{m} B_{k}$ and set $C_{1}=B_{1}, C_{k}=B_{k} \backslash\left(\cup_{j=1}^{k-1} B_{j}\right)(k=2,3, \ldots, m)$. Then $\mathbb{R}=\cup_{k=1}^{m} C_{k}$ where $C_{i} \cap C_{j}=\emptyset, i \neq j, 1 \leq i, j \leq m$. Let us define the function $\bar{u}: \mathbb{R} \rightarrow X$ by $\bar{u}(t)=u_{k}$ for $t \in C_{k}, k=1, \ldots, m$. Then $\|\alpha(t)-\bar{u}\|<\delta_{0}$ for all $t \in \mathbb{R}$ and

$$
\begin{aligned}
& \left(\sum_{k=1}^{m} \int_{C_{k} \cap[t, t+1]}\left\|\phi(s, \alpha(s))-\phi\left(s, u_{k}\right)\right\|^{p} d s\right)^{1 / p} \\
& =\left(\int_{t}^{t+1}\|\phi(s, \alpha(s))-\phi(s, \bar{u}(s))\|^{p} d s\right)^{1 / p}<\frac{\epsilon}{8}
\end{aligned}
$$

Since $\phi \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R} \times X, L^{p}(0,1 ; X)\right), \mu\right)$, there exists $T_{0}>0$ such that

$$
\frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{t}^{t+1}\left\|\phi\left(s, u_{k}\right)\right\|^{p} d \sigma\right)^{1 / p} d \mu(t)<\frac{\epsilon}{8 m^{2}}
$$

for all $T>T_{0}$ and $1 \leq k \leq m$. Therefore,

$$
\begin{aligned}
& \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{t}^{t+1}\|W(s)\|^{p} d s\right)^{1 / p} d \mu(t) \\
&= \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\sum_{k=1}^{m} \int_{C_{k} \cap[t, t+1]} \| \phi(s, \alpha(s))-\phi\left(s, u_{k}\right)\right. \\
&\left.+\phi\left(s, u_{k}\right) \|^{p} d s\right)^{1 / p} d \mu(t) \\
& \leq \frac{2^{1+\frac{1}{p}}}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{C_{k} \cap[t, t+1]}\|\phi(s, \alpha(s))-\phi(s, \bar{u}(s))\|^{p} d s\right)^{1 / p} d \mu(t) \\
&+\frac{2^{1+\frac{1}{p}}}{\mu([-T, T])} \int_{[-T, T]}\left(\sum_{k=1}^{m} \int_{C_{k} \cap[t, t+1]}\left\|\phi\left(s, u_{k}\right)\right\|^{p} d s\right)^{1 / p} d \mu(t) \\
&< \frac{\epsilon}{2}+m^{1 / p} \frac{\epsilon}{2 m}<\epsilon .
\end{aligned}
$$

Hence $W \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$. The conclusion follows.
From Theorem 3.5 we obtain the following result of [1].
Corollary 3.6. Let $\mu \in \mathcal{M}$ and let $f=g+\phi \in P_{A P S}^{p}(\mathbb{R} \times X, X, \mu)$ that satisfies a Lipschitz condition in $x \in X$ uniformly in $t \in \mathbb{R}$, that is, there is a constant $L \geq 0$ such that $\|f(t, x)-f(t, y)\| \leq L\|x-y\|$, for all $x, y \in X$ and $t \in \mathbb{R}$. If $x \in P A P(\mathbb{R}, X, \mu)$, then $f(\cdot, x(\cdot)) \in P^{P A P} S^{p}(\mathbb{R}, X, \mu)$.

To prove the next composition theorem, we need the following lemma.
Lemma 3.7 ([9]). Suppose that
(a) $f \in A P S^{p}(\mathbb{R} \times X, X)$ with $p>1$ and there exists a function $L_{f} \in B S^{r}(\mathbb{R}, \mathbb{R})$ $(r \geq \max \{p, p / p-1\})$ such that

$$
\|f(t, u)-f(t, v)\| \leq L_{f}(t)\|u-v\| \quad t \in \mathbb{R}, u, v \in X
$$

(b) $x \in A P S^{p}(\mathbb{R}, X)$, and there exist a set $E \subset \mathbb{R}$ with meas $(E)=0$ such that

$$
K=\overline{\{x(t): t \in \mathbb{R} \backslash E\}}
$$

is compact in X.

Then there exist $q \in[1, p)$ such that $f(\cdot, x(\cdot)) \in A P S^{q}(\mathbb{R}, X)$.
The next result of composition is new.
Theorem 3.8. Let $\mu \in \mathcal{M}, p>1, f=g+\phi \in P_{A P S}^{p}(\mathbb{R} \times X, X, \mu)$ with $g \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R} \times X, L^{p}(0,1 ; X)\right)\right)$ and $\phi \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R} \times X, L^{p}(0,1 ; X), \mu\right)\right)$. Assume that
(i) there exist nonnegative functions L_{f}, L_{g} in the space $A P S^{r}(\mathbb{R}, \mathbb{R})$, with $r \geq$ $\max \{p, p / p-1\}$, such that

$$
\|f(t, u)-f(t, v)\| \leq L_{f}(t)\|u-v\|, \quad\|g(t, u)-g(t, v)\| \leq L_{g}(t)\|u-v\|
$$

for $t \in \mathbb{R}$ and $u, v \in X$.
(ii) $h=\alpha+\beta \in P A P S^{p}(\mathbb{R}, X, \mu)$ with

$$
\alpha \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right), \quad \beta \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)
$$

and there exist a set $E \subset \mathbb{R}$ with meas $(E)=0$ such that the set $K=$ $\overline{\{\alpha(t): t \in \mathbb{R} \backslash E\}}$ is compact in X.
Then there exist $q \in[1, p)$ such that $f(\cdot, h(\cdot)) \in P A P S^{q}(\mathbb{R}, X, \mu)$.
Proof. We can decompose

$$
f(t, h(t))=g(t, \alpha(t))+f(t, h(t))-f(t, \alpha(t))+\phi(t, \alpha(t))
$$

Set

$$
F(t):=g(t, \alpha(t)), \quad G(t):=f(t, h(t))-f(t, \alpha(t)), \quad H(t):=\phi(t, \alpha(t)) .
$$

Since $r \geq \frac{p}{p-1}$ then there exists $q \in[1, p)$ such that $r=\frac{p q}{p-q}$. Let $p^{\prime}=p / p-q$ and $q^{\prime}=p / q$. Therefore $\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1$. Since $\alpha \in A P S^{p}(\mathbb{R}, X)$ and $g \in A P S^{p}(\mathbb{R} \times X, X)$ then by assumptions and Lemma 3.7 we obtain that $F \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{q}(0,1 ; X)\right)\right)$.

Next we show that $G \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{q}(0,1 ; X), \mu\right)\right)$. By Hölder inequality we have

$$
\begin{aligned}
\int_{t}^{t+1}\|G(\sigma)\|^{q} d \sigma & =\int_{t}^{t+1}\|f(\sigma, h(\sigma))-f(\sigma, \alpha(\sigma))\|^{q} d \sigma \\
& \leq \int_{t}^{t+1} L_{f}^{q}(\sigma)\|h(\sigma)-\alpha(\sigma)\|^{q} d \sigma \\
& =\int_{t}^{t+1} L_{f}^{q}(\sigma)\|\beta(\sigma)\|^{q} d \sigma \\
& \leq\left(\int_{t}^{t+1} L_{f}^{q p^{\prime}}(\sigma) d \sigma\right)^{1 / p^{\prime}}\left(\int_{t}^{t+1}\|\beta(\sigma)\|^{q q^{\prime}} d \sigma\right)^{1 / q^{\prime}} \\
& =\left[\left(\int_{t}^{t+1} L_{f}^{r}(\sigma) d \sigma\right)^{1 / r}\right]^{r / p^{\prime}}\left[\left(\int_{t}^{t+1}\|\beta(\sigma)\|^{p} d \sigma\right)^{1 / p}\right]^{p / q^{\prime}} \\
& \leq\left\|L_{f}\right\|_{B S^{r}}^{q}\left[\left(\int_{t}^{t+1}\|\beta(\sigma)\|^{p} d \sigma\right)^{1 / p}\right]^{q}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{t}^{t+1}\|G(\sigma)\|^{q} d \sigma\right)^{1 / q} d \mu(t) \\
& \leq \frac{\left\|L_{f}\right\|_{B S^{r}}}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{t}^{t+1}\|\beta(\sigma)\|^{p} d \sigma\right)^{1 / p} d \mu(t)
\end{aligned}
$$

Since $\beta \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)$ we obtain that $G \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{q}(0,1 ; X), \mu\right)\right)$.
Next, we prove that $H \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{q}(0,1 ; X), \mu\right)\right)$.
Since $\phi \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)$, for each $\epsilon>0$ there exist $T_{0}>0$ such that $T>T_{0}$ implies that

$$
\frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{t}^{t+1}\|\phi(\sigma, u)\|^{p} d \sigma\right)^{1 / p} d \mu(t)<\epsilon \quad(u \in X)
$$

Since K is compact, we can find finite open balls $O_{k}(k=1,2,3, \ldots, m)$ with center x_{k} such that $K \subset \cup_{k=1}^{m} O_{k}$. Thus, for all $u \in K$ there exist x_{k} such that

$$
\begin{aligned}
& \|\phi(t+\sigma, u)\| \\
& \leq\left\|\phi(t+\sigma, u)-\phi\left(t+\sigma, x_{k}\right)\right\|+\left\|\phi\left(t+\sigma, x_{k}\right)\right\| \\
& \leq\left\|f(t+\sigma, u)-f\left(t+\sigma, x_{k}\right)\right\|+\left\|g(t+\sigma, u)-g\left(t+\sigma, x_{k}\right)\right\|+\left\|\phi\left(t+\sigma, x_{k}\right)\right\| \\
& \leq L_{f}(t+\sigma) \epsilon+L_{g}(t+\sigma) \epsilon+\left\|\phi\left(t+\sigma, x_{k}\right)\right\| \quad(t \in \mathbb{R}, \sigma \in[0,1])
\end{aligned}
$$

Hence

$$
\sup _{u \in K}\|\phi(t+\sigma, u)\| \leq L_{f}(t+\sigma) \epsilon+L_{g}(t+\sigma) \epsilon+\sum_{k=1}^{m}\left\|\phi\left(t+\sigma, x_{k}\right)\right\|
$$

Since $r \geq p$ then $L_{f}, L_{g} \in A P S^{r}(\mathbb{R}, \mathbb{R}) \subset A P S^{p}(\mathbb{R}, \mathbb{R}) \subset B S^{p}(\mathbb{R}, \mathbb{R})$.
By Minkowskii's inequality, we obtain

$$
\begin{aligned}
& {\left[\int_{0}^{1}\left(\sup _{u \in K}\|\phi(t+\sigma, u)\|\right)^{p} d \sigma\right]^{1 / p}} \\
& \leq\left(\left\|L_{f}\right\|_{B S^{p}}+\left\|L_{g}\right\|_{B S^{p}}\right) \epsilon+\sum_{k=1}^{m}\left(\int_{0}^{1}\left(\sup _{u \in K}\|\phi(t+\sigma, u)\|\right)^{p} d \sigma\right)^{1 / p}
\end{aligned}
$$

For $T>T_{0}$ we have

$$
\begin{aligned}
& \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{0}^{1}\left(\sup _{u \in K}\|\phi(t+\sigma, u)\|\right)^{p} d \sigma\right)^{1 / p} d \mu(t) \\
& \leq\left(\left\|L_{f}\right\|_{B S^{p}}+\left\|L_{g}\right\|_{B S^{p}}+m\right) \epsilon
\end{aligned}
$$

Hence

$$
\lim _{T \rightarrow \infty} \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{0}^{1}\left(\sup _{u \in K}\|\phi(t+\sigma, u)\|\right)^{p} d \sigma\right)^{1 / p} d \mu(t)=0 .
$$

On the other hand

$$
\begin{aligned}
& \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left\|H^{b}(t)\right\|_{q} d \mu(t) \\
& \leq \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left\|H^{b}(t)\right\|_{p} d \mu(t) \\
& =\frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{0}^{1}\|\phi(t+\sigma, \alpha(t+\sigma))\|^{p} d \sigma\right)^{1 / p} d \mu(t) \\
& \leq \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{0}^{1}\left(\sup _{u \in K}\|\phi(t+\sigma, u)\|\right)^{p} d \sigma\right)^{1 / p} d \mu(t) \rightarrow 0
\end{aligned}
$$

as $T \rightarrow \infty$. Hence $H \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{q}(0,1 ; X), \mu\right)\right)$. It proves that $f(\cdot, h(\cdot))=$ $F(\cdot)+[G(\cdot)+H(\cdot)] \in P_{A P S}(\mathbb{R}, X, \mu)$.

We recall the following convolution theorem.
Theorem 3.9 ([2, Theorem 3.1]). Let $S: \mathbb{R} \rightarrow B(X)$ be strongly continuous. Suppose that there exists a function $\phi \in L^{1}(\mathbb{R})$ such that
(a) $\|S(t)\| \leq \phi(t), \quad t \in \mathbb{R}$;
(b) $\phi(t)$ is nonincreasing;
(c) $\sum_{n=1}^{\infty} \phi(n)<\infty$.

If $g \in A P S^{p}(\mathbb{R}, X)$, then

$$
(S * g)(t):=\int_{-\infty}^{t} S(t-s) g(s) d s \in A P(\mathbb{R}, X)
$$

The next result is one of the original contributions of this work.
Theorem 3.10. Let $\mu \in \mathcal{M}$ be given and let $S: \mathbb{R} \rightarrow B(X)$ be strongly continuous. Suppose that there exists a function $\phi \in L^{1}(\mathbb{R})$ such that
(a) $\|S(t)\| \leq \phi(t) \quad t \in \mathbb{R} ;$
(b) $\phi(t)$ is nonincreasing;
(c) $\sum_{n=1}^{\infty} \phi(n)<\infty$.

If $f=g+h \in \operatorname{PAPS}^{p}(\mathbb{R}, X, \mu)$ with $g \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$ and $h \in$ $\mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$, then

$$
(S * f)(t):=\int_{-\infty}^{t} S(t-s) f(s) d s \in P A P(\mathbb{R}, X, \mu)
$$

Proof. Since

$$
(S * f)(t):=\int_{-\infty}^{t} S(t-s) f(s) d s=\int_{-\infty}^{t} S(t-s) g(s) d s+\int_{-\infty}^{t} S(t-s) h(s) d s
$$

and, from Theorem 3.9, $(S * g) \in A P(\mathbb{R}, X)$ it remains to show that $(S * h) \in$ $\mathcal{E}(\mathbb{R}, X, \mu)$. Set

$$
H(t):=\int_{-\infty}^{t} S(t-s) h(s) d s=\int_{-\infty}^{t} S(s) h(t-s) d s
$$

and

$$
H_{n}(t):=\int_{t-n}^{t-n+1} S(t-\sigma) h(\sigma) d \sigma, \quad n=1,2, \ldots
$$

Note that $H_{n}(t)$ is continuous and

$$
\begin{aligned}
\left\|H_{n}(t)\right\| & \leq \int_{t-n}^{t-n+1}\|S(t-\sigma)\|\|h(\sigma)\| d \sigma \\
& =\int_{n-1}^{n}\|S(\sigma)\|\|h(t-\sigma)\| d \sigma \\
& \leq \int_{n-1}^{n} \phi(s)\|h(t-\sigma)\| d \sigma \\
& \leq \phi(n-1)\left(\int_{n-1}^{n}\|h(t-\sigma)\|^{p} d \sigma\right)^{1 / p}
\end{aligned}
$$

Hence, for $T>0$,

$$
\frac{1}{\mu([-T, T])} \int_{[-T, T]}\left\|H_{n}(t)\right\| d \mu(t)
$$

$$
\leq \phi(n-1) \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left(\int_{n-1}^{n}\|h(t-\sigma)\|^{p} d \sigma\right)^{1 / p} d \mu(t)
$$

Using the fact that the space $\mathcal{E}(\mathbb{R}, X, \mu)$ is translation invariant, it follows that $t \rightarrow h(t-\sigma)$ belongs to $\mathcal{E}(\mathbb{R}, X, \mu)$. The above inequality leads to $H_{n} \in \mathcal{E}(\mathbb{R}, X, \mu)$ for each $n=1,2, \ldots$ The above estimate implies

$$
\left\|H_{n}(t)\right\| \leq \phi(n-1)\|h\|_{B S^{p}(\mathbb{R}, X)}
$$

By hypothesis we have

$$
\sum_{n=1}^{\infty}\left\|H_{n}(t)\right\| \leq \sum_{n=1}^{\infty} \phi(n-1)\|h\|_{B S^{p}(\mathbb{R}, X)}<C\|h\|_{B S^{p}(\mathbb{R}, X)}<\infty
$$

It follows from Weierstrass test that the series $\sum_{n=1}^{\infty} H_{n}(t)$ is uniformly convergent on \mathbb{R}. Moreover

$$
H(t)=\int_{-\infty}^{t} S(t-s) h(s) d s=\sum_{n=1}^{\infty} H_{n}(t)
$$

Since $H \in C(\mathbb{R}, X)$ and

$$
\|H(t)\| \leq \sum_{n=1}^{\infty}\left\|H_{n}(t)\right\| \leq C\|h\|_{B S^{p}(\mathbb{R}, X)}
$$

we have

$$
\begin{aligned}
\frac{1}{\mu([-T, T])} \int_{[-T, T]}\|H(t)\| d \mu(t) \leq & \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left\|H(t)-\sum_{k=1}^{n} H_{k}(t)\right\| d \mu(t) \\
& +\sum_{k=1}^{n} \frac{1}{\mu([-T, T])} \int_{[-T, T]}\left\|H_{k}(t)\right\| d \mu(t)
\end{aligned}
$$

Since $H_{k}(t) \in \mathcal{E}(\mathbb{R}, X, \mu)$ and $\sum_{k=1}^{n} H_{n}(t)$ converges uniformly to $H(t)$, it follows that

$$
\lim _{T \rightarrow \infty} \frac{1}{\mu([-T, T])} \int_{[-T, T]}\|H(t)\| d \mu(t)=0
$$

Hence $H(\cdot)=\sum_{n=1}^{\infty} H_{n}(t) \in \mathcal{E}(\mathbb{R}, X, \mu)$. Therefore, $(S * f)(t)=\int_{-\infty}^{t} S(t-s) f(s) d s$ is μ-pseudo almost periodic.

4. An application to fractional integro-differential equations

Given a function $g: \mathbb{R} \rightarrow X$, the Weyl fractional integral of order $\alpha>0$ is defined by

$$
D^{-\alpha} g(t):=\frac{1}{\Gamma(\alpha)} \int_{-\infty}^{t}(t-s)^{\alpha-1} g(s) d s, \quad t \in \mathbb{R}
$$

when this integral is convergent. The Weyl fractional derivative $D^{\alpha} g$ of order $\alpha>0$ is defined by

$$
D^{\alpha} g(t):=\frac{d^{n}}{d t^{n}} D^{-(n-\alpha)} g(t), \quad t \in \mathbb{R}
$$

where $n=[\alpha]+1$. It is known that $D^{\alpha} D^{-\alpha} g=g$ for any $\alpha>0$, and $D^{n}=\frac{d^{n}}{d t^{n}}$ holds with $n \in \mathbb{N}$.

Definition 4.1 ([13]). Let A be a closed and linear operator with domain $D(A)$ defined on a Banach space X, and $\alpha>0$. Given $a \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+}\right)$, we say that A is the generator of an α-resolvent family if there exist $\omega \geq 0$ and a strongly continuous family $S_{\alpha}:[0, \infty) \rightarrow \mathcal{B}(X)$ such that $\left\{\frac{\lambda^{\alpha}}{1+\hat{a}(\lambda)}: \operatorname{Re} \lambda>\omega\right\} \subset \rho(A)$ and for all $x \in X$,

$$
\left(\lambda^{\alpha}-(1+\hat{a}(\lambda)) A\right)^{-1} x=\frac{1}{1+\hat{a}(\lambda)}\left(\frac{\lambda^{\alpha}}{1+\hat{a}(\lambda)}-A\right)^{-1} x=\int_{0}^{\infty} e^{-\lambda t} S_{\alpha}(t) x d t
$$

for $\operatorname{Re} \lambda>\omega$. In this case, $\left\{S_{\alpha}(t)\right\}_{t \geq 0}$ is called the α-resolvent family generated by A.

Next, we consider the existence and uniqueness of μ-pseudo almost periodic mild solutions for the fractional integro-differential equations

$$
\begin{equation*}
D^{\alpha} u(t)=A u(t)+\int_{-\infty}^{t} a(t-s) A u(s) d s+f(t, u(t)) \tag{4.1}
\end{equation*}
$$

where A generates an α-resolvent family $\left\{S_{\alpha}(t)\right\}_{t \geq 0}$ on a Banach space $X, a \in$ $L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+}\right)$and $f \in P A P S^{p}(\mathbb{R} \times X, X, \mu)$ satisfies the Lipschitz condition.

Definition 4.2. A function $u: \mathbb{R} \rightarrow X$ is said to be a mild solution of (4.1) if

$$
u(t)=\int_{-\infty}^{t} S_{\alpha}(t-s) f(s, u(s)) d s \quad(t \in \mathbb{R})
$$

where $\left\{S_{\alpha}(t)\right\}_{t \geq 0}$ is the α-resolvent family generated by A.
Theorem 4.3. Let $\mu \in \mathcal{M}$, and assume (H2) holds. Let $p>1$ and $f \in P A P S^{p}(\mathbb{R} \times$ $X, X, \mu)$ be given. Suppose that
(H3) There exists $L_{f} \geq 0$ such that

$$
\|f(t, u)-f(t, v)\| \leq L_{f}\|u-v\|, \quad t \in \mathbb{R}, u, v \in X
$$

(H4) Operator A generates an α-resolvent family $\left\{S_{\alpha}(t)\right\}_{t \geq 0}$ such that $\left\|S_{\alpha}(t)\right\| \leq$ $\varphi_{\alpha}(t)$, for all $t \geq 0$, where $\varphi_{\alpha}(\cdot) \in L^{1}\left(\mathbb{R}_{+}\right)$is nonincreasing such that $\varphi_{0}:=\sum_{n=0}^{\infty} \varphi_{\alpha}(n)<\infty$.
If $L_{f}<\left\|\varphi_{\alpha}\right\|_{1}^{-1}$, then 4.1 has a unique mild solution in $P A P(\mathbb{R}, X, \mu)$.
Proof. Consider the operator $Q: P A P(\mathbb{R}, X, \mu) \rightarrow P A P(\mathbb{R}, X, \mu)$ defined by

$$
(Q u)(t):=\int_{-\infty}^{t} S(t-s) f(s, u(s)) d s, \quad t \in \mathbb{R}
$$

First, we show that $Q(P A P(\mathbb{R}, X, \mu)) \subset P A P(\mathbb{R}, X, \mu)$. Let $u \in P A P(\mathbb{R}, X, \mu)$. Since $f \in P A P S^{p}(\mathbb{R} \times X, X, \mu)$ and satisfy (H3) we have from Corollary 3.6 that $f(\cdot, u(\cdot)) \in P A P S^{p}(\mathbb{R}, X, \mu)$. Then, by assumption (h4) we obtain from Theorem 3.10 that $Q u \in P A P(\mathbb{R}, X, \mu)$.

Let $u, v \in P A P(\mathbb{R}, X, \mu)$. By conditions (H3) and (H4) we have

$$
\begin{aligned}
\|Q u-Q v\|_{\infty} & =\sup _{t \in \mathbb{R}}\|(Q u)(t)-(Q v)(t)\| \\
& =\sup _{t \in \mathbb{R}}\left\|\int_{-\infty}^{t} S(t-s)[f(s, u(s))-f(s, v(s))] d s\right\| \\
& \leq L_{f} \sup _{t \in \mathbb{R}} \int_{0}^{\infty}\|S(s)\|\|u(t-s)-v(t-s)\| d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq L_{f}\|u-v\|_{\infty} \int_{0}^{\infty} \varphi_{\alpha}(s) d s \\
& =L_{f}\left\|\varphi_{\alpha}\right\|_{1}\|u-v\|_{\infty}
\end{aligned}
$$

This proves that Q is a contraction, so by the Banach Fixed Point Theorem we conclude that Q has unique fixed point. It follows that $Q u=u \in P A P(\mathbb{R}, X, \mu)$ and it is unique. Hence u is the unique mild solution of (4.1) which belongs to $P A P(\mathbb{R}, X, \mu)$.

Theorem 4.4. Let $\mu \in \mathcal{M}$. Assume that (H2) holds. Let $p>1$ and $f=g+h \in$ $P A P S^{p}(\mathbb{R} \times X, X, \mu)$ be given. Suppose that:
(H5) There exist nonnegative functions $L_{f}(\cdot), L_{g}(\cdot) \in A P S^{r}(\mathbb{R}, \mathbb{R})$ with $r \geq$ $\max \left\{p, \frac{p}{p-1}\right\}$ such that

$$
\|f(t, u)-f(t, v)\| \leq L_{f}(t)\|u-v\|, \quad\|g(t, u)-g(t, v)\| \leq L_{g}(t)\|u-v\|
$$

for $t \in \mathbb{R}$ and $u, v \in X$.
(H6) Operator A generates an α-resolvent family $\left\{S_{\alpha}(t)\right\}_{t \geq 0}$ such that $\left\|S_{\alpha}(t)\right\| \leq$ $M e^{-\omega t}$, for all $t \geq 0$ and

$$
\left\|L_{f}\right\|_{B S^{r}}<\frac{1-e^{-\omega}}{M}\left(\frac{\omega r_{0}}{1-e^{-\omega r_{0}}}\right)^{1 / r_{0}}
$$

where $\frac{1}{r}+\frac{1}{r_{0}}=1$.
Then (4.1) has a unique mild solution in $P A P(\mathbb{R}, X, \mu)$.
Proof. Let $u=u_{1}+u_{2} \in P A P(\mathbb{R}, X, \mu)$ where $u_{1} \in A P(\mathbb{R}, X)$ and $u_{2} \in \mathcal{E}(\mathbb{R}, X, \mu)$. Then $u \in P A P S^{p}(\mathbb{R}, X, \mu)$. Since the range of almost periodic functions is relatively compact set, then $K=\overline{\left\{u_{1}(t): t \in \mathbb{R}\right\}}$ is compact in X. Thus, by conditions (H5) and (H6) we have that all the hypotheses of Theorem 3.8 fulfilled, then there exists $q \in[1, p)$ such that $f(\cdot, u(\cdot)) \in P A P S^{q}(\mathbb{R}, X, \mu)$.

Consider the operator $Q: P A P(\mathbb{R}, X, \mu) \rightarrow P A P(\mathbb{R}, X, \mu)$ such that

$$
(Q u)(t):=\int_{-\infty}^{t} S(t-s) f(s, u(s)) d s, \quad(t \in \mathbb{R})
$$

Since $f(\cdot, u(\cdot)) \in \operatorname{PAPS}^{q}(\mathbb{R}, X, \mu)$ it follows from Theorem 3.10 that Q maps $P A P(\mathbb{R}, X, \mu)$ into $P A P(\mathbb{R}, X, \mu)$.

For any $u, v \in P A P(\mathbb{R}, X, \mu)$ we have

$$
\begin{aligned}
\|(Q u)(t)-(Q v)(t)\| & \leq \int_{-\infty}^{t}\|S(t-s)\|\|f(s, u(s)-f(s, v(s)))\| d s \\
& \leq \int_{-\infty}^{t} M e^{-\omega(t-s)} L_{f}(s)\|u(s)-v(s)\| d s \\
& \leq\|u-v\| \sum_{k=1}^{\infty} \int_{t-k}^{t-k+1} M e^{-\omega(t-s)} L_{f}(s) d s \\
& \leq\|u-v\| \sum_{k=1}^{\infty}\left(\int_{t-k}^{t-k+1} M^{r_{0}} e^{-\omega r_{0}(t-s)}\right)^{1 / r_{0}} d s\left\|L_{f}(s)\right\|_{B S^{r}} \\
& =\frac{M}{1-e^{-\omega}}\left(\frac{1-e^{-\omega r_{0}}}{\omega r_{0}}\right)^{1 / r_{0}}\|u-v\|\left\|L_{f}(s)\right\|_{B S^{r}} .
\end{aligned}
$$

From Banach contraction mapping principle we have that Q has a unique fixed point in $P A P(\mathbb{R}, X, \mu)$ which is the unique mild solution of Equation 4.1).

Example 4.5. We put $A=-\varrho$ in $X=\mathbb{R}, a(t)=\frac{\varrho}{4} \frac{t^{\alpha-1}}{\Gamma(\alpha)}, \varrho>0,0<\alpha<1$, and $f(t, u)=g(t, u)+h(t, u)$ where

$$
g(t, u(t, x))=[\sin t+\sin (\sqrt{2} t)] \sin (u(t, x)), \quad h(t, u(t, x))=\phi(t) \sin (u(t, x))
$$

and $\phi(t)$ is such that $\left|\phi(t) e^{t}\right| \leq K$ with $K>0$.
Consider the measure μ whose Radon-Nikodym derivative is $\rho(t)=e^{t}$. Then $\mu \in$ \mathcal{M} and satisfies the (H2) (see [5, Ex. 3.6]). Note that $g \in \mathcal{B}^{-1}\left(A P\left(\mathbb{R}, L^{p}(0,1 ; X)\right)\right)$ and $h \in \mathcal{B}^{-1}\left(\mathcal{E}\left(\mathbb{R}, L^{p}(0,1 ; X), \mu\right)\right)$. Hence $f \in P A P S^{p}(\mathbb{R} \times X, X, \mu)$. Furthermore,

$$
|f(t, u)-f(t, v)| \leq L|u-v|
$$

where $L:=\max \{2, K\}$. Therefore f satisfies $(C 1)$.
Now, note that Equation 4.1 takes the form

$$
\begin{equation*}
D^{\alpha} u(t)=-\varrho u(t)-\frac{\varrho^{2}}{4} \int_{-\infty}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} u(s) d s+f(t, u(t)), \quad t \in \mathbb{R} \tag{4.2}
\end{equation*}
$$

It follows from [13, Example 4.17] that A generates an α-resolvent family $\left\{S_{\alpha}(t)\right\}_{t \geq 0}$ such that

$$
\widehat{S}_{\alpha}(\lambda)=\frac{\lambda^{\alpha}}{\left(\lambda^{\alpha}+2 / \varrho\right)^{2}} \frac{\lambda^{\alpha-\alpha / 2}}{\left(\lambda^{\alpha}+2 / \varrho\right)^{2}} \cdot \frac{\lambda^{\alpha-\alpha / 2}}{\left(\lambda^{\alpha}+2 / \varrho\right)^{2}}
$$

Thus, we obtain explicitly

$$
S_{\alpha}(t)=(r * r)(t) \quad t>0
$$

with $r(t)=t^{\frac{\alpha}{2}-1} E_{\alpha, \frac{\alpha}{2}}\left(-\frac{\varrho}{2} t^{\alpha}\right)$, and where $E_{\alpha, \frac{\alpha}{2}}(\cdot)$ is the Mittag-Leffler function.
By properties of the Mittag-Leffler function we obtain that (H4) holds. Then, by Theorem 4.3, 4.2 has a unique mild solution $u \in P A P(\mathbb{R}, X, \mu)$ provided $\left\|S_{\alpha}\right\|<\frac{1}{2}$. Finally we note that, for $0<\alpha<1, \varrho>0$ may be chosen so that $\left\|S_{\alpha}\right\|<\frac{1}{2}$ as in the proof of [13, Lemma 3.9].

References

[1] A. N. Akdad, K. Ezzinbi, L. Souden; Pseudo almost periodic and automorphic mild solutions to nonautonomous neutral partial evolution equations. Nonauton. Dyn. Syst., 2 (2015), 1230.
[2] E. Alvarez, C. Lizama; Weighted pseudo almost periodic solutions to a class of semilinear integro-differential equations in Banach spaces. Adv. Difference Equ., DOI 10.1186/s13662-015-0370-5 2015 (2015), 1-18.
[3] B. Amir, L. Maniar; Composition of pseudo-almost periodic functions and Cauchy problems with operator of nondense domain, Ann. Math. Blaise Pascal., 6 (1) (1999), 1-11.
[4] J. Blot, P. Cieutat, K. Ezzinbi; Measure theory and pseudo almost automorphic functions: New developments and applications. Nonlinear Anal., 75 (4) (2012), 2426-2447.
[5] J. Blot, P. Cieutat, K. Ezzinbi; New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications. Appl. Anal., 92 (3) (2013), 493-526.
[6] S. Bochner; Beiträge zur theorie der fastperiodischen funktionen. Math. Ann., 96 (1927), 119-147.
[7] Y. K. Chang, G. M. N'Guérékata, R. Zhang; Stepanov-like weighted pseudo almost automorphic functions via measure theory. Bull. Malays. Math. Sci. Soc., 39 (3) (2016), 1005-1041.
[8] T. Diagana; Stepanov-like pseudo almost periodic functions and their applications to differential equations. Commun. Math. Anal., 3 (1) (2007), 9-18.
[9] W. Long, H. S. Ding; Composition theorems of Stepanov almost periodic functions and Stepanov-like pseudo almost periodic functions. Adv. Diff. Eq., Article ID 654695, 12 pages doi:10.1155/2011/654695, Vol. 2011 (2011).
[10] H. S. Ding., W. Long, G.M. N'Guérékata; Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients. J. of Comp. Anal. and Appl., 13 (2) (2011), 231-242.
[11] T. Diagana, G. M. N'Guérékata, G. M. Mophou; Existence of weighted pseudo almost periodic solutions to some classes of differential equations with S^{p}-weighted pseudo almost periodic coefficients. Nonlinear Anal., 72 (2010), 430-438.
[12] H. X. Li and L. L. Zhang; Stepanov-like pseudo-almost periodicity and semilinear differential equations with Uniform Continuity. Results in Math. 59 (2011), 43-61.
[13] R. Ponce; Bounded mild solutions to fractional integro-differential equations in Banach spaces. Semigroup Forum, 87 (2013), 377-392.
[14] Z. H. Zhao, Y. K. Chang, G. M. N'Guérékata; A new compostion theorem for S^{p}-weighted pseudo almost periodic functions and applications to semilinear differential equations. Opuscula Math. 31 (3) (2011), 457-473.

Edgardo Alvarez
Universidad del Norte, Departamento de Matemáticas y Estadística, Barranquilla, Colombia

E-mail address: edgalp@yahoo.com, ealvareze@uninorte.edu.co

[^0]: 2010 Mathematics Subject Classification. 45D05, 34A12, 45N05.
 Key words and phrases. μ-Stepanov pseudo almost periodic; mild solutions; fractional integro-differential equations; composition; convolution.
 (C) 2018 Texas State University.

 Submitted September 12, 2016. Published January 18, 2018.

