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Abstract. We analyze second-order half-linear dynamic equations on time

scales. We prove oscillation and non-oscillation criteria which are sharp in
the sense that the considered equations remain uncovered only for one setting

of their coefficients. We continue in the research of the so-called conditional

oscillation. The previously known conditionally oscillatory dynamic equations
were allowed to contain only periodic coefficients. In the presented results,

we deal with bounded coefficients (among others, our results cover coefficients

which are periodic, almost periodic, having mean values, etc.). We point out
that the results are new even for linear dynamic equations. We also provide

corollaries to illustrate the novelty of our results.

1. Introduction

The dynamic equations on time scales are in the center of attention of many
researchers almost from their introducing by Stefan Hilger in [23, 24]. The main
benefit of the time scale calculus is the fact that one can work with an arbitrary
non-empty closed subset T of R. Especially, the differential calculus (when T = R)
and the discrete calculus (when T = Z) are special cases of the time scale calculus.
Nowadays, the time scale calculus is well advanced and widely studied, besides the
pure theoretical reasons also for its applications in economy, natural sciences, etc.
For the comprehensive overview, we refer to [5, 6]. We recall more details including
the standard notation at the beginning of Section 2 of this paper.

Now, we describe the studied problem and give the corresponding literature
overview of the results up to date. We are interested in the qualitative properties
(namely, the oscillation behaviour) of the second-order half-linear dynamic equation[

r(t)Φ(y∆)
]∆ +

s(t)
tp−1σ(t)

Φ(yσ) = 0, Φ(y) = |y|p−1 sgn y, p > 1, (1.1)

with bounded, rd-continuous, positive coefficients r, s. Such equations are usually
designated half-linear equations (it comes from [4]). The name follows from the
fact that the solution spaces of these equations lack the additivity but they remain
homogeneous. Of course, the linear equations form the special case of (1.1) given by
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p = 2. From this point of view, we can see half-linear equations as the gateway to
non-linear equations. From another point of view, the function Φ is one dimensional
p-Laplacian. Hence, the half-linear equations for T = R are the scalar case of partial
differential equations with p-Laplacian. Some partial differential equations can be
reduced (under certain assumptions) to half-linear equations and, at the same time,
some results obtained for half-linear equations can be extended to elliptic partial
differential equations.

The Sturm theory is extendable verbatim for both of the half-linear equations
and the time scale calculus (see, e.g., [1, 2]). Especially, if one solution of (1.1) oscil-
lates, then all solutions oscillate as well. Therefore, we can classify the considered
equations as oscillatory and non-oscillatory. Unfortunately, the need of working
with differential and difference calculus (together with other closed subsets of R)
and the lack of additivity imply that many methods and tools are not available
(or, at least, they have to be significantly improved) in the study of oscillatory and
non-oscillatory solutions of (1.1).

The problem we are about to deal with is closely related to the so-called condi-
tional oscillation. We say that the equation[

r(t)Φ(y∆)
]∆ + γc(t)Φ(yσ) = 0, (1.2)

where γ ∈ R and r(t) > 0, is conditionally oscillatory if there exists a positive
constant Γ such that (1.2) is oscillatory for γ > Γ and it is non-oscillatory for
γ < Γ. This number Γ is usually called the critical oscillation constant. As one can
easily see, the validity of many comparison theorems (especially, the Sturm’s one)
implies that conditionally oscillatory equations are ideal testing equations (see also
Corollaries 4.5 and 4.6 below).

The approach to the conditional oscillation requires the calculation of the critical
oscillation constant depending on coefficients of the treated equations. Hence, the
coefficients have to be measurable in a certain sense. Typically, the periodic (almost
periodic, etc.) coefficients are considered (see, e.g., [10, 13, 14, 17, 33, 37]). Our
approach is different. We do not require the pure periodicity and not even any
concrete generalization of periodicity. We only need the boundedness of coefficients.
From certain inequalities which are valid for periodic coefficients, we deduce the
oscillation behaviour of the given equation. This procedure leads to two theorems –
one oscillation and one non-oscillation criterion (see Theorems 3.1 and 3.2 below).
In addition, the nature of the criteria remains untouched for other types of equations
(see Theorem 3.3 below).

To mention the literature foundations, we begin with the continuous case when
T = R. The first result of this kind appeared in [27] in 1893 (about linear equations
with constant coefficients). During the last decades, many results were published
in this direction, we mention at least papers [15, 25, 28, 29, 30, 31].

The research of the discrete counterparts of the above mentioned results (i.e., for
T = Z) was initiated by [34] in 1959. For the direction towards difference equations,
we refer to [9, 17, 20, 44].

Finally, we recall our basic motivation which comes from [22, 45]. In [45], there
is proved that the Euler-type dynamic equation

[r(t)y∆]∆ +
γs(t)
tσ(t)

yσ = 0
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with positive α-periodic coefficients is conditionally oscillatory with the critical
oscillation constant

Γ =
α2

4

(∫ t+α

t

∆τ
r(τ)

)−1(∫ t+α

t

s(τ)∆τ
)−1

, t ∈ T.

Then, in [22], the above result is extended to the Euler-type half-linear dynamic
equation (again with positive α-periodic coefficients)[

r(t)Φ(y∆)
]∆

+
γs(t)

t(p−1)σ(t)
Φ(yσ) = 0,

where t(p) is the generalized power function. We remark that this function is in-
troduced in Section 4 together with a corollary of our results that covers equations
with this power function in the second term (see Corollary 4.4 below). The value

Γ :=
(α(p− 1)

p

)p(∫ t+α

t

r
1

1−p (τ)∆τ
)1−p(∫ t+α

t

s(τ)∆τ
)−1

, t ∈ T,

is obtained as the resulting critical oscillation constant.
The paper is organized as follows. In the upcoming section, we mention the

notations and we state the used lemmas. The results are formulated and proved
in Section 3. Then, we present a lot of corollaries to illustrate the novelty of our
results (Section 4) and we formulate several open problems (Section 5).

2. Preliminaries and auxiliary results

In this section, we recall the notion of time scales, including the standard nota-
tion, we prepare tools for our method, and we mention necessary lemmas. The time
scale calculus itself is usually described as a unification of the continuous and dis-
crete calculus. Nevertheless, time scale T is an arbitrary non-empty closed subset
of real numbers, i.e., it covers much more cases than only T = R and T = Z.

Now, we mention the used notation (for details, see [5, 6]). A time scale interval
[a, b] ∩ T is denoted by [a, b]T. The forward jump operator, the backward jump
operator, and the graininess is denoted by σ, ρ, and µ, respectively. For simplicity,
we use the notation fσ := f ◦σ and fρ := f ◦ρ. The ∆-derivative of f is denoted by
f∆ and ∆-integral of f from a to b by

∫ b
a
f(t)∆t. Finally, Crd(T) and C1

rd(T) stand
for the class of rd-continuous and rd-continuous ∆-differentiable functions defined
on the time scale T.

In this paper, we consider that the time scale T is α-periodic (i.e., there exists
a constant α > 0 such that t ∈ T implies t ± α ∈ T) which gives that T is infinite
and sup T =∞. We study the second-order half-linear dynamic equation

[r(t)Φ(y∆)]∆ + c(t)Φ(yσ) = 0, Φ(y) = |y|p−1 sgn y, p > 1, (2.1)

on the given time scale T, where c, r ∈ Crd(T) satisfy

0 < inf{r(t) : t ∈ T} ≤ sup{r(t) : t ∈ T} <∞, (2.2)

0 ≤ inf{c(t) : t ∈ T} ≤ sup{c(t) : t ∈ T} <∞. (2.3)

Naturally, any solution y of (2.1) satisfies rΦ(y∆) ∈ C1
rd(T). Since we use integrals

of r1/(1−p)(t), we also need 1/r ∈ Crd(T). Hence, the positivity of the infimum
of r in (2.2) cannot be replaced by the condition r(t) > 0 (see [35] for a more
comprehensive discussion on this problem). Note that if we denote by q the number
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conjugated with the given number p > 1 (i.e., p + q = pq), then we immediately
obtain the inverse function to Φ(y) in the form Φ−1(y) = |y|q−1 sgn y.

Next, we recall the notion of (non-) oscillatory equations. To do this, we define
the generalized zero of a non-trivial solution y of (2.1) as a point t ∈ T, where

r(t)y(t)y(σ(t)) ≤ 0.

In the special case y(t) = 0, t is called the common zero of y. Further, a non-trivial
solution y of (2.1) is said to be oscillatory on T if y has a generalized zero on
[τ,∞)T for every τ ∈ T, and it is said to be non-oscillatory otherwise. Finally,
the time scale version of the half-linear Sturm type separation theorem (besides
the references already given in Introduction, see also [36]) guarantees that if (2.1)
has one (non-) oscillatory solution, then any non-trivial solution of (2.1) is (non-)
oscillatory as well. Therefore, we can classify (2.1) as oscillatory or non-oscilatory.

The basis of our method is the transformation to the Riccati dynamic equation
which can be introduced as follows. We consider a solution y of (2.1) such that
y(t)yσ(t) 6= 0, t ∈ [t1, t2]T, and we define

w(t) =
r(t)Φ(y∆(t))

Φ(y(t))
. (2.4)

The differentiation of (2.4) and its combination with (2.1) leads to the Riccati
dynamic equation

w∆(t) + c(t) + S[w, r, µ](t) = 0. (2.5)

The term S[w, r, µ] can be expressed as

S[w, r, µ] = lim
λ→µ

w

λ

(
1− r

Φ[Φ−1(r) + λΦ−1(w)]

)
and rewritten as

S[w, r, µ] =


p−1

Φ−1(r) |w|
q if applied to right-dense t;

w
µ

(
1− r

Φ(Φ−1(r)+µΦ−1(w))

)
if applied to right-scattered t.

Taking into account the Lagrange mean value theorem on time scales (see, e.g.,
[5]), we finally come to S[w, r, µ] in the form

S[w, r, µ](t) =
(p− 1)|w(t)|q|η(t)|p−2

Φ[Φ−1(r(t)) + µ(t)Φ−1(w(t))]
, (2.6)

where η(t) is between Φ−1(r(t)) and Φ−1(r(t)) + µ(t)Φ−1(w(t)).
The form of (2.5) with (2.6) is not sufficient enough for our method. Hence, we

apply the transformation

z(t) = −tp−1w(t) (2.7)

which leads to the equation

z∆(t) = c(t)(σ(t))p−1 +
(p− 1)(σ(t))p−1|η(t)|p−2|z(t)|q

tpΦ[Φ−1(r(t)) + µ(t)Φ−1(−z(t)/tp−1)]

+
(p− 1)(ζ(t))p−2z(t)

tp−1
.

(2.8)
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Equation (2.8) is called the adapted generalized Riccati equation for the consistency
with similar cases in the literature. In (2.8), ζ(t) is given by

ζ(t) :=
[ (tp−1)∆

p− 1

] 1
p−2

(2.9)

and η(t) is between Φ−1(r(t)) and Φ−1(r(t))+µ(t)Φ−1(−z(t)/tp−1) (see (2.6)). We
emphasize that, rewriting (2.9) as (tp−1)∆ = (p − 1)(ζ(t))p−2 and considering the
Lagrange mean value theorem on time scales, it is seen that ζ(t) is well-defined and
satisfies t ≤ ζ(t) ≤ σ(t).

We finish this section by lemmas that will be needed in the following section
within the proofs of our results. The first lemma is well-known and describes the
connection between the behaviour of solutions of (2.1) and the Riccati dynamic
equation (2.5).

Lemma 2.1. If (2.1) is non-oscillatory, then there exists a solution w of the as-
sociated generalized Riccati equation (2.5) such that w(t) > 0 for all large t ∈ T.
Moreover, w is decreasing for large t and satisfies

lim
t→∞

w(t) = 0. (2.10)

For a proof of the above lemma see [22, 36]. The second lemma is a consequence
of Lemma 2.1 which is formulated for the adapted Riccati equation (2.8).

Lemma 2.2. If (2.1) is non-oscillatory, then there exists a solution z of the as-
sociated adapted generalized Riccati equation (2.8) such that z(t) < 0 for all large
t ∈ T and

lim
t→∞

z(t)
tp−1

= 0. (2.11)

The statement of the above lemma follows directly from Lemma 2.1, where (2.11)
follows from (2.7) and (2.10). The last lemma deals with the adapted Riccati
equation (2.8) as well and takes into account the time scale version of the Reid
roundabout theorem.

Lemma 2.3. If there exists a solution z of (2.8) which is negative for all large
t ∈ T, then (2.1) is non-oscillatory.

Proof. The negative solution z of (2.8) gives the positive solution w of (2.5) for
which we have the inequality Φ−1(r(t)) + µ(t)Φ−1(w(t)) > 0 for all large t. Using
the well-known roundabout theorem (see, e.g., [36, p. 383]), we obtain that (2.1)
is non-oscillatory. �

3. Oscillation and non-oscillation

In this section, we formulate and prove our main results. At first, for reader’s
convenience, let us recall that we deal with the half-linear dynamic equation[

r(t)Φ(y∆)
]∆

+
s(t)

tp−1σ(t)
Φ(yσ) = 0, (3.1)

where t ∈ T is sufficiently large, functions r, s are rd-continuous, positive, and
bounded and r satisfies inf{r(t) : t ∈ [a,∞)T} > 0 for some a ∈ T. Now, we can
formulate the our first theorem as follows.
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Theorem 3.1. Let R,S > 0 be given and let qpSRp−1 > 1. If

1
α

∫ t+α

t

r1−q(τ)∆τ ≥ R, and
1
α

∫ t+α

t

s(τ)∆τ ≥ S (3.2)

for all large t ∈ T, then (3.1) is oscillatory.

Proof. By contradiction, we suppose that (3.1) is non-oscillatory. Using Lemma
2.2, there exists a negative solution z of the associated adapted Riccati equation
(see (2.8))

z∆(t) =
s(t)(σ(t))p−2

tp−1
+

(p− 1)(σ(t))p−1|η(t)|p−2|z(t)|q

tp Φ[Φ−1(r(t)) + µ(t)Φ−1(−z(t)/tp−1)]

+
(p− 1)(ζ(t))p−2z(t)

tp−1

(3.3)

for all large t and z(t)/tp−1 → 0 as t → ∞. We recall that µ(t) ≤ α, t ≤ ζ(t) ≤
σ(t) ≤ t+ α, and

Φ−1(r(t)) ≤ η(t) ≤ Φ−1(r(t)) +µ(t)Φ−1(w(t)) = Φ−1(r(t)) +µ(t)Φ−1(−z(t)/tp−1).

Hence,

lim
t→∞

(σ(t))p−2

tp−2
= 1, lim

t→∞

η(t)
Φ−1(r(t))

= 1, lim
t→∞

ζ(t)
t

= lim
t→∞

σ(t)
t

= 1. (3.4)

Let large b ∈ T be arbitrarily. We put

r+ := sup{r(t) : t ∈ [b,∞)T}, r− := inf{r(t) : t ∈ [b,∞)T}, (3.5)

s+ := sup{s(t) : t ∈ [b,∞)T}, s− := inf{s(t) : t ∈ [b,∞)T}. (3.6)

Recall that it holds (see also (2.2), (2.3))

0 < r− ≤ r+ <∞, 0 ≤ s− ≤ s+ <∞.

Let ε > 0 be sufficiently small. From (3.3) and (3.4), we obtain

z∆(t)

≥ (1− ε)s(t)
t

+
(1− ε)(p− 1)tp−1(rq−1(t))p−2|z(t)|q

tp r(t)
+

(1 + ε)(p− 1)tp−2z(t)
tp−1

≥ (1− ε)(p− 1)
t

[ s−

p− 1
+
(
r+
)1−q |z(t)|q +

1 + ε

1− ε
z(t)

]
≥ (1− ε)(p− 1)(−z(t))

t

[(−z(t)
r+

)q−1

− 1 + ε

1− ε

]
for all large t. Since ε > 0 is arbitrary, the previous estimations prove that

z∆(t) ≥ 0 if z(t) < −r+ for large t. (3.7)

At the same time, we have (see (3.3) and (3.4))

|z∆(t)| ≤ (1 + ε)s(t)
t

+
(1 + ε)(p− 1)tp−1(rq−1(t))p−2|z(t)|q

tp r(t)

+
(1 + ε)(p− 1)tp−2|z(t)|

tp−1

≤ (1 + ε)(p− 1)
t

[ s+

p− 1
+ (r−)1−q|z(t)|q + |z(t)|

] (3.8)



EJDE-2018/24 SOLUTIONS OF HALF-LINEAR DYNAMIC EQUATIONS 7

for large t. If we consider z(t) ∈ (−2r+, 0), then (3.8) implies

|z∆(t)| ≤ (1 + ε)(p− 1)
t

[ s+

p− 1
+ (r−)1−q(2r+)q + 2r+

]
=
K

t
, (3.9)

where
K := (1 + ε)

[
s+ + (p− 1)(r−)1−q(2r+)q + (p− 1)2r+

]
. (3.10)

From (3.7) and (3.9), it is seen that there exists a negative number M such that
z(t) ∈ (M, 0) for all considered large t.

Now, we introduce the average function zave of the function z by the formula

zave(t) :=
1
α

∫ t+α

t

z(τ)∆τ. (3.11)

Evidently, zave(t) ∈ (M, 0) for all considered large t.
For large t (see (3.3), (3.4)), we have

z∆
ave(t)

=
1
α

∫ t+α

t

z∆(τ)∆τ =
1
α

∫ t+α

t

s(τ)(σ(τ))p−2

τp−1
∆τ

+
1
α

∫ t+α

t

(p− 1)(σ(τ))p−1|η(τ)|p−2|z(τ)|q

τp Φ[Φ−1(r(τ)) + µ(τ)Φ−1(−z(τ)/τp−1)]
∆τ

+
1
α

∫ t+α

t

(p− 1)(ζ(τ))p−2z(τ)
τp−1

∆τ

≥ 1− ε
α

∫ t+α

t

s(τ)
τ

+
(p− 1)r1−q(τ)|z(τ)|q

τ
+

1 + ε

1− ε
(p− 1)z(τ)

τ
∆τ.

(3.12)

Since ∣∣∣ ∫ t+α

t

s(τ)
τ

+
(p− 1)r1−q(τ)|z(τ)|q

τ
+

1 + ε

1− ε
(p− 1)z(τ)

τ
∆τ

− 1
t

∫ t+α

t

s(τ) + (p− 1)r1−q(τ)|z(τ)|q +
1 + ε

1− ε
(p− 1)z(τ)∆τ

∣∣∣
≤
∫ t+α

t

(1
t
− 1
τ

)(
s+ + (p− 1)(r−)1−q|M |q +

1 + ε

1− ε
(p− 1)|M |

)
∆τ

≤ α2

t2

(
s+ + (p− 1)(r−)1−q|M |q +

1 + ε

1− ε
(p− 1)|M |

)
=
N(1− ε)

t2
,

where

N :=
α2

1− ε

(
s+ + (p− 1)(r−)1−q|M |q +

1 + ε

1− ε
(p− 1)|M |

)
,

for large t, we obtain (see (3.12))

z∆
ave(t) ≥ 1− ε

αt

∫ t+α

t

(
s(τ) + (p− 1)r1−q(τ)|z(τ)|q

+
1 + ε

1− ε
(p− 1)z(τ)− N

t

)
∆τ.

(3.13)

If we put

X(t) =
q−p

t

( 1
α

∫ t+α

t

r1−q(τ) ∆τ
)−p/q

, Y (t) = |zave(t)|q p

qtα

∫ t+α

t

r1−q(τ) ∆τ
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for large t, then we have (see (3.13))

z∆
ave(t) ≥ 1− ε

αt

∫ t+α

t

s(τ)∆τ − (1− ε)X(t)

+
1− ε
αt

∫ t+α

t

(p− 1)r1−q(τ)|z(τ)|q∆τ − (1− ε)Y (t)

+
1 + ε

αt

∫ t+α

t

(p− 1)z(τ)∆τ + (1− ε)X(t) + (1− ε)Y (t)

− N(1− ε)
t2

.

(3.14)

Considering this expression, for large t, we show the inequalities

L

t
≤ 1− ε

αt

∫ t+α

t

s(τ)∆τ − (1− ε)X(t), (3.15)∣∣∣1− ε
αt

∫ t+α

t

(p− 1)r1−q(τ)|z(τ)|q∆τ − (1− ε)Y (t)
∣∣∣ ≤ L

4t
, (3.16)

− L
4t
≤ 1 + ε

αt

∫ t+α

t

(p− 1)z(τ)∆τ + (1− ε)X(t) + (1− ε)Y (t), (3.17)

N(1− ε)
t2

≤ L

4t
, (3.18)

where L := S(1− q−pR1−pS−1)/2 > 0 and ε > 0 is arbitrarily small.
The inequality (3.18) is evidently valid for all t ≥ 4N(1− ε)/L. Now, we prove

(3.15). We have (see (3.2))

1− ε
αt

∫ t+α

t

s(τ)∆τ − (1− ε)X(t)

=
1− ε
t

[ 1
α

∫ t+α

t

s(τ)∆τ − q−p
( 1
α

∫ t+α

t

r1−q(τ)∆τ
)−p/q]

≥ 1− ε
t

[S − q−pR−p/q]

=
(1− ε)S

t
[1− q−pR1−pS−1] =

(1− ε)2L
t

.

(3.19)

To obtain (3.15), it suffices to choose ε ≤ 1/2 in (3.19).
Since z(t) ∈ (M, 0), from (3.3) and (3.4) it follows that

|z∆(t)| ≤ s(t)(σ(t))p−2

tp−1
+

(p− 1)(σ(t))p−1|η(t)|p−2|z(t)|q

tp Φ[Φ−1(r(t)) + µ(t)Φ−1(−z(t)/tp−1)]

− (p− 1)(ζ(t))p−2z(t)
tp−1

≤ (1 + ε)
(s(t)

t
+

(p− 1)r1−q(t)|z(t)|q

t
+

(p− 1)|z(t)|
t

)
=

(1 + ε)
(
s+ + (p− 1) (r−)1−q |M |q + (p− 1)|M |

)
t

.

(3.20)

We denote
P := 2

(
s+ + (p− 1)

(
r−
)1−q |M |q + (p− 1)|M |

)
.
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Of course, for large t and ε < 1, (3.20) implies

|z(t+ i)− z(t+ j)| ≤ αP

t
, i, j ∈ [0, α], t+ i, t+ j ∈ T.

Especially (see directly (3.11)), we know that

|z(τ)− zave(t)| ≤ αP

t
(3.21)

for all considered large t and τ ∈ [t, t+ α]T.
Further, since the function y = |x|q is continuously differentiable on [M, 0], there

exists A > 0 for which∣∣|y|q − |z|q∣∣ ≤ A|y − z|, y, z ∈ [M, 0]. (3.22)

Hence, we have (see (3.21) and (3.22))∣∣∣1− ε
αt

∫ t+α

t

(p− 1)r1−q(τ)|z(τ)|q∆τ − (1− ε)Y (t)
∣∣∣

=
1− ε
t

∣∣∣ 1
α

∫ t+α

t

(p− 1)r1−q(τ)|z(τ)|q∆τ − |zave(t)|q p
qα

∫ t+α

t

r1−q(τ) ∆τ
∣∣∣

≤ 1− ε
t
· p− 1

α

∫ t+α

t

r1−q(τ)
∣∣|z(τ)|q − |zave(t)|q

∣∣∆τ
≤ 1− ε

t
· (p− 1) (r−)1−q

α

∫ t+α

t

∣∣|z(τ)|q − |zave(t)|q
∣∣∆τ

≤ 1− ε
t
· (p− 1) (r−)1−q

α

∫ t+α

t

A |z(τ)− zave(t)|∆τ

≤ 1− ε
t
· (p− 1)

(
r−
)1−q ·AαP

t
.

For large t, the previous computation gives (3.16).
It remains to prove (3.17). It holds

1 + ε

αt

∫ t+α

t

(p− 1)z(τ)∆τ + (1− ε)X(t) + (1− ε)Y (t)

=
1
t

[
(1 + ε)(p− 1)zave(t) + (1− ε)q−p

( 1
α

∫ t+α

t

r1−q(τ) ∆τ
)−p/q

+ (1− ε)|zave(t)|q p
qα

∫ t+α

t

r1−q(τ) ∆τ
]
.

(3.23)

We recall the Young inequality which says that

Up

p
+
V q

q
≥ UV (3.24)

holds for any numbers U, V ≥ 0. If one puts U = (ptX(t))1/p and V = (qtY (t))1/q,
then

UV = (ptX(t))1/p(qtY (t))1/q

=
p1/p

q

( 1
α

∫ t+α

t

r1−q(τ) ∆τ
)−1/q

|zave(t)|
( p
α

∫ t+α

t

r1−q(τ) ∆τ
)1/q

,
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i.e.,

UV =
p

1
p + 1

q

q
|zave(t)| = (p− 1)|zave(t)| ,

and
Up

p
= tX(t) = q−p

( 1
α

∫ t+α

t

r1−q(τ) ∆τ
)−p/q

,

V q

q
= tY (t) = |zave(t)|q p

qα

∫ t+α

t

r1−q(τ) ∆τ.

For these numbers U, V , inequality (3.24) gives

q−p
( 1
α

∫ t+α

t

r1−q(τ) ∆τ
)−p/q

+ |zave(t)|q p
qα

∫ t+α

t

r1−q(τ) ∆τ − (p− 1)|zave(t)| ≥ 0.
(3.25)

Since ε > 0 can be arbitrarily small, from (3.23) and (3.25), we obtain (3.17).
Altogether, (3.14) together with (3.15), (3.16), (3.17), and (3.18) guarantee

z∆
ave(t) ≥ L

t
− L

4t
− L

4t
− L

4t
=
L

4t
(3.26)

for all large t. From (3.26) it follows

lim
t→∞

zave(t) =∞.

In particular, zave is positive at least in one point which is a contradiction. The
proof is complete. �

Theorem 3.2. Let R,S > 0 be given and let qpSRp−1 < 1. If

1
α

∫ t+α

t

r1−q(τ)∆τ ≤ R, 1
α

∫ t+α

t

s(τ)∆τ ≤ S (3.27)

for all large t ∈ T, then (3.1) is non-oscillatory.

Proof. Henceforth, we consider a sufficiently small number ε > 0. Let t0 ∈ T be
sufficiently large. In particular, we assume that, for all t ≥ t0, it holds (see (3.4))

1− ε ≤
(σ(t)
t

)p−2 ≤ 1 + ε, 1− ε ≤
(ζ(t)
t

)p−2 ≤ 1 + ε, (3.28)

√
1− ε ≤

(σ(t)
t

)p−1 ≤
√

1 + ε, (3.29)

√
1− ε ≤

(Φ−1(r(t)) + µ(t)Φ−1(−z0/t
p−1)

Φ−1(r(t))

)p−2

≤
√

1 + ε, (3.30)

Φ
(
Φ−1(r(t)) + µ(t)Φ−1(−z0/t

p−1)
)
≤ r(t)(1 + ε), (3.31)

where z0 in (3.30), (3.31) is an arbitrary number from interval (−2r+, 0). As in the
proof of Theorem 3.1 (see (3.5), (3.6)), we introduce r+, r−, s+, s−.

Let z be the solution of the associated adapted Riccati equation (see (2.8))

z∆(t) =
s(t)(σ(t))p−2

tp−1
+

(p− 1)(σ(t))p−1|η(t)|p−2|z(t)|q

tp Φ[Φ−1(r(t)) + µ(t)Φ−1(−z(t)/tp−1)]

+
(p− 1)(ζ(t))p−2z(t)

tp−1

(3.32)
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satisfying

z(t0) = −
( q
α

∫ t0+α

t0

∆τ
rq−1(τ)

)1−p
> −r+. (3.33)

To prove the theorem, it suffices to show that this solution is negative for all t ∈
[t0,∞)T. As in the proof of Theorem 3.1 (see (3.8)), for t ≥ t0, we have (see (3.28),
(3.29), and (3.30))

|z∆(t)| ≤ (1 + ε)s(t)
t

+
(1 + ε)(p− 1)(rq−1(t))p−2|z(t)|q

tr(t)
+

(1 + ε)(p− 1)|z(t)|
t

≤ (1 + ε)(p− 1)
t

[ s+

p− 1
+ (r−)1−q|z(t)|q + |z(t)|

]
≤ (1 + ε)(p− 1)

t

[ s+

p− 1
+ (r−)1−q(2r+)q + 2r+

]
if z(t) ∈ (−2r+, 0). This means that if z(t) ∈ (−2r+, 0) for some t ≥ t0, then∣∣z∆(t)

∣∣ ≤ K

t
(3.34)

for a given positive number K (see (3.10)). Especially, we know that

z(t) ∈ (−2r+, 0), t ∈ [t0, t0 + α]T. (3.35)

Indeed, it follows from (3.33).
If

−2r+ < z(t) < −r+
( (1 + ε)2

1− ε

) 1
q−1

,

then from (3.32), using (3.28), (3.29), (3.30), and (3.31), we obtain

z∆(t)

≥ (1− ε)s(t)
t

+
(1− ε)(p− 1)(rq−1(t))p−2|z(t)|q

tr(t)(1 + ε)
+

(1 + ε)(p− 1)z(t)
t

≥ (1− ε)(p− 1)
t

[ (r+)1−q

1 + ε
|z(t)|q +

1 + ε

1− ε
z(t)

]
≥ (1− ε)(p− 1)(−z(t))

t

[(−z(t)
r+

)q−1 1
1 + ε

− 1 + ε

1− ε

]
> 0.

(3.36)

We add that we can consider ε > 0 such that z∆(t) > 0 whenever z(t) ≤ −3r+/2.
The previous fact together with (3.34) imply that any negative solution z satisfies
z(t) ∈ (−2r+, 0) for all large t if z(t0) > −r+. We prove that the solution z of
(3.32) satisfying (3.33) is negative.

From (3.34), we have

|z(t0)− z(τ)| < Kα

t0
, τ ∈ [t0, t0 + α]T. (3.37)

Similarly as in the proof of Theorem 3.1, we define

zave(t0) :=
1
α

∫ t0+α

t0

z(τ)∆τ. (3.38)

We know that (see (3.35), (3.37), and (3.38))

zave(t0) ∈ (−2r+, 0) and |zave(t0)− z(t0)| < Kα

t0
. (3.39)
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We have (see (3.28), (3.29), and (3.30) with (3.32))

z∆
ave(t0)

=
1
α

∫ t0+α

t0

z∆(τ)∆τ =
1
α

∫ t0+α

t0

s(τ)(σ(τ))p−2

τp−1
∆τ

+
1
α

∫ t0+α

t0

(p− 1)(σ(τ))p−1|η(τ)|p−2|z(τ)|q

τpΦ[Φ−1(r(τ)) + µ(τ)Φ−1(−z(τ)/τp−1)]
∆τ

+
1
α

∫ t0+α

t0

(p− 1)(ζ(τ))p−2z(τ)
τp−1

∆τ

≤ 1 + ε

α

∫ t0+α

t0

s(τ)
τ

+
(p− 1)r1−q(τ)|z(τ)|q

τ
+

1− ε
1 + ε

(p− 1)z(τ)
τ

∆τ.

(3.40)

In addition, it holds (see (3.35))∣∣∣ ∫ t0+α

t0

s(τ)
τ

+
(p− 1)r1−q(τ)|z(τ)|q

τ
+

1− ε
1 + ε

(p− 1)z(τ)
τ

∆τ

− 1
t0

∫ t0+α

t0

s(τ) + (p− 1)r1−q(τ)|z(τ)|q +
1− ε
1 + ε

(p− 1)z(τ)∆τ
∣∣∣

≤
∫ t0+α

t0

( 1
t0
− 1
τ

)(
s+ + (p− 1)(r−)1−q(2r+)q +

1− ε
1 + ε

(p− 1)2r+
)

∆τ

≤ α2

t20

(
s+ + (p− 1)(r−)1−q(2r+)q +

1− ε
1 + ε

(p− 1)2r+
)

=
N(1 + ε)

t20

for a positive constant N . Hence, from (3.40), we obtain

z∆
ave(t0) ≤ 1 + ε

αt0

∫ t0+α

t0

(
s(τ) + (p− 1)r1−q(τ)|z(τ)|q

+
1− ε
1 + ε

(p− 1)z(τ) +
N

t0

)
∆τ.

(3.41)

If we put

X(t0) = q−p
( 1
α

∫ t0+α

t0

r1−q(σ) ∆σ
)−p/q

,

Y (t0) =
p

qp+1

( 1
α

∫ t0+α

t0

r1−q(σ) ∆σ
)1−p

,

(3.42)

then we have (see (3.41))

z∆
ave(t0) ≤ 1 + ε

αt0

∫ t0+α

t0

s(τ)−X(t0)∆τ

+
1 + ε

αt0

∫ t0+α

t0

(p− 1)r1−q(τ)|z(τ)|q − Y (t0)∆τ

+
1− ε
αt0

∫ t0+α

t0

(p− 1)z(τ)∆τ +
1 + ε

t0
X(t0) +

1 + ε

t0
Y (t0)

+
N(1 + ε)

t20
.

(3.43)
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Now we prove that z∆
ave(t0) < 0. To prove this inequality, it suffices to show (see

(3.43)) that

1 + ε

α

∫ t0+α

t0

s(τ)−X(t0)∆τ ≤ L, (3.44)∣∣∣1 + ε

α

∫ t0+α

t0

(p− 1)r1−q(τ)|z(τ)|q − Y (t0)∆τ
∣∣∣ ≤ −L

4
, (3.45)

1− ε
α

∫ t0+α

t0

(p− 1)z(τ)∆τ + (1 + ε)X(t0) + (1 + ε)Y (t0) ≤ −L
4
, (3.46)

N(1 + ε)
t0

≤ −L
4
, (3.47)

where L := S(1− q−pR1−pS−1) < 0.
To obtain (3.47), it suffices to choose sufficiently large t0. Further, we show that

(3.44) is valid. We have (see (3.27), (3.42))

1 + ε

α

∫ t0+α

t0

s(τ)−X(t0)∆τ

=
1 + ε

α

∫ t0+α

t0

s(τ)− q−p
( 1
α

∫ t0+α

t0

r1−q(σ) ∆σ
)−p/q

∆τ

≤ (1 + ε)
(
S − q−pR−p/q

)
= (1 + ε)S

(
1− q−pR1−pS−1

)
= (1 + ε)L ≤ L,

i.e., we obtain (3.44).
Now we prove (3.45). Let B > 0 be such that∣∣|y|q − |z|q∣∣ ≤ B|y − z|, y, z ∈ [−2r+, 0]. (3.48)

Using (3.33), (3.35), (3.37), (3.42), and (3.48), we have∣∣∣1 + ε

α

∫ t0+α

t0

(p− 1)r1−q(τ)|z(τ)|q − Y (t0)∆τ
∣∣∣

=
∣∣∣1 + ε

α

∫ t0+α

t0

(p− 1)r1−q(τ)|z(τ)|q∆τ

− p(1 + ε)
qp+1

( 1
α

∫ t0+α

t0

r1−q(τ) ∆τ
)1−p∣∣∣

=
∣∣∣1 + ε

α

∫ t0+α

t0

(p− 1)r1−q(τ)|z(τ)|q∆τ

− p(1 + ε)
q

|z(t0)|q
( 1
α

∫ t0+α

t0

r1−q(τ) ∆τ
)∣∣∣

≤ (1 + ε)(p− 1)
α

∫ t0+α

t0

r1−q(τ)
∣∣|z(τ)|q − |z(t0)|q

∣∣∆τ
≤ (1 + ε)(p− 1) (r−)1−q

α

∫ t0+α

t0

∣∣|z(τ)|q − |z(t0)|q
∣∣∆τ

≤ (1 + ε)(p− 1) (r−)1−q

α

∫ t0+α

t0

B |z(τ)− z(t0)|∆τ
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≤ (1 + ε)(p− 1) (r−)1−q

α

∫ t0+α

t0

B
Kα

t0
∆τ

≤ BKα(1 + ε)(p− 1) (r−)1−q

t0
. (3.49)

For sufficiently large t0, inequality (3.45) follows from (3.49) immediately.
It remains to prove (3.46). We have (see (3.38), (3.42))

1− ε
α

∫ t0+α

t0

(p− 1)z(τ)∆τ + (1 + ε)X(t0) + (1 + ε)Y (t0)

= (1− ε)(p− 1)zave(t0) + (1 + ε)q−p
( 1
α

∫ t0+α

t0

r1−q(τ) ∆τ
)−p/q

+ (1 + ε)
p

qp+1

( 1
α

∫ t0+α

t0

r1−q(τ) ∆τ
)1−p

.

(3.50)

Let us assume that

zave(t0) = z(t0) = −
( q
α

∫ t0+α

t0

r1−q(τ) ∆τ
)1−p

.

Then, (3.50) gives

lim
ε→0+

1− ε
α

∫ t0+α

t0

(p− 1)z(τ)∆τ + (1 + ε)X(t0) + (1 + ε)Y (t0)

= −(p− 1)
( q
α

∫ t0+α

t0

r1−q(τ) ∆τ
)1−p

+ q−p
( 1
α

∫ t0+α

t0

r1−q(τ) ∆τ
)−p/q

+
p

qp+1

( 1
α

∫ t0+α

t0

r1−q(τ) ∆τ
)1−p

= 0,

(3.51)

where we use the fact that (p−1)q1−p = q−p+p/qp+1 (consider p = 1+p/q). Since
the considered terms continuously depend on ε, using (3.39), we can see that (3.51)
implies (3.46) for large t0.

Finally, using (3.44), (3.45), (3.46), and (3.47) in (3.43), we have

z∆
ave(t0) ≤ 1

t0

(
L− L

4
− L

4
− L

4

)
=

L

4t0
< 0. (3.52)

Of course, (3.52) means (see (3.38))

z∆
ave(t0) =

1
α

∫ t0+α

t0

z∆(τ)∆τ =
z(t0 + α)− z(t0)

α
< 0,

i.e., z(t0 +α) < z(t0). From the above processes (we can replace t0 by t), we obtain
the following implication. If z(t) = z(t0) for some t ∈ (t0,∞)T, then z(t+α) < z(t)
and z(τ) < 0 for all τ ∈ [t, t+ α]T.

To complete the proof, it suffices to show the existence of δ > 0 (depending only
on r, s, and α) such that if z(t) ∈ (−δ − z(t0),−z(t0)) for some t ∈ (t0,∞)T, then
z(t + α) < z(t) and z(τ) < 0 for all τ ∈ [t, t + α]T. The initial value z(t0) is not
used in the derivatives of (3.44), (3.45), and (3.47). Evidently, (3.46) is valid if we
replace (3.33) by a sufficiently small perturbation. Hence, such a number δ exists
(see (3.52) and the process above). Its existence implies that z(t) is negative for all
t ∈ [t0,∞)T (consider again (3.35), (3.36)).
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Altogether, we have proved that the solution z of the initial value problem given
by (3.32) and (3.33) satisfies the inequality z(t) < 0 for every t ∈ [t0,∞)T (where t0
is sufficiently large). Then, the non-oscillation of (3.1) comes directly from Lemma
2.3. �

Combining the previous two results, we obtain the following main result of this
paper about a simple type of equations.

Theorem 3.3. Let us consider A,B > 0 and the equation[
a(t)Φ(y∆)

]∆ +
b(t)
tp

Φ(yσ) = 0, (3.53)

where t ∈ T is sufficiently large, functions a, b are rd-continuous, positive, and
bounded, and function a satisfies lim inft→∞ a(t) > 0.

(i) If qpBAp−1 > 1 and

1
α

∫ t+α

t

a1−q(τ)∆τ ≥ A, 1
α

∫ t+α

t

b(τ)∆τ ≥ B (3.54)

for all large t, then (3.53) is oscillatory.
(ii) If qpBAp−1 < 1 and

1
α

∫ t+α

t

a1−q(τ)∆τ ≤ A, 1
α

∫ t+α

t

b(τ)∆τ ≤ B (3.55)

for all large t, then (3.53) is non-oscillatory.

Proof. The theorem follows from Theorems 3.1 and 3.2, where we put

r(t) = a(t) and s(t) =
σ(t)b(t)

t

for all considered t. For any number ϑ > 0, using the limit

lim
t→∞

σ(t)
t

= 1,

we have
1
α

∫ t+α

t

s(τ)∆τ =
1
α

∫ t+α

t

σ(τ)b(τ)
τ

∆τ ≥ B − ϑ

for all large t in case (i) and

1
α

∫ t+α

t

s(τ)∆τ =
1
α

∫ t+α

t

σ(τ)b(τ)
τ

∆τ ≤ B + ϑ

for all large t in case (ii). Thus, it suffices to consider R = A and replace S by S±ϑ
for a sufficiently small number ϑ > 0 so that qp(S − ϑ)Rp−1 = qp(B − ϑ)Ap−1 > 1
in (i) and qp(S + ϑ)Rp−1 = qp(B + ϑ)Ap−1 < 1 in (ii). �

4. Corollaries

In this section, we emphasize some equations which are covered by results of
Section 3. Especially, we formulate special cases which bring new results. The first
direct corollary of Theorem 3.3 is its formulation for linear equations (we point out
that Theorem 3.3 is new even for the case p = 2).
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Corollary 4.1. Let us consider A,B > 0 and the equation[
a(t)y∆

]∆
+
b(t)
t2

yσ = 0, (4.1)

where t ∈ T is sufficiently large, functions a, b are rd-continuous, positive, and
bounded, and function a satisfies lim inft→∞ a(t) > 0.

(i) If 4AB > 1 and

1
α

∫ t+α

t

1
a(τ)

∆τ ≥ A, 1
α

∫ t+α

t

b(τ)∆τ ≥ B

for all large t, then (4.1) is oscillatory.
(ii) If 4AB < 1 and

1
α

∫ t+α

t

1
a(τ)

∆τ ≤ A, 1
α

∫ t+α

t

b(τ)∆τ ≤ B

for all large t, then (4.1) is non-oscillatory.

Further, we can formulate a direct new corollary also for equations with asymp-
totically periodic coefficients. Recall that a function is said to be asymptotically
periodic if it can be written as a sum of two functions, say f1 and f2, such that the
function f1 is periodic and the function f2 vanishes at infinity, i.e., limt→∞ f2(t) = 0.

Corollary 4.2. Let us consider the equation[
F (t)Φ(y∆)

]∆
+
G(t)
tp

Φ(yσ) = 0, (4.2)

where t ∈ T is sufficiently large, functions F,G are rd-continuous, positive, and
asymptotically periodic. Let F ≡ f1 + f2 and G ≡ g1 + g2, where the functions f1

and g1 are α-periodic and the functions f2 and g2 vanish at infinity. Let us denote

A :=
1
α

∫ t+α

t

f1−q
1 (τ)∆τ, B :=

1
α

∫ t+α

t

g1(τ)∆τ

for an arbitrarily given t ∈ T. Equation (4.2) is oscillatory if qpBAp−1 > 1; and it
is non-oscillatory if qpBAp−1 < 1.

We note that, concerning the studied problem, the most general case analyzed
in the literature (see [22]) deals with periodic coefficients. Hence, Corollary 4.2 is
new in the linear case as well and we can formulate the following new result (which
also follows from Corollary 4.1).

Corollary 4.3. Let us consider the equation[
F (t)y∆

]∆
+
G(t)
t2

yσ = 0, (4.3)

where t ∈ T is sufficiently large, functions F,G are rd-continuous, positive, and
asymptotically periodic. Let F ≡ f1 + f2 and G ≡ g1 + g2, where the functions f1

and g1 are α-periodic and the functions f2 and g2 vanish at infinity. Let us denote

A :=
1
α

∫ t+α

t

∆τ
f1(τ)

, B :=
1
α

∫ t+α

t

g1(τ)∆τ .

Equation (4.3) is oscillatory if 4AB > 1; and it is non-oscillatory if 4AB < 1.
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Equations treated in this paper are often considered with the so-called gener-
alized power function in the literature. Especially, for the difference equations
(T = Z), it is well-described in [26, Definition 2.3] as the falling factorial power.
To introduce the notion of the generalized power function on time scales (see, e.g.,
[22]), we recall the definition of the n-th composition of operator ρ (see, e.g., [6])
which reads as

ρ0(t) := t, ρ1(t) := ρ(t), ρ2(t) := ρ(ρ(t)), ; . . . , ρn(t) = ρ(ρn−1(t)).

We remark that, in the case of a time scale bounded from below, i.e., −∞ < a =
min T, we put ρn(a) = a, n ∈ N ∪ {0}.

Then, the generalized power function with natural or zero exponent is given by

t(n) =


tρ(t) · · · ρn−1(t), n ∈ N \ {1};
t, n = 1;
1, n = 0.

For the considered real exponent p > 1, we use the floor function bpc which gives
the greatest integer less than or equal to p. The generalized power function is given
by

t(p) = t(bpc)
{(

ρbp−1c(t)
)1−p+bpc (

ρbpc(t)
)p−bpc }p−bpc

.

Of course, the generalized power function recalled above is continuous, increasing
in p for large t ∈ T, and it is asymptotically equivalent to the standard power
function tp, i.e.,

lim
t→∞

t(p)

tp
= 1, (4.4)

which is proved in [22, Lemma 2.4].
Therefore, we can reformulate the results to the form common in the literature.

For example, Theorem 3.3 implies the following corollary (it suffices to use (4.4)).

Corollary 4.4. Let us consider A,B > 0 and the equation[
a(t)Φ(y∆)

]∆
+
b(t)
t(p)

Φ(yσ) = 0, (4.5)

where t ∈ T is sufficiently large, functions a, b are rd-continuous, positive, and
bounded, and function a satisfies lim inft→∞ a(t) > 0.

(i) If qpBAp−1 > 1 and (3.54) is valid for all large t, then (4.5) is oscillatory.
(ii) If qpBAp−1 < 1 and (3.55) is valid for all large t, then (4.5) is non-

oscillatory.

Next, we can combine our results with comparison theorems to test the non-
oscillation of equations which are not covered by the presented results directly. We
demonstrate this fact by the combination of the Sturm–Picone comparison theorem
(see [36, Theorem 3]) with Theorem 3.3 to decide whether certain equations with
the second coefficients changing their sign are non-oscillatory.

Corollary 4.5. Let us consider (3.53) with rd-continuous and bounded coefficients
a, b satisfying lim inft→∞ a(t) > 0. If qpBAp−1 < 1, where

1
α

∫ t+α

t

a1−q(τ)∆τ ≤ A, 1
α

∫ t+α

t

max {0, b(τ)}∆τ ≤ B

for all large t ∈ T, then (3.53) is non-oscillatory.
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The combination of the well-known Sturm type comparison theorems (see, e.g.,
[1, 2]) with Theorem 3.3 leads to the following Kneser-type (non-) oscillation crite-
ria.

Corollary 4.6. Let us consider the equation[
Φ(y∆)

]∆
+ f(t)Φ(yσ) = 0, (4.6)

where f is a rd-continuous function.
(i) If there exist B > 0 and a rd-continuous, positive, and bounded function b

such that

lim inf
t→∞

tpf(t)
b(t)

> B ≥ α

qp

[ ∫ t+α

t

b(τ)∆τ
]−1

for all large t ∈ T, then (4.6) is oscillatory.
(ii) If there exist B > 0 and a rd-continuous, positive, and bounded function b

such that

lim sup
t→∞

tpf(t)
b(t)

< B ≤ α

qp

[ ∫ t+α

t

b(τ)∆τ
]−1

for all large t ∈ T, then (4.6) is non-oscillatory.

To formulate the last corollary, we recall the notion of mean values. We say that
a function f : T→ R has the mean value

f := lim
n→∞

1
nα

∫ t+αn

t

f(τ) ∆τ

if the limit exists uniformly with respect to all t ∈ T. Using this concept, we obtain
the last direct consequence of Theorem 3.3 which reads as follows.

Corollary 4.7. Let us consider the equation[
c1−p(t)Φ(y∆)

]∆
+
d(t)
tp

Φ(yσ) = 0, (4.7)

where functions c, d have mean values c, d, functions c1−p, d are rd-continuous,
positive, and bounded, and function c satisfies lim inft→∞ c1−p(t) > 0.

(i) If qpd > c1−p, then (4.7) is oscillatory.
(ii) If qpd < c1−p, then (4.7) is non-oscillatory.

We add that Corollary 4.7 in the case T = R is the main result of [15] for a
non-negative and bounded coefficient d.

5. Open problems

At the end of our paper, we describe several possible applications of the presented
results as well as open problems which seem to be solvable with the help of the
results of this paper. We mention that none of the open problems formulated in
this section is solved for linear dynamic equations. Hence, similarly to the results
presented in the previous sections, the anticipated results for half-linear equations
would imply new results for linear equations as their special cases. A big advantage
of this approach is also the fact that new results obtained in this way are applicable
for both ordinary (linear and half-linear) and partial differential equations on time
scales (for some basics, see, e.g., [3]). For a concrete application of the theory of
the conditional oscillation in partial differential equations, we refer at least to [15].
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Now, we present a list of open problems and possible topics for future research.
(A) The first open problem is to get rid of the requirement on periodicity of the
used time scale. Of course, the time scale can be redefined and supplemented to a
periodic one in some cases. We point out that the methods applied in this paper
use the requirement on periodicity substantially.
(B) The second direction originates from the continuous case, namely from [7, 8, 12,
32]. In those papers, the perturbations of half-linear differential equations which
preserve the conditional oscillation are identified. The form of such perturbed
equations is[(

r0(t) +
n∑
i=1

ri(t)
Log2

(i)(t)

)1−p
Φ(y′)

]′
+
(
s0(t) +

n∑
i=1

si(t)
Log2

(i)(t)

)Φ(y)
tp

= 0, (5.1)

where

Log(k) t =
k∏
i=1

log(i) t, log(1) t = log t, log(i+1) t = log
(

log(i) t
)
, i, k ∈ N.

In addition, using the oscillatory properties of (5.1) with n = m+1, it is possible to
obtain the behaviour of (5.1) with n = m in the critical case, which is not solvable
directly (see also part (C) in this list). To find a dynamic equation similar to (5.1)
which is conditionally oscillatory remains an open problem.
(C) In Theorem 3.3, it is seen that the critical case remains unsolved. It may be also
considered as the case γ = Γ in the sense of (1.2). Such a situation is typical also in
the continuous and discrete cases (for differential and difference equations). As far
as we know, the critical case is solved only for differential equations (T = R) with
(sums of) periodic coefficients (see, e.g., [18, 19]). We should emphasize that solving
the critical case of more general equations than those with periodic coefficients is
the most likely impossible in general. This conjecture is based on the methods
described in [43] which lead to constructions of almost periodic functions such
that the resulting equation with almost periodic coefficients obtained from these
constructions can be oscillatory or non-oscillatory in the critical case. Note that
the methods of such constructions are used in the discrete case as well (see [16, 42]).
Therefore, it is not possible to describe the oscillation behaviour of such equations
in general (see also [21, Section 5] and [44, Remark 19]).
(D) Once the results are available for half-linear equations, the natural questions in-
volve partial differential equations on one side and non-linear equations on the other
side. Regarding the non-linear equations, the possible continuation and application
of the results presented in this paper include, e.g., the equations[

r(t)Φa(y∆)
]∆

+ c(t)Φb(yσ) = 0, (5.2)[
r(t)(y∆)

]∆
+ c(t)g(yσ) = 0, (5.3)[

r(t)Φ(y∆)
]∆

+ c(t)g(yσ) = 0, (5.4)

where Φa and Φb (in (5.2)) stand for p-Laplacian with p = a and p = b, respectively.
The function g (in (5.3) and (5.4)) satisfies the sign condition yg(y) > 0 whenever
y 6= 0 (see, e.g., [38, 39, 40, 41] for results in the continuous case).
(E) Another direction of research originates from the need to study equations whose
potential is asymptotically different from s(t)/tp and to find the form of the first



20 P. HASIL, M. VESELÝ EJDE-2018/24

coefficient which preserves the conditional oscillation. Inspired by the continuous
case, we conjecture that such an equation is the equation[

tαr(t)Φ(y∆)
]∆

+
s(t)
tp−α

Φ(yσ) = 0,

where α ∈ R \ {p − 1}. Some partial results are also known in the discrete case.
For this point, the main references are [11, 20].
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[7] O. Došlý; Half-linear Euler differential equation and its perturbations, Electron. J. Qual.
Theory Differ. Equ., Proc. 10’th Coll. Qual. Theory Diff. Equ., 2016 (2016), No. 10, 1–14.
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