EXISTENCE OF SOLUTIONS TO BURGERS EQUATIONS IN A NON-PARABOLIC DOMAIN

YASSINE BENIA, BOUBAKER-KHALED SADALLAH

Communicated by Mokhtar Kirane

Abstract. In this article, we study the semilinear Burgers equation with time variable coefficients, subject to boundary condition in a non-parabolic domain. Some assumptions on the boundary of the domain and on the coefficients of the equation will be imposed. The right-hand side of the equation is taken in $L^2(\Omega)$. The method we used is based on the approximation of the non-parabolic domain by a sequence of subdomains which can be transformed into regular domains. This paper is an extension of the work [2].

1. Introduction

The Burgers equation is a fundamental partial differential equation in modeling many physical phenomena, such as fluid mechanics, acoustics, turbulence [3, 6], traffic flow, growth of interfaces, and financial mathematics [7, 12].

In [11], the author studied a linear parabolic equation in a domain similar to the one considered in this work. Other references on the analysis of linear parabolic problems in non-regular domains are discussed for example in [1, 5, 8, 9].

The work by Clark et al. [4] is devoted to the homogeneous Burgers equation in non-parabolic domains which can be transformed into rectangle. In the same domains, we have established the existence, uniqueness and the optimal regularity of the solution to the non-homogeneous Burgers equation with time variable coefficients in an anisotropic Sobolev space (see [2]). The present paper is an extension of this last work to another type of non-regular domains.

Let $\Omega \subset \mathbb{R}^2$ be the “triangular” domain

$$\Omega = \{(t, x) \in \mathbb{R}^2; \ 0 < t < T, \ x \in I_t\},$$

where T is a positive number and

$$I_t = \{x \in \mathbb{R}; \ \varphi_1(t) < x < \varphi_2(t), \ t \in (0, T)\},$$

with

$$\varphi_1(0) = \varphi_2(0).$$

The functions φ_1, φ_2 are defined on $[0, T]$, and belong to $\mathcal{C}^1(0, T)$.

2010 Mathematics Subject Classification. 35K58, 35Q35.

Key words and phrases. Burgers equation; existence; uniqueness; non-parabolic domains; anisotropic Sobolev space.

©2018 Texas State University.

The most interesting point of the problem studied here is the fact that \(\varphi_1(0) = \varphi_2(0) \), because the domain is not rectangular and cannot be transformed into a regular domain without the appearance of some degenerate terms in the equation.

In \(\Omega \), we consider the boundary-value problem for the non-homogeneous Burgers equation with variable coefficient

\[
\begin{align*}
\partial_t u(t, x) + c(t)u(t, x)\partial_x u(t, x) - \partial_x^2 u(t, x) &= f(t, x) \quad (t, x) \in \Omega, \\
u(t, \varphi_1(t)) = u(t, \varphi_2(t)) &= 0 \quad t \in (0, T), \\
\end{align*}
\]

(1.2)

where \(f \in L^2(\Omega) \) and \(c(t) \) is given.

We look for some conditions on the functions \(c(t) \), \(\varphi_1(t) \) and \(\varphi_2(t) \) such that (1.2) admits a unique solution \(u \) belonging to the anisotropic Sobolev space

\[
H^{1,2}(\Omega) = \{ u \in L^2(\Omega); \partial_t u, \partial_x u, \partial_x^2 u \in L^2(\Omega) \}.
\]

In the sequel, we assume that there exist positive constants \(c_1 \) and \(c_2 \), such that

\[
c_1 \leq c(t) \leq c_2, \quad \text{for all } t \in (0, T),
\]

(1.3)

and we note that

\[
\|u\|_{L^2(I_t)} = \left(\int_{\varphi_1(t)}^{\varphi_2(t)} \|u(t, x)\|^2 \, dx \right)^{1/2},
\]

\[
\|u\|_{L^\infty(I_t)} = \sup_{x \in I_t} \|u(t, x)\|.
\]

To establish the existence of a solution to (1.2), we also assume that

\[
|\varphi'(t)| \leq \gamma \quad \text{for all } t \in [0, T],
\]

(1.4)

where \(\gamma \) is a positive constant and \(\varphi(t) = \varphi_2(t) - \varphi_1(t) \) for all \(t \in [0, T] \).

Remark 1.1. Once problem (1.2) is solved, we can deduce the solution of the problem

\[
\begin{align*}
\partial_t u(t, x) + a(t)u(t, x)\partial_x u(t, x) - b(t)\partial_x^2 u(t, x) &= f(t, x) \quad (t, x) \in \Omega, \\
u(t, \varphi_1(t)) = u(t, \varphi_2(t)) &= 0 \quad t \in (0, T), \\
\end{align*}
\]

(1.5)

Indeed, consider the case where \(a(t) \) and \(b(t) \) are positive and bounded functions for all \(t \in [0, T] \). Let \(h \) be defined by \(h : [0, T] \to [0, T'] \)

\[
h(t) = \int_0^t b(s) \, ds,
\]

we put \(\psi_i = \varphi_i \circ h^{-1} \) where \(i = 1, 2 \). Using the change of variables \(t' = h(t) \), \(v(t', x) = u(t, x) \), (1.5) becomes equivalent to (1.2), because it may be written as follows

\[
\begin{align*}
\partial_{t'} v(t', x) + c(t')v(t', x)\partial_x v(t', x) - \partial_x^2 v(t', x) &= g(t', x) \quad (t', x) \in \Omega', \\
v(t', \psi_1(t')) = v(t', \psi_2(t')) &= 0, \quad t' \in (0, T'),
\end{align*}
\]

where \(c(t') = \frac{a(t)}{b(t)} \), \(g(t', x) = \frac{f(t,x)}{b(t)} \), \(\Omega' = \{(t', x) \in \mathbb{R}^2; \ 0 < t' < T', \ x \in I_{t'} \} \) and \(T' = \int_0^T b(s) \, ds \).
For the study of problem (1.2) we will follow the method used in [11], which consists in observing that this problem admits a unique solution in domains that can be transformed into rectangles, i.e., when \(\varphi_1(0) \neq \varphi_2(0) \).

The paper is organized as follows. In the next section we study problem (1.2) in domain that can be transformed into a rectangle. When \(\varphi_1 \) and \(\varphi_2 \) are monotone on \((0,T)\), we solve in Section 3 the problem in a triangular domain: We approximate this domain by a sequence of subdomains \((\Omega_n)_{n\in\mathbb{N}}\). Then we establish an a priori estimate of the type

\[
\|u_n\|_{H^1(\Omega_n)}^2 \leq K\|f_n\|_{L^2(\Omega_n)}^2 \leq K\|f\|_{L^2(\Omega)}^2,
\]

where \(u_n \) is the solution of (1.2) in \(\Omega_n \) and \(K \) is a constant independent of \(n \). This inequality allows us to pass to the limit in \(n \). Finally, Section 4 is devoted to problem (1.2) in the case when \(\varphi_1 \) and \(\varphi_2 \) are monotone only near 0.

Our main result is as follows.

Theorem 1.2. Assume that \(c \) and \((\varphi_i(t))_{i=1,2}\) satisfy the conditions (1.1), (1.3) and (1.4). Then, the problem

\[
\partial_t u(t,x) + c(t)u(t,x)\partial_x u(t,x) - \partial^2_x u(t,x) = f(t,x) \quad (t,x) \in \Omega,
\]

\[
u(t,\varphi_1(t)) = u(t,\varphi_2(t)) = 0 \quad t \in (0,T),
\]

admits in the triangular domain \(\Omega \) a unique solution \(u \in H^{1,2}(\Omega) \) in the following cases:

Case 1. \(\varphi_1 \) (resp \(\varphi_2 \)) is a decreasing (resp increasing) function on \((0,T)\).

Case 2. \(\varphi_1 \) (resp \(\varphi_2 \)) is a decreasing (resp increasing) function only near 0.

Theses cases will be proved in Section 3 and Section 4 respectively.

2. **Solution in a domain that can be transformed into a rectangle**

Let \(\Omega \subset \mathbb{R}^2 \) be the domain

\[\Omega = \{(t,x) \in \mathbb{R}^2 : 0 < t < T, \ x \in I_t\},\]

\[I_t = \{x \in \mathbb{R} : \varphi_1(t) < x < \varphi_2(t), \ t \in (0,T)\}.\]

In this section, we assume that \(\varphi_1(0) \neq \varphi_2(0) \). In other words

\(\varphi_1(t) < \varphi_2(t) \) for all \(t \in [0,T] \).

Theorem 2.1. If \(f \in L^2(\Omega) \) and \(c(t), (\varphi_i)_{i=1,2} \) satisfy the assumptions (1.3), (1.4) and (2.1), then the problem

\[
\partial_t u(t,x) + c(t)u(t,x)\partial_x u(t,x) - \partial^2_x u(t,x) = f(t,x) \quad (t,x) \in \Omega,
\]

\[
u(0,x) = 0 \quad x \in J = (\varphi_1(0),\varphi_2(0)),
\]

\[
u(t,\varphi_1(t)) = u(t,\varphi_2(t)) = 0 \quad t \in (0,T),
\]

admits a solution \(u \in H^{1,2}(\Omega) \).

Proof. The change of variables: \(\Omega \to R \)

\[
(t,x) \mapsto (t,y) = \left(t, \frac{x - \varphi_1(t)}{\varphi_2(t) - \varphi_1(t)} \right)
\]
transforms Ω into the rectangle $R = (0, T) \times (0, 1)$. Putting $u(t, x) = v(t, y)$ and $f(t, x) = g(t, y)$, problem (2.2) becomes

$$
\frac{\partial}{\partial t} v(t, y) + p(t) v(t, y) \frac{\partial}{\partial y} v(t, y) - q(t) \partial_y^2 v(t, y) + r(t, y) \partial_y v(t, y)
= g(t, y) \quad (t, y) \in R,
$$

$$
v(0, y) = 0 \quad y \in (0, 1),
$$

$$
v(t, 0) = v(t, 1) = 0 \quad t \in (0, T),
$$

where

$$
\varphi(t) = \varphi_2(t) - \varphi_1(t), \quad p(t) = \frac{c(t)}{\varphi(t)},
$$

$$
q(t) = \frac{1}{\varphi^2(t)}, \quad r(t, y) = -\frac{y \varphi'(t) + \varphi'(t)}{\varphi(t)}.
$$

This change of variables preserves the spaces $H^{1,2}$ and L^2. In other words

$$
f \in L^2(\Omega) \iff g \in L^2(R),
$$

$$
u \in H^{1,2}(\Omega) \iff v \in H^{1,2}(R).
$$

According to (1.3) and (1.4), the functions p, q and r satisfy the following conditions

$$
\alpha < p(t) < \beta, \quad \forall t \in [0, T],
$$

$$
\alpha < q(t) < \beta, \quad \forall t \in [0, T],
$$

$$
|\partial_y r(t, y)| \leq \beta, \quad \forall (t, y) \in R,
$$

where α and β are positive constants.
So, problem (2.2) is equivalent to problem (2.3), and by [2] problem (2.3) admits a solution \(v \in H^{1,2}(R) \). Then, problem (2.2) in the domain \(\Omega \) admits a solution \(u \in H^{1,2}(\Omega) \).

3. Proof of Theorem 1.2, Case 1

Let

\[
\Omega = \{(t,x) \in \mathbb{R}^2 : 0 < t < T, \ x \in I_t\},
\]

\[
I_t = \{x \in \mathbb{R} : \phi_1(t) < x < \phi_2(t), \ t \in (0,T)\},
\]

with \(\phi_1(0) = \phi_2(0) \) and \(\phi_1(T) < \phi_2(T) \).

![Non-parabolic domain](image)

Figure 2. Non-parabolic domain.

For each \(n \in \mathbb{N}^* \), we define

\[
\Omega_n = \{(t,x) \in \mathbb{R}^2 : \frac{1}{n} < t < T, \ x \in I_t\},
\]

and we set \(f_n = f|_{\Omega_n} \), where \(f \) is given in \(L^2(\Omega) \). By Theorem 2.1, there exists a solution \(u_n \in H^{1,2}(\Omega_n) \) of the problem

\[
\begin{align*}
\partial_t u_n(t,x) + c(t)u_n(t,x)\partial_x u_n(t,x) - \partial_x^2 u_n(t,x) &= f_n(t,x) \quad (t,x) \in \Omega_n, \\
\phi_1(\frac{1}{n}) < x < \phi_2(\frac{1}{n}), \\
u_n(\frac{1}{n},x) = 0, \\
u_n(t,\phi_1(t)) = u_n(t,\phi_2(t)) = 0 & t \in [\frac{1}{n},T],
\end{align*}
\]

(3.1)

in \(\Omega_n \).

To prove Case 1 of Theorem 1.2, we have to pass to the limit in (3.1). For this purpose we need the following result.
Proposition 3.1. There exists a positive constant K independent of n such that
\[\|u_n\|_{H^1(T_n)}^2 \leq K\|f_n\|_{L^2(\Omega_n)}^2 \leq K\|f\|_{L^2(\Omega)}^2.\]

To prove this proposition we need some preliminary results.

Lemma 3.2. There exists a positive constant K_1 independent of n such that
\begin{align*}
\|u_n\|_{L^2(\Omega_n)}^2 &\leq K_1\|\partial_x u_n\|_{L^2(\Omega_n)}^2, \quad (3.2) \\
\|\partial_x u_n\|_{L^2(\Omega_n)}^2 &\leq K_1\|f_n\|_{L^2(\Omega_n)}^2, \quad (3.3)
\end{align*}

Proof. We have
\[|u_n|^2 = \left| \int_{\varphi_1(t)}^{x} \partial_x u_n \, ds \right|^2 \leq (x - \varphi_1(t)) \int_{\varphi_1(t)}^{x} |\partial_x u_n|^2 \, ds,\]
integrating from $\varphi_1(t)$ to $\varphi_2(t)$, we obtain
\[\int_{\varphi_1(t)}^{\varphi_2(t)} |u_n|^2 \, dx \leq \int_{\varphi_1(t)}^{\varphi_2(t)} \left((x - \varphi_1(t)) \int_{\varphi_1(t)}^{x} |\partial_x u_n|^2 \, ds \right) \, dx,
\]
hence
\[\int_{\varphi_1(t)}^{\varphi_2(t)} |u_n|^2 \, dx \leq (\varphi_2(t) - \varphi_1(t)) \int_{\varphi_1(t)}^{\varphi_2(t)} |\partial_x u_n|^2 \, dx,
\]
and
\[\int_{\varphi_1(t)}^{\varphi_2(t)} |u_n|^2 \, dx \leq (\varphi_2(t) - \varphi_1(t))^2 \int_{\varphi_1(t)}^{\varphi_2(t)} |\partial_x u_n|^2 \, dx.
\]
Then, there exists a positive constant K_1 independent of n such that
\[\|u_n\|_{L^2(I_n)}^2 \leq K_1\|\partial_x u_n\|_{L^2(I_n)}^2,
\]
integrating between $1/n$ and T we obtain inequality (3.2).

Now, multiplying both sides of (3.1) by u_n and integrating between $\varphi_1(t)$ and $\varphi_2(t)$, we obtain
\[\frac{1}{2} \frac{d}{dt} \int_{\varphi_1(t)}^{\varphi_2(t)} (u_n)^2 \, dx + c(t) \int_{\varphi_1(t)}^{\varphi_2(t)} \partial_x u_n u_n^2 \, dx - \int_{\varphi_1(t)}^{\varphi_2(t)} u_n \partial_x^2 u_n \, dx = \int_{\varphi_1(t)}^{\varphi_2(t)} f_n u_n \, dx.
\]
Integration by parts gives
\[c(t) \int_{\varphi_1(t)}^{\varphi_2(t)} \partial_x u_n u_n^2 \, dx = \frac{c(t)}{3} \int_{\varphi_1(t)}^{\varphi_2(t)} \partial_x (u_n)^3 \, dx = 0;
\]
then
\[\frac{1}{2} \frac{d}{dt} \int_{\varphi_1(t)}^{\varphi_2(t)} (u_n)^2 \, dx + \int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x u_n)^2 \, dx = \int_{\varphi_1(t)}^{\varphi_2(t)} f_n u_n \, dx. \quad (3.4)
\]
By integrating (3.4) from $1/n$ to T, we find that
\[\frac{1}{2} \|u_n(T, x)\|_{L^2(I_n)}^2 + \int_{1/n}^{T} \|\partial_x u_n(s)\|_{L^2(I_n)}^2 \, ds
\leq \int_{1/n}^{T} \|f_n(s)\|_{L^2(I_n)} \|u_n(s)\|_{L^2(I_n)} \, ds.
\]
Using the elementary inequality
\[|rs| \leq \frac{r^2}{2} + \frac{s^2}{2\varepsilon}, \quad \forall r, s \in R, \ \forall \varepsilon > 0,
\]
with \(\varepsilon = K_1 \), we obtain
\[
\frac{1}{2} \| u_n(T, x) \|_{L^2(I_T)}^2 + \int_{1/n}^T \| \partial_x u_n(s) \|_{L^2(I_T)}^2 \, ds \\
\leq \frac{K_1}{2} \int_{1/n}^T \| f_n(s) \|_{L^2(I_T)}^2 \, ds + \frac{1}{2K_1} \int_{1/n}^T \| u_n(s) \|_{L^2(I_T)}^2 \, ds.
\]

Thanks to (3.2), we have
\[
\| u_n(T, x) \|_{L^2(I_T)}^2 + \int_{1/n}^T \| \partial_x u_n(s) \|_{L^2(I_T)}^2 \, ds \leq K_1 \int_{1/n}^T \| f_n(s) \|_{L^2(I_T)}^2 \, ds,
\]
so,
\[
\| \partial_x u_n \|_{L^2(\Omega_n)} \leq K_1 \| f_n \|_{L^2(\Omega_n)}.
\]

Corollary 3.3. There exists a positive constant \(K_2 \) independent of \(n \), such that for all \(t \in [1/n, T] \),
\[
\| \partial_x u_n \|_{L^2(I_T)}^2 + \int_{1/n}^T \| \partial_x^2 u_n(s) \|_{L^2(I_T)}^2 \, ds \leq K_2.
\]

Proof. Multiplying both sides of (3.1) by \(\partial_x^2 u_n \) and integrating between \(\varphi_1(t) \) and \(\varphi_2(t) \), we obtain
\[
\frac{1}{2} \frac{d}{dt} \int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x u_n)^2 \, dx + \int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x^2 u_n)^2 \, dx \\
= - \int_{\varphi_1(t)}^{\varphi_2(t)} f_n \partial_x^2 u_n \, dx + c(t) \int_{\varphi_1(t)}^{\varphi_2(t)} u_n \partial_x u_n \partial_x^2 u_n \, dx.
\]

Using Cauchy-Schwartz inequality, (3.5) with \(\varepsilon = \frac{1}{2} \) leads to
\[
\left| \int_{\varphi_1(t)}^{\varphi_2(t)} f_n \partial_x^2 u_n \, dx \right| \leq \left(\int_{\varphi_1(t)}^{\varphi_2(t)} | \partial_x^2 u_n |^2 \, dx \right)^{1/2} \left(\int_{\varphi_1(t)}^{\varphi_2(t)} | f_n |^2 \, dx \right)^{1/2} \\
\leq \frac{1}{4} \int_{\varphi_1(t)}^{\varphi_2(t)} | \partial_x^2 u_n |^2 \, dx + \int_{\varphi_1(t)}^{\varphi_2(t)} | f_n |^2 \, dx.
\]

Now, we have to estimate the last term of (3.7). An integration by parts gives
\[
\int_{\varphi_1(t)}^{\varphi_2(t)} u_n \partial_x u_n \partial_x^2 u_n \, dx = \int_{\varphi_1(t)}^{\varphi_2(t)} u_n (\frac{1}{2} (\partial_x u_n)^2) \, dx = -\frac{1}{2} \int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x u_n)^3 \, dx.
\]

Since \(\partial_x u_n \) satisfies \(\int_{\varphi_1(t)}^{\varphi_2(t)} \partial_x u_n \, dx = 0 \) we deduce that the continuous function \(\partial_x u_n \) is zero at some point \(\xi(t) \in (\varphi_1(t), \varphi_2(t)) \), and by integrating \(2 \partial_x u_n \partial_x^2 u_n \) between \(\xi(t) \) and \(x \), we obtain
\[
2 \int_{\xi(t)}^{x} \partial_x u_n \partial_x^2 u_n \, ds \int_{\xi(t)}^{x} = \partial_x (\partial_x u_n)^2 \, ds = (\partial_x u_n)^2,
\]
the Cauchy-Schwartz inequality gives
\[
\| \partial_x u_n \|^2_{L^\infty(I_t)} \leq 2 \| \partial_x u_n \|_{L^2(I_t)} \| \partial_x^2 u_n \|_{L^2(I_t)},
\]
but
\[
\| \partial_x u_n \|_{L^3(I_t)} \leq \| \partial_x u_n \|^2_{L^2(I_t)} \| \partial_x u_n \|_{L^\infty(I_t)},
\]
so, (3.3) yields

$$\left| \int_{\varphi_1(t)}^{\varphi_2(t)} c(t)u_n \partial_x u_n \partial_x^2 u_n \, dx \right| \leq \left(\int_{\varphi_1(t)}^{\varphi_2(t)} |\partial_x^2 u_n|^2 \, dx \right)^{1/4} \left(c_2^{4/5} \int_{\varphi_1(t)}^{\varphi_2(t)} |\partial_x u_n|^2 \, dx \right)^{5/4}.$$

Finally, by Young’s inequality $|AB| \leq \frac{|A|^p}{p} + \frac{|B|^{p'}}{p'}$, with $1 < p < \infty$ and $p' = \frac{p}{p-1}$. Choosing $p = 4$ (then $p' = \frac{4}{3}$)

$$A = \left(\int_{\varphi_1(t)}^{\varphi_2(t)} |\partial_x^2 u_n|^2 \, dx \right)^{1/4}, \quad B = \left(c_2^{4/5} \int_{\varphi_1(t)}^{\varphi_2(t)} |\partial_x u_n|^2 \, dx \right)^{5/4},$$

the estimate of the last term of (3.7) becomes

$$\left| \int_{\varphi_1(t)}^{\varphi_2(t)} c(t)u_n \partial_x u_n \partial_x^2 u_n \, dx \right| \leq \frac{1}{4} \int_{\varphi_1(t)}^{\varphi_2(t)} |\partial_x^2 u_n|^2 \, dx + \frac{3}{4} c_2^{4/3} \int_{\varphi_1(t)}^{\varphi_2(t)} |\partial_x u_n|^2 \, dx \right)^{5/3}. \quad (3.9)$$

Let us return to (3.7): By integrating between $\frac{1}{n}$ and t, from the estimates (3.8) and (3.9), we obtain

$$\|\partial_x u_n\|_{L^2(I_t)}^2 + \int_{1/n}^{t} \|\partial_x^2 u_n(s)\|_{L^2(I_t)}^2 \, ds \leq 2 \int_{1/n}^{t} \|f_n(s)\|_{L^2(I_t)}^2 \, ds + \frac{3}{2} c_2^{4/3} \int_{1/n}^{t} \left(\|\partial_x u_n(s)\|_{L^2(I_t)}^2 \right)^{5/3} \, ds.$$

If $f_n \in L^2(\Omega_n)$, then there exists a constant c_3 such that

$$\|\partial_x u_n\|_{L^2(I_t)}^2 + \int_{1/n}^{t} \|\partial_x^2 u_n(s)\|_{L^2(I_t)}^2 \, ds \leq c_3 + \frac{3}{2} c_2^{4/3} \int_{1/n}^{t} \left(\|\partial_x u_n(s)\|_{L^2(I_t)}^2 \right)^{2/3} \|\partial_x u_n(s)\|_{L^2(I_t)}^2 \, ds.$$

Consequently, the function

$$\varphi(t) = \|\partial_x u_n\|_{L^2(I_t)}^2 + \int_{1/n}^{t} \|\partial_x^2 u_n(s)\|_{L^2(I_t)}^2 \, ds$$

satisfies the inequality

$$\varphi(t) \leq c_3 + \int_{1/n}^{t} \left(\frac{3}{2} c_2^{4/3} \|\partial_x u_n(s)\|_{L^2(I_t)}^{4/3} \right) \varphi(s) \, ds, \quad (4.1)$$

Gronwall’s inequality shows that

$$\varphi(t) \leq c_3 \exp \left(\int_{1/n}^{t} \left(\frac{3}{2} c_2^{4/3} \|\partial_x u_n(s)\|_{L^2(I_t)}^{4/3} \right) \, ds \right).$$

According to Lemma 3.2, the integral $\int_{1/n}^{T} \|\partial_x u_n\|_{L^2(I_t)}^{4/3} \, ds$ is bounded by a constant independent of n. So there exists a positive constant K_2 such that

$$\|\partial_x u_n\|_{L^2(I_t)}^2 + \int_{1/n}^{T} \|\partial_x^2 u_n(s)\|_{L^2(I_t)}^2 \, ds \leq K_2.$$
Lemma 3.4. There exists a constant K_3 independent of n such that

$$
\|\partial_t u_n\|^2_{L^2(\Omega_n)} + \|\partial^2_x u_n\|^2_{L^2(\Omega_n)} \leq K_3\|f_n\|^2_{L^2(\Omega_n)}.
$$

Then Theorem 3.1 is a direct consequence of Lemmas 3.2 and 3.4.

Proof. To prove Lemma 3.4 we develop the inner product in $L^2(\Omega_n)$,

$$
\|f_n\|^2_{L^2(\Omega_n)} = (\partial_t u_n + c(t)u_n\partial_x u_n - \partial^2_x u_n, \partial_t u_n + c(t)u_n\partial_x u_n - \partial^2_x u_n)_{L^2(\Omega_n)}
$$

$$
= \|\partial_t u_n\|^2_{L^2(\Omega_n)} + \|\partial^2_x u_n\|^2_{L^2(\Omega_n)} + \|c(t)u_n\|_{L^2(\Omega_n)}^2
$$

$$
- 2(\partial_t u_n, \partial^2_x u_n)_{L^2(\Omega_n)} + 2(\partial_t u_n, c(t)u_n\partial_x u_n)_{L^2(\Omega_n)}
$$

$$
- 2(c(t)u_n\partial_x u_n, \partial^2_x u_n)_{L^2(\Omega_n)},
$$

so,

$$
\|\partial_t u_n\|^2_{L^2(\Omega_n)} + \|\partial^2_x u_n\|^2_{L^2(\Omega_n)}
$$

$$
= \|f_n\|^2_{L^2(\Omega_n)} - \|c(t)u_n\|_{L^2(\Omega_n)}^2 + 2(\partial_t u_n, \partial^2_x u_n)_{L^2(\Omega_n)}
$$

$$
- 2(\partial_t u_n, c(t)u_n\partial_x u_n)_{L^2(\Omega_n)} + 2(\partial_t u_n, \partial^2_x u_n)_{L^2(\Omega_n)}. \tag{3.10}
$$

Using (1.3) and (3.5(292,645),(397,662)(296,645),(397,662)(296,645),(397,662)(296,645),(397,662)(296,645),(397,662)(296,645),(397,662) with $\varepsilon = 1/2$, we obtain

$$
\left| -2(\partial_t u_n, c(t)u_n\partial_x u_n)_{L^2(\Omega_n)} \right| \leq \frac{1}{2} \|\partial_t u_n\|^2_{L^2(\Omega_n)} + 2\varepsilon_2^2\|u_n\partial_x u_n\|^2_{L^2(\Omega_n)}, \tag{3.11}
$$

and

$$
\left| 2(\partial_t u_n, \partial^2_x u_n)_{L^2(\Omega_n)} \right| \leq 2\varepsilon_2^2\|u_n\partial_x u_n\|^2_{L^2(\Omega_n)} + \frac{1}{2} \|\partial^2_x u_n\|^2_{L^2(\Omega_n)}. \tag{3.12}
$$

Now calculating the last term of (3.10),

$$
(\partial_t u_n, \partial^2_x u_n)_{L^2(\Omega_n)} = -\int_{1/n}^T \int_{\varphi_1(t)}^{\varphi_2(t)} \partial_t (\partial_x u_n)\partial_x u_n \, dx \, dt + \int_{1/n}^T \int_{\varphi_1(t)}^{\varphi_2(t)} \partial_x u_n \partial^2_x u_n \, dx \, dt
$$

$$
= -\frac{1}{2} \int_{1/n}^T \int_{\varphi_1(t)}^{\varphi_2(t)} \partial_t (\partial_x u_n)^2 \, dx \, dt + \int_{1/n}^T \int_{\varphi_1(t)}^{\varphi_2(t)} \partial_x u_n \partial^2_x u_n \, dx \, dt
$$

$$
= -\frac{1}{2} \left[\int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x u_n)^2 \, dx \right]_{1/n}^T + \int_{1/n}^T \int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x u_n)^2 \, dx \, dt
$$

$$
= -\frac{1}{2} \int_{1/n}^T (\partial_x u_n)^2(T,x) \, dx + \frac{1}{2} \int_{\varphi_1(t)}^{\varphi_2(t)} (\partial_x u_n)^2 \left(\frac{1}{n}, x \right) \, dx
$$

$$
+ \int_{1/n}^T \partial_x u_n(t,\varphi_2(t))\partial_x u_n(t,\varphi_1(t)) \, dt
$$

$$
- \int_{1/n}^T \partial_x u_n(t,\varphi_1(t))\partial_x u_n(t,\varphi_1(t)) \, dt.
$$

According to the boundary conditions, we have

$$
\partial_t u_n(t,\varphi_i(t)) + \varphi_i'(t)\partial_x u_n(t,\varphi_i(t)) = 0, \quad i = 1, 2,
$$

so

$$
(\partial_t u_n, \partial^2_x u_n)_{L^2(\Omega_n)} = -\frac{1}{2} \int_{\varphi_1(T)}^{\varphi_2(T)} (\partial_x u_n)^2(T,x) \, dx - \int_{1/n}^T \varphi_2'(t)(\partial_x u_n(t,\varphi_2(t)))^2 \, dt
$$
there exists a constant zero of

We know that a solution \(u \) that

it follows that

Then

□

This completes the proof.

\[\tilde{u} \] implies that

On the other hand, using the injection of \(H^1(I_t) \) in \(L^\infty(I_t) \), we obtain

According to Corollary 3.3, \(\| u_n \|_{H^2(\Omega_n)}^2 \) is bounded, then by (3.3) and (3.14), there exists a constant \(K \) independent of \(n \), such that

However,

then, from lemmas 3.2 and 3.4, there exists a constant \(K \) independent of \(n \), such that

This completes the proof. \(\square \)

Existence and uniqueness. Choose a sequence \((\Omega_n)_{n \in N} \) of the domains defined previously, such that \(\Omega_n \subset \Omega \), as \(n \to +\infty \) then \(\Omega_n \to \Omega \).

Consider \(u_n \in H^{1,2}(\Omega_n) \) the solution of

\[c(t) u_n(t,x) \partial_x u_n(t,x) - \partial_x^2 u_n(t,x) = f_n(t,x) \quad (t,x) \in \Omega_n, \]

\[u_n(\frac{1}{n},x) = 0 \quad \varphi_1(\frac{1}{n}) < x < \varphi_2(\frac{1}{n}), \]

\[u_n(t,\varphi_1(t)) = u_n(t,\varphi_2(t)) = 0 \quad t \in [\frac{1}{n},1]. \]

We know that a solution \(u_n \) exists by the Theorem 2.1. Let \(\tilde{u}_n \) be the extension by zero of \(u_n \) outside \(\Omega_n \). From the proposition 3.1 results the inequality

This implies that \(\tilde{u}_n, \partial_t \tilde{u}_n \) and \(\partial_{x}^j \tilde{u}_n, j = 1,2 \) are bounded in \(L^2(\Omega_n) \), from Corollary 3.3 \(\tilde{u}_n \partial_x u_n \) is bounded in \(L^2(\Omega_n) \). So, it is possible to extract a subsequence from \(u_n \), still denoted \(u_n \) such that

\[\partial_t \tilde{u}_n \to \partial_t u \quad \text{weakly in} \quad L^2(\Omega_n), \]

\[\partial_x^j \tilde{u}_n \to \partial_x^j u \quad \text{weakly in} \quad L^2(\Omega_n), \]

\[\tilde{u}_n \partial_x \tilde{u}_n u_n \to u \partial_x u \quad \text{weakly in} \quad L^2(\Omega_n). \]

Then \(u \in H^{1,2}(\Omega) \) is solution to problem (1.2).
For the uniqueness, let us observe that any solution $u \in H^{1,2}(\Omega)$ of problem (1.2) is in $L^\infty(0, T, H^1(I))$. Indeed, by the same way as in Corollary 3.3 we prove that there exists a positive constant K_2 such that for all $t \in [0, T]$

$$\|\partial_x u\|_{L^2(I_t)}^2 + \int_0^T \|\partial_x^2 u(s)\|_{L^2(I_t)}^2 \, ds \leq K_2.$$

Let $u_1, u_2 \in H^{1,2}(\Omega)$ be two solutions of (1.2). We put $u = u_1 - u_2$. It is clear that $u \in L^\infty(0, T, H^1(I))$. The equations satisfied by u_1 and u_2 leads to

$$\int_{\varphi_1(t)} \left[\partial_t uw + c(t)uw\partial_x u_1 + c(t)u_2 w\partial_x u + \partial_x u_1 w\right] \, dx = 0.$$

Taking, for $t \in [0, T]$, $w = u$ as a test function, we deduce that

$$\frac{1}{2} \frac{d}{dt} \|u\|_{L^2(I_t)}^2 + \|\partial_x u\|_{L^2(I_t)}^2 = -c(t) \int_{\varphi_1(t)} u^2 \partial_x u_1 \, dx - c(t) \int_{\varphi_1(t)} u_2 u \partial_x u \, dx. \tag{3.15}$$

An integration by parts gives

$$c(t) \int_{\varphi_1(t)} u^2 \partial_x u_1 \, dx = -2c(t) \int_{\varphi_1(t)} u \partial_x uu_1 \, dx,$$

then (3.15) becomes

$$\frac{1}{2} \frac{d}{dt} \|u\|_{L^2(I_t)}^2 + \|\partial_x u\|_{L^2(I_t)}^2 = \int_{\varphi_1(t)} c(t)(2u_1 - u_2) u \partial_x u \, dx.$$

By (1.3) and inequality (3.5) with $\varepsilon = 2$, we obtain

$$\left| \int_{\varphi_1(t)} c(t)(2u_1 - u_2) u \partial_x u \, dx \right| \leq \frac{1}{4} c_2^2 (2\|u_1\|_{L^\infty(0, T, H^1(I_t))} + \|u_2\|_{L^\infty(0, T, H^1(I_t))})^2 \|u\|_{L^2(I_t)}^2 + \|\partial_x u\|_{L^2(I_t)}^2.$$

So, we deduce that there exists a non-negative constant D, such as

$$\frac{1}{2} \frac{d}{dt} \|u\|_{L^2(I_t)}^2 \leq D\|u\|_{L^2(I_t)}^2,$$

and Gronwall’s lemma leads to $u = 0$. This completes the proof of Theorem 1.2 Case 1.

4. PROOF OF THEOREM 1.2 CASE 2

In this case we set $\Omega = Q_1 \cup Q_2 \cup \Sigma_{T_1}$ where

$$Q_1 = \{(t, x) \in \mathbb{R}^2 : 0 < t < T_1, \ x \in I_t\},$$

$$Q_2 = \{(t, x) \in \mathbb{R}^2 : T_1 < t < T, \ x \in I_t\},$$

$$\Sigma_{T_1} = \{(T_1, x) \in \mathbb{R}^2 : x \in I_{T_1}\},$$

with T_1 small enough. $f \in L^2(\Omega)$ and $f_i = f_{|Q_i}$, $i = 1, 2$.

Theorem 1.2 Case 1, applied to the domain Q_1, shows that there exists a unique solution $u_1 \in H^{1,2}(Q_1)$ of the problem

$$\partial_t u_1(t, x) + c(t)u_1(t, x)\partial_x u_1(t, x) - \partial_x^2 u_1(t, x)$$

$$+ \int_0^T \|\partial_x^2 u(s)\|_{L^2(I_t)} \, ds \leq K_2.$$
Lemma 4.2. If we deduce from Lemma 4.1 the following result.

The above lemma is a special case of [10, Theorem 2.1, Vol. 2]. Using the transformation $[T_1, T] \times [0, 1] \rightarrow Q_2$,

$$(t, x) \mapsto (t, y) = (t, (\varphi_2(t) - \varphi_1(t))x + \varphi_1(t))$$

we deduce from Lemma 4.1 the following result.

Lemma 4.2. If $u \in H^{1,2}(Q_2)$, then $u|_{\Gamma_{T_1}} \in H^1(\Gamma_{T_1})$.

We denote the trace $u_{1|\Gamma_{T_1}}$ by u_0 which is in the Sobolev space $H^1(\Gamma_{T_1})$ because $u_1 \in H^{1,2}(Q_1)$.

Theorem 2.1 applied to the domain Q_2, shows that there exists a unique solution $u_2 \in H^{1,2}(Q_2)$ of the problem

$$\partial_t u_2(t, x) + c(t)u_2(t, x)\partial_x u_2(t, x) - \partial^2_x u_2(t, x) = f_2(t, x) \quad (t, x) \in Q_2,$$

$$u_2(0, x) = u_0(x) \quad \varphi_1(T_1) < x < \varphi_2(T_1),$$

$$u_2(t, \varphi_1(t)) = u_2(t, \varphi_2(t)) = 0 \quad t \in [T_1, T],$$

putting

$$u = \begin{cases} u_1 & \text{in } Q_1, \\ u_2 & \text{in } Q_2, \end{cases}$$

we observe that $u \in H^{1,2}(\Omega)$ because $u_{1|\Gamma_{T_1}} = u_{2|\Gamma_{T_1}}$ and is a solution of the problem

$$\partial_t u(t, x) + c(t)u(t, x)\partial_x u(t, x) - \partial^2_x u(t, x) = f(t, x) \quad (t, x) \in \Omega,$$

$$u(t, \varphi_1(t)) = u(t, \varphi_2(t)) = 0 \quad t \in (0, T).$$

We prove the uniqueness of the solution by the same way as in Case 1.

References

YASSINE BENIA
DEPT OF MATHEMATICS AND INFORMATICS, UNIVERSITY OF BENVYUCEF BENKHEDDA (ALGER 1), 16000, ALGIERS, ALGERIA
E-mail address: benia.yacine@yahoo.fr

BOUBAKER-KHALED SADALLAH
LAB. PDE & HIST MATHS; DEPT OF MATHEMATICS, E.N.S., 16050, KOUBA, ALGIERS, ALGERIA
E-mail address: sadallah@ens-kouba.dz