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NONEXISTENCE OF NONNEGATIVE SOLUTIONS FOR
PARABOLIC INEQUALITIES IN THE HALF-SPACE

EVGENY I. GALAKHOV, OLGA A. SALIEVA, LIUDMILA A. UVAROVA

Abstract. Based on the method of nonlinear capacity, we study the nonexis-

tence of nonnegative monotonic solutions for the quasilinear parabolic inequal-

ity ut−∆pu ≥ uq . Also we study generalizations in the half-space in terms of
parameters p and q.

1. Introduction

The question about nonexistence of nontrivial nonnegative global solutions to
nonlinear equation ut−Au = g(x)uq and the inequality ut−Au ≥ g(x)uq, where A is
an elliptic operator, in different domains is of substantial interest. Such inequalities
can be understood as nonlinear heat equations with a supplementary external source
term f(x, t) = ut − Au − g(x)uq ≥ 0. The aim of the study is to find the range
of values of q such that the equation or inequality in question has no-nontrivial
nonnegative global solutions, i.e. the extra heat source leads to blow-up of a local
solution.

The results in the whole space Rn go back to Fujita [11] who established that
solutions to the equation ut − ∆u = uq do not exist for 1 < q < 1 + 2

n . Similar
nonexistence ranges for much more general operators were obtained later in [16].
As for the half-space, up to our knowledge, so far only stationary solutions have
been considered. The first results in this direction were obtained by Berestycki,
Capuzzo Dolcetta and Nirenberg [2] who proved nonexistence of solutions to the
inequality −∆u ≥ uq for 1 < q < n+1

n−1 . The optimality of these results was shown
by Birindelli and Mitidieri [3]. Inequalities of the form Au ≥ uq with A = −∆p,
where p > 1 and ∆p is the p-Laplace operator defined by ∆pu := div(|Du|p−2Du),
in the half-space with a punched point or a removed neighborhood of a point on the
boundary were studied by Bidaut-Véron and Pohozaev [4], and later by Véron and
A. Porretta [18]. They obtained results on nonexistence of solutions in the domains
under study and consequently in the whole half-space for p − 1 < q < qcr(p, n),
where qcr(p, n) = p−1 + p

βp,n
, and βp,n is the growth rate of singular solutions near

zero, obtained explicitly only for n = 2 (βp,2 = 3−p+
√

(p−1)2+2−p
3(p−1) ). One should also

note the papers of Filippucci [10] on critical exponents for semilinear inequalities of
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the form −div(uα|x|βDu) ≥ |x|γuq in the half-space, of Dancer, Du and Efendiev
[5] and of Zou [20] on nonexistence of solutions to the Dirichlet problem

−∆pu = uq, x ∈ Rn+,
u(x) = 0, x ∈ ∂Rn+,

(1.1)

for a nonlinear equation with a p-Laplace operator in a half-space, as well as those
of Farina, Montoro and Sciunzi [6]–[9] on monotonicity of essentially bounded solu-
tions of the same problem, which implies their nonexistence for a certain range of q.
Elliptic problems with singular coefficients near unbounded sets were considered,
in particular, in [12, 13].

In this article we consider the nonexistence of nonnegative solutions for the
parabolic inequality ut − ∆pu ≥ axγnu

q in the half-space. Based on the method
of nonlinear capacity [16, 17], we obtain sufficient conditions for nonexistence of
solutions. Similar results for elliptic inequalities and systems can be found in [14].

The rest of this article consists of three sections. §2 has our main results, §3
contains a proof in the semilinear case, and §4 the quasilinear case.

2. Formulation of main results

Denote Rn+ = {x = (x1, . . . , xn) ∈ Rn : xn > 0}. Let p > 1, q > p − 1, a > 0,
γ ∈ R, and let u0 ∈ C(Rn+) be a nonnegative function. Consider the problem

ut −∆pu ≥ axγnuq, (x, t) ∈ Rn+ × R+,

u(x, 0) = u0(x), x ∈ Rn+,
u(x, t) ≥ 0, (x, t) ∈ Rn+ × R+.

(2.1)

We understand its weak solutions in the following sense.

Definition 2.1. A weak solution of problem (2.1) is a nonnegative function u ∈
C2,1(Rn+ × R+), which satisfies the integral inequality∫

R+

∫
Rn+

(|Du|p−2(Du,Dϕ)− uϕt) dx dt ≥
∫

R+

∫
Rn+
axγnu

qϕdx dt+
∫

Rn+
u0ϕdx

for any nonnegative ϕ ∈ C∞(Rn+×R+) such that ϕ(x, t) ≡ 0 for (x, t) ∈ ∂Rn+×R+

(that is, for xn = 0).

Weak solutions of the problems considered below are defined in a similar way.
In the case p = 2, we obtain the following result.

Theorem 2.2. Let a > 0,γ > −2, and 1 < q ≤ 1 + γ+2
n+1 . Then (2.1) with p = 2:

ut −∆u ≥ axγnuq, (x, t) ∈ Rn+ × R+,

u(x, 0) = u0(x), x ∈ Rn+,
u(x, t) ≥ 0, (x, t) ∈ Rn+ × R+

(2.2)

has no nonnegative nontrivial weak solutions u.

For other values of p 6= 2, we obtain a nonexistence result in a smaller functional
class of solutions (with an additional property of monotonicity).

Theorem 2.3. Let a > 0, γ > −p, q ≥ max(1, p− 1), γ(p− 2) > p(1− q), and

[(n+ 1)(q − 1)− γ](q − p+ 1)− p(q − 1)− γ(p− 2) < 0.
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Then (2.1) has no nonnegative nontrivial weak solutions u such that u(x′, ·, t) is
monotonic in xn for each x′ ∈ Rn−1 and t > 0.

Corollary 2.4. Let a > 0 and max(1, p− 1) ≤ q ≤ p− 1 + p
n+1 . Then the problem

ut −∆pu ≥ auq, (x, t) ∈ Rn+ × R+,

u(x, 0) = u0(x), x ∈ Rn+,
u(x, t) ≥ 0, (x, t) ∈ Rn+ × R+

(2.3)

(that is, (2.1) with γ = 0) has no nonnegative nontrivial weak solutions u such that
u(x′, ·, t) is monotonic in xn for each x′ ∈ Rn−1 and t > 0.

Evidently, the above corollary follows from Theorem 2.3 in the case γ = 0.

Remark 2.5. Nonexistence results can be obtained in the same class of monotonic
solutions for the problem

ut + ∆pu ≥ axγnuq, (x, t) ∈ Rn+ × R+,

u(x, 0) = u0(x), x ∈ Rn+,
u(x, t) ≥ 0, (x, t) ∈ Rn+ × R+,

(2.4)

where the operator ∆p has the opposite sign (see [14]). Although the result in
[14] is formulated for monotonically nondecreasing solutions, its proof is valid for
non-increasing ones as well.

3. Proof of Theorem 2.2

We use the method of nonlinear capacity [16, 17]. We choose a family of nonneg-
ative test functions ξλR,T ∈ C1

0 (Rn) such that λ > 0 (to be specified below), R and
T are some positive parameters, and ξR,T (x) =

∏N−1
k=1 χR(xk) ·χR(xn− 3R) ·χT (t)

with

χR(s) =

{
1 if s ≤ R,
0 if s ≥ 2R,

(3.1)

where
|DχR(s)| ≤ cR−1, s ∈ R+. (3.2)

Multiply both sides of (2.2) by ξλR,Txn and integrate by parts. After elementary
transformations we obtain

a

∫
R+

∫
Rn+
uqξλR,Tx

γ+1
n dx dt

≤
∫

R+

∫
Rn+
u · |∆(ξλR,Txn)| dx dt+

∫
R+

∫
Rn+
u ·
∣∣∂ξλR,T
∂t

∣∣xn dx dt. (3.3)

Application of the parametric Young inequality to both integrals on the right-hand
side of (3.3) yields

a

2

∫
R+

∫
Rn+
uqξλR,Tx

γ+1
n dx dt ≤ c

∫
R+

∫
Rn+
|DξR,T |

2q
q+1 ξ

λ− 2q
q+1

R,T x
q−γ−1
q−1

n dx dt

+ c

∫
R+

∫
Rn+
|χ′T (t)|

q
q−1χ

λ− q
q−1

T x
− γ+1
q−1

n dx dt

:= I1(R, T ) + I2(R, T ).

(3.4)
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For λ > 2q
q−1 , the integral I1(R, T ) can be estimated as

I1(R, T ) ≤ Rn−
q+γ+1
q−1 T (3.5)

and I2(R, T ) as

I2(R, T ) ≤ Rn−
γ+1
q−1 T 1− q

q−1 . (3.6)

From (3.4)–(3.6) we obtain

a

2

∫
R+

∫
Rn+
uqξλR,Tx

γ+1
n dx dt ≤ c(Rn−

q+γ+1
q−1 T +Rn−

γ+1
q−1 T 1− q

q−1 ). (3.7)

Choosing T = Rθ with θ > 0 such that both terms are of the same order and taking
R→∞, we obtain ∫

R+

∫
Rn+
uqxγ+1

n dx dt = 0,

which contradicts the assumption of non-triviality of the solution. This completes
the proof of Theorem 2.2.

4. Proof of Theorem 2.3

Now, using the same family of test functions ξR,T as in the previous proof, we
multiply both parts of (2.3) by uαξλR,Txn, where α < 0 will be specified below, and
integrate by parts. After elementary transformations we obtain

a

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt+ |α|

∫
R+

∫
Rn+
uα−1|Du|pξλR,Txn dx dt

≤
∫

R+

∫
Rn+
uα|Du|p−1|DξλR,T |xn dx dt+

∫
R+

∫
Rn+
utu

αξλR,Txn dx dt

+
∫

R+

∫
Rn+
uα|Du|p−2 ∂u

∂xn
ξλR,T dx dt.

(4.1)

Application of the parametric Young inequality to the first integral on the right-
hand side of (4.1) yields

a

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt+

|α|
2

∫
R+

∫
Rn+
uα−1|Du|pξλR,Txn dx dt

≤ c
∫

R+

∫
Rn+
uα+p−1|DξλR,T |pξ

λ(1−p)
R,T xn dx dt

+
1

α+ 1

∫
R+

∫
Rn+
uα+1(ξλR,T )txn dx dt

+
∫

R+

∫
Rn+
uα|Du|p−2 ∂u

∂xn
ξλR,T dx dt.

(4.2)
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Applying the parametric Young inequality to the first two integrals on the right-
hand side of (4.2) once more, we obtain

a

2

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt+

|α|
2

∫
R+

∫
Rn+
uα−1|Du|pξλR,Txn dx dt

≤ c
∫

R+

∫
Rn+
|DξR,T |

p(q+α)
q−p+1 ξ

λ− p(q+α)
q−p+1

R,T x
q+α−(α+p−1)(γ+1)

q−p+1
n dx dt

+ c

∫
R+

∫
Rn+
|χ′T (t)|

q+α
q−1 χ

λ− q+αq−1
T x

q+α−(α+1)(γ+1)
q−1

n dx dt

+
∫

R+

∫
Rn+
uα|Du|p−2 ∂u

∂xn
ξλR,T dx dt

:= I1(R, T ) + I2(R, T ) + I3(R, T ).

(4.3)

For λ > pq
q−p+1 and

α >
n(q − p+ 1)− (q + γ − 1)(p− 1)

p+ γ
(4.4)

the integral I1(R, T ) and I2(R, T ) can be estimated as

I1(R, T ) ≤ Rn−
(p−1)(q+α)+(α+p−1)(γ+1)

q−p+1 T, (4.5)

I2(R, T ) ≤ Rn+
q+α−(α+1)(γ+1)

q−1 T 1− q+αq−1 . (4.6)

If ∂u
∂xn
≥ 0, then I3(R, T ) < 0. Estimate the integral I3(R, T ) in the case ∂u

∂xn
≤ 0.

In case p < 2, using the Hölder inequality and integrating by parts, we have

I3(R, T ) = −
∫

R+

∫
Rn+
uα|Du|p−2 ∂u

∂xn
ξλR,T dx dt

≤
∫

R+

∫
Rn+
uα
(
− ∂u

∂xn

)p−1

ξλR,T dx dt

≤ c
∫

R+

∫
Rn+

(
− ∂u1+ α

p−1

∂xn

)p−1

ξλR,T dx dt

≤ c
(
−
∫

R+

∫
Rn+

∂u1+ α
p−1

∂xn
ξ

λ
p−1
R dx dt

)p−1

Rn(2−p)

= c
(∫

R+

∫
Rn+
u1+ α

p−1
∂ξ

λ
p−1
R

∂xn
dx dt

)p−1

Rn(2−p)

≤ c
(∫

R+

∫
Rn+
u1+ α

p−1
∣∣∂ξ λ

p−1
R

∂xn

∣∣ dx dt)p−1

Rn(2−p)

≤ c
(∫

R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt

)α+p−1
q+α ·Rn(2−p)

×
(∫

R+

∫
Rn+

∣∣∂ξλR,T
∂xn

∣∣ (q+α)(p−1)
(q+α−1)(p−1)−α

×
(
ξ
λ(q−p+1)−(q+α)
R,T x−(γ+1)(α+p−1)

n

) 1
(q+α−1)(p−1)−α dx dt

) (q+α−1)(p−1)−α
q+α
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≤ a

4

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt

+ cR
n[(2−p)(q+α)+(q+α−1)(p−1)−α]−(q+α+γ+1)(p−1)−(γ+1)α

q−p+1

=
a

4

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt+ cRn−

(q+α)(p−1)+(γ+1)(α+p−1)
q−p+1 ,

i.e.

I3(R, T ) ≤ a

4

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt+ cRn−

(q+α)(p−1)+(γ+1)(α+p−1)
q−p+1 T . (4.7)

From (4.3)–(4.7) we obtain

a

2

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt+

|α|
2

∫
R+

∫
Rn+
uα−1|Du|pξλR,Txn dx dt

≤ c
(
Rn−

(q+α)(p−1)+(γ+1)(α+p−1)
q−p+1 T +Rn−

(γ+1)(α+1)
q−1 T 1− q+αq−1

)
.

(4.8)

Choosing T = Rθ with θ > 0 such that both terms are of the same order and taking
R→∞, for α satisfying (4.4) we obtain∫

R+

∫
Rn+
uq+αxγ+1

n dx dt = 0,

which contradicts the assumption of non-triviality of the solution. This proves the
theorem in the case p < 2.

In the case p > 2, estimates (4.3) and (4.5) are still valid, and for the integral
I3(R, T ) in the case ∂u

∂xn
≤ 0 we have

I3(R, T ) =
∫

R+

∫
Rn+
uα|Du|p−2 ∂u

∂xn
ξλR,T dx dt

= −
∫

R+

∫
Rn+
uα|Du|p−2

(
− ∂u

∂xn

) p−2
p−1
(

+
∂u

∂xn

) 1
p−1

ξλR,T dx dt

≤
∫

R+

∫
Rn+
uα|Du|p−2+ p−2

p−1

(
− ∂u

∂xn

) 1
p−1

ξλR,T dx dt

and by the Young inequality, similarly to the previous argument,

I3(R, T ) ≤ |α|
4

∫
R+

∫
Rn+
uα−1|Du|pξλR,Txn dx dt

+ c

∫
R+

∫
Rn+
uα+p−2 ∂u

∂xn
x2−p
n ξλR,T dx dt

≤ |α|
4

∫
R+

∫
Rn+
uα−1|Du|pξλR,Txn dx dt

+ cR2−p
∫

R+

∫
Rn+
uα+p−1

∣∣∂ξR,T
∂xn

∣∣ξλ−1
R dx dt

≤ |α|
4

∫
R+

∫
Rn+
uα−1|Du|pξλR,Txn dx dt+

a

4

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt
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+ cR
(2−p)(q+α)
q−p+1

∫
R+

∫
Rn+
x
− (γ+1)(α+p−1)

q−p+1
n

∣∣∂ξR,T
∂xn

∣∣ q+α
q−p+1 ξ

λ− q+α
q−p+1

R,T dx dt

≤ a

4

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt+ cRn−

(p−1)(q+α)+(α+p−1)(γ+1)
q−p+1 T,

i. e.

I3(R, T ) ≤ |α|
4

∫
R+

∫
Rn+
uα−1|Du|pξλR,Txn dx dt

+
a

4

∫
R+

∫
Rn+
uq+αξλR,Tx

γ+1
n dx dt+ cRn−

(p−1)(q+α)+(α+p−1)(γ+1)
q−p+1 T,

(4.9)

which together with (4.3) and (4.5) yields (4.8) again. The proof can be completed
similarly to the previous case.

Acknowledgments. This work was supported by the Ministry of Education and
Science of Russia, as a state order in the sphere of scientific activities (order No.
1.7706.2017/8.9). This publication was prepared with support from RUDN Univer-
sity Program 5-100.

References

[1] C. Azizieh, P. Clément; A priori estimates and continuation methods for positive solutions

of p-Laplace equations, J. Diff. Eqns, 179 (2002), 213–245.
[2] H. Berestycki, I. Capuzzo Dolcetta, L. Nirenberg; Superlinear indefinite elliptic problems and

nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4 (1994), 59–78.

[3] I. Birindelli, E. Mitidieri; Liouville theorems for elliptic inequalities and applications, Proc.
Royal Soc. Edinburgh, 128A (1998), 1217–1247.
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