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INFINITE SEMIPOSITONE PROBLEMS WITH A FALLING
ZERO AND NONLINEAR BOUNDARY CONDITIONS
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Communicated by Pavel Drabek

Abstract. We consider the problem

−u′′ = h(t)
`au− u2 − c

uα

´
, t ∈ (0, 1),

u(0) = 0, u′(1) + g(u(1)) = 0,

where a > 0, c ≥ 0, α ∈ (0, 1), h:(0, 1]→ (0,∞) is a continuous function which

may be singular at t = 0, but belongs to L1(0, 1) ∩ C1(0, 1), and g:[0,∞) →
[0,∞) is a continuous function. We discuss existence, uniqueness, and non

existence results for positive solutions for certain values of a, b and c.

1. Introduction

In this article, we consider the boundary-value problem

−u′′ = h(t)
(au− u2 − c

uα
)
, t ∈ (0, 1),

u(0) = 0, u′(1) + g(u(1)) = 0,
(1.1)

where a > 0, c ≥ 0, α ∈ (0, 1), and g:[0,∞)→ [0,∞) is a continuous function. The
function h:(0, 1]→ (0,∞) is a continuous function which satisfies:

(H1) there exists ε1 > 0, 0 < γ < 1− α, such that h(s) ≤ 1/sγ for all s ∈ (0, ε1),
(H2) infs∈(0,1) h(s) = ĥ > 0.

Note that, for the nonlinear function f(s) = (as− s2− c)/sα, lims→0+ f(s) = −∞.
This singularity together with the fact that the solution needs to satisfy a Dirichlet
boundary condition creates a challenge in establishing the existence of positive
solutions. Such problems are referred in the literature as “infinite semipositone”
problems. See [9, 11, 13, 17, 18], where infinite semipositone problems have been
studied when the nonlinearity f only has a single zero beyond which it is positive
and increasing to infinity. The analysis is more challenging when the reaction term
f has a second zero (falling zero) beyond which it is negative. See [4, 14] where this
study was achieved in the case when Dirichlet boundary conditions persisted on the
entire boundary. In this paper, we extend this study to an even more challenging
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situation, namely when a nonlinear boundary condition is involved on part of the
boundary.

Problems of the form (1.1) arise while studying radial solutions of

−∆u = K(|x|)
(au− u2 − c

uα
)
, x ∈ Ω,

∂u

∂η
+ g(u) = 0, if |x| = r0,

u→ 0, as |x| → ∞,

(1.2)

where Ω = {x ∈ Rn : |x| > r0} is an exterior domain, n > 2, a, c, α are as before,
and K : [r0,∞) → (0,∞) belongs to a class of continuous functions such that
limr→∞K(r) = 0. By using the transformation: r = |x| and s = ( rr0 )(2−n), we can

reduce (1.2) to (1.1), where h(s) = r20
(2−n)2 s

−2(n−1)
n−2 K(r0s

1
2−n ) (see [2]). Note that

if we assume K ∈ C([r0,∞), (0,∞)) and satisfies d1
rn+σ ≤ K(r) ≤ d2

rn+σ for some
d1, d2 > 0, and for σ ∈ ((n− 2)α, n− 2), then h satisfies our assumptions (H1) and
(H2).

When the boundary condition at |x| = r0 is replaced by a Dirichlet’s condition,
i.e. u = 0, the same transformation reduces the problem to

−u′′ = h(t)
(au− u2 − c

uα
)
, t ∈ (0, 1),

u(0) = 0, u(1) = 0.
(1.3)

The existence of positive solutions of this Dirichlet problem was studied in [4]. For
given values of a > 0, α ∈ (0, 1), the authors established the existence of positive
solution for small values of c. In this paper, we extend this study to the case when
a nonlinear boundary condition is satisfied at |x| = r0.

In particular, we will show that (1.1) has a positive solution with u(1) > 0, which
clearly shows that it is not a solution of (1.3). Hence combining our result with the
existence result obtained in [4], we also see that the problem

−∆u = K(|x|)(au− u
2 − c

uα
), x ∈ Ω,

u
[∂u
∂η

+ g(u)
]

= 0, if |x| = r0,

u→ 0, as |x| → ∞,

has at least two positive radial solutions for certain values of a and c. Existence of
positive solutions to certain problems with such boundary conditions are discussed
in [5, 8].

The study of such steady state reaction diffusion equations are of great impor-
tance in various applications. See in particular [16] for a problem arising in ecology.
See also [1, 3, 5, 8]. Here we consider more challenging reaction diffusion models,
namely, when nonlinear diffusion is involved (when the diffusion term is uα∆u
instead of ∆u).

Below, we state our results for (1.1). We first establish a non existence result for
(1.1). For this we assume

(H3) h ∈ C1
(
(0, 1], (0,∞)

)
, and h′(s) < 0 for s > 0.
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Note that if the weight function K in (1.2) is such that K is C1 and K(r−1)
r2(n−1) is

decreasing for r > 0, then the corresponding h satisfies (H3). A simple example
of K which satisfies our assumptions is K(r) = d1

rn+σ , where d1 > 0, and σ ∈
((n− 2)α, n− 2).

Theorem 1.1. Assume h satisfies (H1), (H3), and g:[0,∞)→ [0,∞), is a continu-
ous function. Then for given a > 0 and α ∈ (0, 1), there exists ĉ(a) = (3−α)(1−α)

(2−α)2
a2

4

such that if c > ĉ, (1.1) has no nonnegative solution.

Remark 1.2. Note that if c > a2/4, then f(s) = as−s2−c
sα < 0 for all s > 0 and

this will immediately imply the non existence of nonnegative solution of (1.1). This
follows from the fact that, since u(0) = 0 and u′(1) ≤ 0, there exists a t̃ ∈ (0, 1)
such that u′′(t̃) ≤ 0.

Remark 1.3. From the proof of Theorem(1.1), we also see that, for a given c > 0
and α ∈ (0, 1), there exists â(c) such that if a < â, (1.1) has no nonnegative solution.

Next, we state an existence result for (1.1) for the case when c = 0.

Theorem 1.4. Let α ∈ (0, 1), c = 0, and g:[0,∞) → [0,∞) is a continuous
function. Assume h:(0, 1] → (0,∞) is a continuous function which satisfies (H1)
and (H2). Then, there exists a > 0 such that if a ≥ a, (1.1) has a positive solution
u with u(1) > 0.

Remark 1.5. If ĝ = infs∈[0,∞) g(s) > 0, then integrating (1.1) from 0 to 1 with

c = 0, it is easy to see that for a ≤ [ (2−α)2−α

(1−α)1−α
ĝ
‖h‖1 ]

1
2−α , (1.1) has no positive solution.

Under an additional assumption on g, we also establish the uniqueness of the
positive solution obtained in Theorem 1.4 for (1.1) when c = 0. For this we assume

(H4) g(x)/x is nondecreasing for x ∈ [0,∞).
Then we have the following uniqueness result.

Theorem 1.6. Let a > 0, c = 0, α ∈ (0, 1), and h:(0, 1]→ (0,∞) be a continuous
function which satisfies (H2). Assume also that g:[0,∞) → [0,∞) is a continuous
function which satisfies (H4). Then (1.1) has at most one positive solution.

Finally, we state our main existence result in this paper for (1.1).

Theorem 1.7. Let α ∈ (0, 1) and g:[0,∞) → [0,∞) is a continuous function.
Assume h:(0, 1] → (0,∞) is a continuous function which satisfies (H1) and (H2).
Then, there exists ā > 0, and for a ≥ ā, c̄(a) > 0 such that for c ≤ c̄, (1.1) has
a positive solution u with u(1) > 0. Further, this c̄ is an increasing function of a
such that c̄(a)→∞ as a→∞.

Remark 1.8. From the proof of Theorem(1.7), it is easy to see that, for any given
c ≤ c̄(ā), there exists a∗(c) such that for a ≥ a∗, (1.1) has a positive solution.

Figure 1 illustrates Theorem 1.7 and Remark 1.8. Here ρ = ‖u‖∞.
In the next section we recall a method of sub and super solutions established

in [12], which will be used to establish our existence results. We also provide
some preliminary results about the existence of a positive eigenfunction for certain
eigenvalue problems, which will be useful in the construction of our subsolution
required in the proof of Theorem 1.7. The proofs of the theorems are provided in
the later sections. In the last section, we provide some exact bifurcation diagrams
of positive solutions of (1.1) when h(t) ≡ 1.
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Figure 1. Bifurcation diagram of (1.1): left a versus ρ, right c
versus ρ

2. Preliminary results

We first discuss the method of sub and super solutions. By a subsolution of
(1.1), we mean a function ψ ∈ C2(0, 1) ∩ C1[0, 1] which satisfies

−ψ′′(t) ≤ h(t)(
aψ(t)− ψ2(t)− c

ψα(t)
), t ∈ (0, 1),

ψ(t) > 0, t ∈ (0, 1],

ψ′(1) + g(ψ(1)) ≤ 0,

ψ(0) = 0,

(2.1)

and by a supersolution of (1.1), we mean a function φ ∈ C2(0, 1) ∩ C1[0, 1] which
satisfies

−φ′′(t) ≥ h(t)(
aφ(t)− φ2(t)− c

φα(t)
), t ∈ (0, 1),

φ(t) > 0, t ∈ (0, 1],

φ′(1) + g(φ(1)) ≥ 0,

φ(0) = 0.

(2.2)

Lemma 2.1 (See [12]). If there exist a subsolution ψ and a supersolution φ of
(1.1) such that ψ ≤ φ, then (1.1) has at least one solution u ∈ C2(0, 1) ∩ C1[0, 1]
satisfying ψ ≤ u ≤ φ in [0, 1].

We note here that, in our case, the difficulty lies in the construction of a positive
subsolution, as the subsolution, ψ, needs to satisfy limt→0+ −ψ′′(t) = −∞, and
−ψ′′ > 0 in a large part of the interior.

Next, we discuss the Sturm-Liouville problem

y′′(t) + λy(t) = 0, t ∈ (0, 1),

y(0) = 0,

y′(1) + ly(1) = 0,

(2.3)

where l > 0, and λ is a real parameter. We first observe (see also [15]) that the
following result holds.

Lemma 2.2. For a given l > 0, the first eigenvalue of (2.3), λ1 ∈ (π
2

4 , π
2), and

the corresponding eigenfunction φ1 is positive, and is given by φ1(t) = sin
√
λ1t.

Moreover, as l→ 0, λ1 → π2

4 , and as l→∞, λ1 → π2.
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Proof. The solution of the equation y′′ + λy = 0 is given by φ(x) = A cos
√
λx +

B sin
√
λx. Using the boundary conditions, we reduce that tan η = −1

l η, where
η =

√
λ. This equation does not possess an explicit solution. But the graphical

solutions of this equation can be determined by plotting functions y = tan η and
y = − 1

l η (see Figure 2).

Figure 2. Graph of tan η vs −1/(lη)

From Figure 2, it is clear that, there are infinitely many roots ηn for n = 1, 2, . . . .
To each root ηn, there corresponds an eigenvalue λn = η2

n, n = 1, 2, 3, . . . . Thus
there exists a sequence of eigenvalues λ1 < λ2 < λ3 < . . . and the corresponding
eigenfunctions are φn = sin

√
λnx. From the graph, we observe that the first

eigenvalue λ1 = η2
1 ∈ (π2/4, π2), and hence φ1 is positive. Also note that as l→∞,

η1 → π and, as l→ 0, η1 → π/2. �

3. Proof of Theorem 1.1

We will first prove the following lemma.

Lemma 3.1. Let a > 0, c ≥ 0, α ∈ (0, 1), and F (s) =
∫ s
0
f(t) dt, where f(s) =

as−s2−c
sα . Let h ∈ C((0, 1), (0,∞)) satisfy (H1) and (H3). If F (s) < 0 for all s > 0,

then (1.1) has no nonnegative solution.

Proof. Let us assume that (1.1) has a nonnegative solution u(t). Since u(0) = 0
and u′(1) ≤ 0, there exists a t0 > 0 such that u′(t0) = 0. Now define E(t) :=
F (u(t))h(t) + [u′(t)]2

2 . From (H1), there exists a d > 0 such that h(t) ≤ d
tγ for

t ∈ (0, 1). Integrating (1.1) from t to t0 and using the fact for s > 0, f(s) ≤ R for
some R > 0, we obtain

u′(t) =
∫ t0

t

h(s)f(u(s)) ds ≤ dR

1− γ
(t1−γ0 − t1−γ) ≤ dR

1− γ
= R0. (3.1)

Again integrating (3.1) from 0 to t, t < t0, we have u(t) < R0t, for t ∈ (0, t0). Since
f is integrable, there exist k > 0 and ε > 0 such that |F (u)| ≤ ku for u ∈ (0, ε).
Hence

lim
t→0+

|F (u(t))|h(t) ≤ lim
t→0+

kR0dt
1−γ = 0.
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This implies that limt→0+ E(t) ≥ 0. Now note that E′(t) = F (u)h′(t). From (H3),
h′(t) < 0 for t ∈ (0, 1), and F (s) < 0 for all s > 0, E′(t) > 0 for all t > 0. Therefore
E(t) > 0 for all t > 0. But E(t0) < 0, which is a contradiction. �

Proof of Theorem 1.1. We have

F (s) =
∫ s

0

f(t) dt =
∫ s

0

at− t2 − c
tα

dt = s1−α
( a

2− α
s− 1

3− α
s2 − c

1− α

)
.

The zeros of F (s) are s = 0 and

s =
a

2−α ±
√

a2

(2−α)2 −
4c

(3−α)(1−α)

2
3−α

.

If c > ĉ(a) then a2

(2−α)2 −
4c

(3−α)(1−α) < 0. This implies F (s) has only one zero at
s = 0. Since lims→0+F ′(s) = −∞ and F (0) = 0, F (s) < 0 for all s > 0. Hence by
Lemma 3.1, (1.1) has no nonnegative solution. �

4. Proof of Theorem 1.4

We first construct a subsolution for (1.1) (when c = 0). Let φ1 be the eigen
function corresponding to the first eigenvalue λ1 of the problem −φ′′(t) = λφ(t), t ∈
(0, 1), φ(0) = φ(1) = 0. Note that, φ1(t) = sinπt, and λ1 = π2. Fix k > 0 such
that k ≥ −(g(1)+1)

φ′1(1)
. We now define our subsolution to be ψ(t) = kφ1(t) + t. Let

a = λ1(k+1)α

ĥ
+ (k+ 1). For a ≥ a, we will show that ψ is a subsolution of (1.1). To

prove this, we need to show that −ψ′′ = λ1kφ1 ≤ h(t)(aψ1−α − ψ2−α), ψ(0) ≤ 0
and ψ′(1) + g(ψ(1)) ≤ 0. We will first show that

λ1(kφ1(t) + t) ≤ ĥ(a(kφ1(t) + t)1−α − (kφ1(t) + t)2−α), (4.1)

where ĥ = infs∈(0,1) h(s). This clearly implies −ψ′′ ≤ h(t)(aψ1−α − ψ2−α) (since
ψ(t) ≤ k + 1 for all t, aψ1−α − ψ2−α > 0). From the choice of a,

λ1(k + 1)α ≤ ĥ(a− (k + 1)).

From this, we obtain

λ1(kφ1 + t)α ≤ ĥ(a− (kφ1 + t)),

and (4.1) follows. Clearly ψ(0) = 0. Also ψ′(1)+g(ψ(1)) = kφ′1(1)+1+g(1) ≤ 0, by
the choice of k. Hence ψ is a subsolution of (1.1). Next we construct a supersolution
of (1.1). Let e be the solution of

−e′′(t) = h(t), t ∈ (0, 1),

e(0) = e′(1) = 0.

Integrating the above equation from t to 1, we see that e′(t) =
∫ 1

t
h(s) ds > 0, and

hence e is an increasing function for t ∈ [0, 1]. Choose a constant M > 0 such that
as−s2
sα < M , for all s ≥ 0. Then clearly φ = Me is a supersolution of (1.1). Also

since e′(0) > 0 if we choose M large enough then, ψ(t) ≤ φ(t) for all t ∈ [0, 1].
Hence, by Lemma 2.1, there exist a solution u of (1.1) such that ψ(t) ≤ u(t) ≤ φ(t)
for all t ∈ [0, 1]. Clearly u(1) > 0 since ψ(1) > 0.
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5. Proof of Theorem 1.6

Let u and v be two positive solutions of (1.1) with c = 0 such that u 6≡ v. Without
loss of generality let t1 ∈ [0, 1) be such that v(t1) − u(t1) = 0, v(t) − u(t) ≥ 0 in
[t1, 1], and v(t)− u(t) > 0 for some (s1, s2) ⊂ [t1, 1]. For t ∈ (s1, s2), we have

−(uv′′ − vu′′) = h(t)
(
u
av − v2

vα
− v au− u

2

uα

)
= h(t)

(av − v2)(au− u2)
uαvα

( u1+α

au− u2
− v1+α

av − v2

)
.

Since for any positive solution u, ‖u‖∞ < a, and f̃(s) = s1+α

as−s2 is a strictly increasing

function for s ∈ (0, a), we see that
∫ 1

t1
−(uv′′ − vu′′) dt < 0. Using v(t1) = u(t1),

v′(t1) ≥ u′(t1), and (H4), we obtain∫ 1

t1

−(uv′′ − vu′′)(t) dt

= [−uv′ + vu′]1t1
= v(1)u′(1)− u(1)v′(1)− (v(t1)u′(t1) + u(t1)v′(t1))

= −v(1)g(u(1)) + u(1)g(v(1)) + u(t1)v′(t1)− u(t1)u′(t1)

≥ −v(1)g(u(1)) + u(1)g(v(1))

≥ u(1)v(1)
(
g(v(1))
v(1)

− g(u(1))
u(1)

)
≥ 0,

which a contradiction, and hence u ≡ v.

6. Proof of Theorem 1.7

Figure 3. Graph of A1(k) vs A2(k)

We first construct a subsolution. For this, we fix a β ∈ (1, 2−γ
1+α ). From (H1), it

is clear that this interval is nonempty. Now, for k ≥ 0, we define

A1(k) := 2k +
2βπ2kα

ĥ
, (6.1)

A2(k) := − 3π
4
√

2
+
g( 1
kβ−1 )

βk2−β . (6.2)
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It is easy to see that A1(k) is an increasing function of k and A2(k) is negative
for k large (see Figure (3)). Let rA2 be the least nonnegative number such that
A2(k) ≤ 0 for all k ≥ rA2 . Choose k̄ = max{

√
2, rA2}. Let ā = A2(k̄). Now, for

given a ≥ ā, there exists k̃(a) ≥ k̄ such that a = A1(k̃). From Lemma 2.2, note that
there exist l̃ > 0 such that k̃ = 1

φ1(1)
, where φ1 is the eigenfunction corresponding

to the first eigenvalue λ1 of

y′′(t) + λy(t) = 0, t ∈ (0, 1),

y(0) = 0,

y′(1) + l̃y(1) = 0.

We now define our subsolution ψ to be ψ := k̃φβ1 . Since φ1(t) = sin
√
λ1t, it is

easy to see that φ1 has the following properties. There exist ε < ε1 (ε1 as in H1)
and µ > 0 such that |φ′1| ≥ η1/2 on (0, ε], where η1 =

√
λ1, φ1 ≥ µ on (ε, 1), and

0 ≤ φ1(t) ≤ η1t for all t ∈ (0, 1). For a ≥ ā, define

c̄(a) = min
{
k̃1+αβ(β − 1)

η2−γ
1

4
,

1
2
k̃µβ

(
a− βλ1k̃

α

ĥ

)}
. (6.3)

Note that c̄ > 0 by the choice of k̃ and β. Next, we calculate

−ψ′′ = k̃λ1βφ
β
1 − k̃β(β − 1)

φ′21

φ2−β
1

.

To prove ψ is a subsolution, we need to establish

k̃λ1βφ
β
1 − k̃β(β − 1)

φ′21

φ2−β
1

≤ h(t)
(
ak̃1−αφ

β(1−α)
1 − k̃2−αφ

β(2−α)
1 − c

k̃αφαβ1

)
(6.4)

and ψ′(1) + g(ψ(1)) ≤ 0 (Clearly ψ(0) = 0).
First we show that (6.4) satisfied. Note that

k̃λ1βφ
β
1 =

ĥk̃λ1βφ
β
1

ĥ

≤ h(t)
[
ak̃1−αφ

β(1−α)
1 − 1

2
k̃1−αφ

β(1−α)
1

(
a− k̃αλ1βφ

αβ
1

ĥ

)
− 1

2
k̃1−αφ

β(1−α)
1

(
a− k̃αλ1βφ

αβ
1

ĥ

)]
.

To prove (6.4) holds in (0, 1), it is sufficient to show the following three inequalities
hold:

−1
2
k̃1−αφ

β(1−α)
1

(
a− k̃αλ1βφ

αβ
1

ĥ

)
≤ −k̃2−αφ

β(2−α)
1 in (0, 1), (6.5)

−1
2
k̃1−αφ

β(1−α)
1

(
a− k̃αλ1βφ

αβ
1

ĥ

)
≤ − c

k̃αφαβ1

in (ε, 1), (6.6)

−k̃β(β − 1)
φ′21

φ2−β
1

≤ −h(t)
c

k̃αφαβ1

in (0, ε]. (6.7)

From the definition of a, we have 2k̃ + k̃αλ1β

ĥ
< a. Then

−
(
a− k̃αλ1βφ

αβ
1

ĥ

)
< −2k̃.
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Hence

−1
2
k̃1−αφ

β(1−α)
1

(
a− k̃αλ1βφ

αβ
1

ĥ

)
< −k̃2−αφ

β(1−α)
1

< −k̃2−αφ
β(2−α)
1 in (0, 1).

(6.8)

Using φ1 ≥ µ in (ε, 1), and c ≤ 1
2 k̃µ

β(a− βλ1k̃
α

ĥ
),

−1
2
k̃1−αφ

β(1−α)
1

(
a− k̃αλ1βφ

αβ
1

ĥ

)
≤ 1

k̃αφαβ1

(−1
2
k̃φβ1

(
a− k̃αλ1β

ĥ

))
≤ − c

k̃αφαβ1

in (ε, 1).
(6.9)

Next, we prove that (6.7) holds in (0, ε]. Since |φ′1| ≥ η1/2 and 2− β > αβ + γ we
have

−k̃β(β − 1)
φ′21

φ2−β
1

≤ − k̃
1+αβ(β − 1)η2

1

4k̃αφαβ1 φγ1
≤ − k̃

1+αβ(β − 1)η2
1

4k̃αφαβ1 ηγ1 t
γ

.

Since h(t) ≤ 1
tγ in (0, ε], and c ≤ k̃1+αβ(β − 1)η2−γ

1 /4, it follows that

− k̃β(β − 1)
|φ′1|2

φ2−β
1

≤ −h(t)
c

k̃αφαβ1

in (0, ε]. (6.10)

Thus from (6.8), (6.9) and (6.10) we see that (6.4) holds in (0, 1).
Next we will show that ψ′(1) + g(ψ(1)) ≤ 0 and

ψ′(1) + g(ψ(1)) = k̃βφβ−1
1 (1)φ′1(1) + g(k̃φβ1 (1)).

Since k̃ = 1
φ1(1)

, it follows that

ψ′(1) + g(ψ(1)) = βk̃2−βφ′1(1) + g(k̃1−β) = βk̃2−β
(
φ′(1) +

g(k̃1−β)
βk̃2−β

)
.

Now note that, since k̃ >
√

2, φ1(1) = sin
√
λ1 <

1√
2
, which implies

√
λ1 ∈ ( 3π

4 , π).

Hence φ′1(1) < −3π/(4
√

2) and thus

ψ′(1) + g(ψ(1)) ≤ βk̃2−β
(
− 3π

4
√

2
+
g( 1
k̃β−1)

βk̃2−β

)
≤ 0

since A2(k̃) ≤ 0. Therefore ψ = k̃φβ1 is a subsolution of (1.1). Next we will
construct a supersolution of (1.1). For this, we proceed as in the proof of Theorem
1.4. Let e be the solution of

−e′′(t) = h(t), t ∈ (0, 1),

e(0) = e′(1) = 0.

As discussed earlier, e is an increasing function for t ∈ [0, 1]. Choose a constantM >

0 such that as−s2−c
sα < M , for all s ≥ 0. Then clearly φ = Me is a supersolution of

(1.1). Also if we choose M large enough then, ψ(t) ≤ φ(t) for all t ∈ [0, 1]. Hence,
by Lemma 2.1, there exist a solution u of (1.1) such that ψ(t) ≤ u(t) ≤ φ(t) for all
t ∈ [0, 1]. Clearly u(1) > 0 since ψ(1) > 0.
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We now show that c̄, given by (6.3), is an increasing function of a. By definition,

k̃ increases as a increases and hence k̃1+αβ(β − 1)η
2−γ
1
4 is an increasing function of

a. Also,

d

da

(1
2
k̃µβ(a− βλ1k̃

α

ĥ
)
)

=
1
2
dk̃

da
µβ
(
a− βλ1k̃

α

ĥ

)
+

1
2
k̃µβ

(
1− βλ1αk̃

α−1

ĥ

dk̃

da

)
=

1
2
k̃µβ +

µβ

2
dk̃

da

(
a− (α+ 1)βλ1k̃

α

ĥ

)
>

1
2
k̃µβ +

µβ

2
dk̃

da

(
a− 2βπ2k̃α

ĥ

)
> 0.

Hence c̄(a) is an increasing function of a and c̄(a)→∞ as a→∞.

7. Numerical results

In this section, we consider the boundary-value problem

−u′′ =
(au− u2 − c

uα
)
, t ∈ (0, 1),

u(0) = 0, u′(1) + g(u(1)) = 0,
(7.1)

where a > 0, c ≥ 0, α ∈ (0, 1), and g:[0,∞) → [0,∞), is a continuous function.
We plot the exact bifurcation diagram of positive solutions of (7.1) (c versus ‖u‖∞
and a versus ‖u‖∞) using Mathematica. For this, we adapt the quadrature method
discussed in [6, 7, 10]. Let u(t) be a positive solution of (7.1). Let F (z) =

∫ z
0
f(s)ds,

where f(s) = as−s2−c
sα , ρ := ‖u‖∞, and q = u(1). Following the arguments in [6], u

is a solution of (7.1) if and only if ρ, q satisfy:

2
∫ ρ

0

ds√
F (ρ)− F (s)

−
∫ q

0

ds√
F (ρ)− F (s)

=
√

2, (7.2)

F (ρ)− F (q) =
(g(q))2

2
. (7.3)

Let θ1 be the positive zero of F (see figure 4) and r2 be the falling zero of f (see
figure 4).

Figure 4. Graph of f(u) (left). Graph of F (u) (right)

We note that if ρ ∈ (θ1, r2) then the integrals in (7.2) are well defined (see [6] for
details). Now, using (7.2) and (7.3), we are able to plot exact bifurcation diagram
of positive solutions of (7.1) by implementing a numerical root finding algorithm in
Mathematica. Figures 5, 6 are bifurcation diagrams c versus ρ for the cases g(t) ≡ 1
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and g(t) = t2 when a = 10 and a = 15. Figures 7 has bifurcation diagrams a versus
ρ for the cases g(t) = t2 when c = 0.1 and c = 1.

Figure 5. Bifurcation of (7.1) when g(t) ≡ 1, a = 10 (left); when
g(t) ≡ 1, a = 15 (right)

Figure 6. Bifurcation of (7.1) when g(t) = t2, a = 10 (left); when
g(t) = t2, a = 15 (right)

Figure 7. Bifurcation of (7.1) when g(t) = t2, c = 0.1 (left);
when g(t) = t2, c = 1 (right)

Our bifurcation diagrams illustrate the existence result in Theorem 1.7 for the
case h(t) ≡ 1, g(t) ≡ 1 or g(t) = t2, and a = 10 or 15. We see that for each
α ∈ (0, 1), there exists a c̄ > 0 such that for c < c̄, (7.1) has a positive solution.
Also from the bifurcation diagrams (Figure 7) we can see that for given c ≤ c̄(ā),
there exists a∗(c) such that for a > a∗, (7.1) has a positive solution. For c = 0,
the bifurcation diagrams show that the positive solution is unique which illustrates
Theorem 1.6. The following observations can also be made from the bifurcation
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diagrams for the special cases considered. For c ≈ 0, it appears that (7.1) has
unique positive solution and for a certain range of c, (7.1) has multiple positive
solutions. Also, for a fixed c ≤ c̄(ā) we observe that for large values of a, (7.1) has
unique positive solution and for a certain range of a, (7.1) has multiple positive
solutions. Proving these results for (1.1) (at least for certain cases of g) remains an
open question.
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