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EXACTNESS OF THE NUMBER OF POSITIVE SOLUTIONS TO
A SINGULAR QUASILINEAR PROBLEM

GIOVANNI ANELLO, LUCA VILASI

Abstract. We study the exact multiplicity of positive solutions to the one-
dimensional Dirichlet problem

−(|u′|p−2u′)′ = λus−1 − µur−1 in ]0, 1[

u(0) = u(1) = 0,

where r ∈ ]0, 1[, p ∈ ]1,+∞[, r < s < p and λ, µ ∈ ]0,+∞[. We shed light, in

particular, on the case r ∈ ]0,min{s, p/(p + 1)}[, completely determining the
bifurcation diagram and solving some related open problems. Our approach

relies upon quadrature methods.

1. Introduction

In this article we focus on the singular one-dimensional Dirichlet problem

−(|u′|p−2u′)′ = λus−1 − µur−1 in ]0, 1[

u(0) = u(1) = 0,
(1.1)

where r ∈ ]0, 1[, p ∈ ]1,+∞[, r < s < p and λ, µ are positive real parameters. This
model has captured a lot of attention over the latest years, both in the semilinear
and in the quasilinear case (see for instance [4, 5, 7, 9, 10] and their references). In
the framework of chemical reactions the nonlinearity in (1.1) assumes the meaning
of a strong absorption (or endothermic) process with respect to the diffusion (see
[7] and the references therein).

Our aim is to explore the exact number of positive classical solutions to (1.1) by
means of quadrature methods. Such a number, established as one of the parameters
of the problem varies, depends solely on the profile of a suitable integral function,
as clarified later (see, besides the above references, also [1, 2, 3, 8] for applications
of this procedure to several classes of one-dimensional problems).

Along this line of research, in [9] the authors studied the exact multiplicity of
positive solutions to

−u′′ = β − ur−1 in ]−L,L[

u(−L) = u(L) = 0,
(1.2)

with β, L > 0 and 0 < r < 1. This can be viewed as a particular case of (1.1) in
which p = 2 and s = 1 (observe that, after a suitable change of variables, problem
(1.1) can be always rescaled so that the parameters appear only in the endpoints
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of the interval, see Theorem 2.9). In this paper the authors complemented the
analysis carried out in [4], answering some open issues posed there and proving
that, for an explicitly determined L0 > 0, if 0 < r ≤ 1/2 there is no solution to
(1.2) when L < L0 and there is a unique solution for L ≥ L0. For 1/2 < r < 1
there exists Lmin < L0 such that, for L < Lmin there is no solution to (1.2), for
L = Lmin there is a unique solution, for Lmin < L ≤ L0 there are exactly two
solutions and for L > L0 there exists exactly one solution (cf. [9, Theorem 1]).
The picture depicted above basically reveals the existence of a critical exponent
r∗ := 1/2 below which one has uniqueness and above which one has multiplicity,
and that two is the maximum number of possible positive solutions to (1.2).

The semilinear case with s 6= 1 was investigated in [10], where the author de-
termined all possible bifurcation diagrams that can occur for different values of s
and r, giving a short survey of the known results and pointing out the situations
where the exact multiplicity of the solutions is not known. The main result is quite
similar to the one obtained for problem (1.2); in this context the “limit” situation
occurs when s = 2 − 2r: for s ∈ ]1, 2 − 2r] the bifurcation diagram is a monotone
curve, while for s ∈ ]2− 2r, 2[ there exist an upper branch of positive solutions for
L > Lmin and a lower one stopping at L = L0 > Lmin (see [10, Theorem 3.2]). The
case 0 < s < 1 is left open; the monotonicity of the time-map associated with the
problem is in fact proved only for s ∈ ]1, 2[ (see [10, Lemma 3.1]).

The quasilinear counterpart (1.1) was the object of an in-depth study in [7],
which generalizes the results of [6] to the singular framework. As clearly shown in
this paper, when approaching (1.1) via quadrature methods, two different situations
arise, depending on whether ∫ δ

0

dt

(−F (t))
p+1
p

= +∞ (1.3)

or ∫ δ

0

dt

(−F (t))
p+1
p

< +∞, (1.4)

for some δ > 0 small enough, where

F (t) :=
1
s
ts − 1

r
tr for all t > 0. (1.5)

The validity of either (1.3) or (1.4) depends on the relationship between r and
p
p+1 ; indeed, (1.3) (respectively, (1.4)) holds if and only if r ≥ p

p+1 (respectively,
0 < r < p

p+1 ) (see [7, Lemma 2 and Proposition 4]).
The analysis in the first case was performed and completed in [7, Theorem 2(a)–

(e)]. It can be summarized as follows: there exist λ1 > λ0 > 0 such that problem
(1.1) admits:

(i) no positive solutions if λ < λ0;
(ii) a unique positive solution if λ = λ0;

(iii) two positive solutions if λ ∈ ]λ0, λ1] and one of those corresponding to λ1

is a compacton, i.e. its first derivative vanishes at t = 0 and t = 1;
(iv) a positive solution and a continuum of non-negative solutions compactly

supported in ]0, 1[ if λ > λ1.
The item (iv) is particularly interesting as it states that the lower branch of the
positive solutions can be continued to obtain non-negative solutions with compact
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support in ]0, 1[. Such a family of solutions, which vanishes on a positive-measured
subset of ]0, 1[ called the “dead core”, turns out to be generated by the compacton
arising when λ = λ1 (see [7, Theorem 2(e)] for an explicit expression of the members
of this family).

We also point out that the positive solutions u of (ii), (iii) and (iv), excluding of
course the compacton, satisfy Hopf’s condition on the boundary, that is u′(0) < 0
and u′(1) > 0.

Condition (1.4) is more delicate to handle and the authors obtained only the
following partial result: the fact (iv) continuing to hold, for λ ∈ ]λ0, λ1[ there exists
δ > 0 such that there is a unique positive solution if r ∈ ]0, δ[ and there are exactly
two positive solutions if r ∈

]
p
p+1 − δ,

p
p+1

[
. They were able to establish the exact

number of positive solutions only when s = 2r and this amounts to one if p ≤ 2r
1−r ,

two if p > 2r
1−r (see [7, Theorem 2(f)]). The reason of the success in the latter

case relies on the fact that the derivative of the auxiliary function ψ defined by
(2.2) at the unique zero t0 of F can be expressed in closed form in terms of the
Euler Beta function (see [7, Proposition 4]). And the knowledge of the sign of
ψ′(t0), as explained later, is crucial to draw the bifurcation diagram of (1.1) when
0 < r < p

p+1 .
Driven by the analogy with the semilinear case, it is quite reasonable to con-

jecture the existence of a unique exponent r∗ ∈
]
0, p

p+1

[
such that one has exactly

one solution for 0 < r ≤ r∗ and exactly two for r∗ < r < p
p+1 (see, in particu-

lar, the survey paper [5]). In this article we give a positive answer to the above
conjecture, proving the uniqueness of the zero of the equation ψ′(t0(r)) = 0 when
r ∈ ]0,min{s, p

p+1}[ (Theorem 2.8) and determining therefore the exact multiplicity
of solutions to (1.1) when (1.4) holds (Theorem 2.9). Our results are illustrated in
the next section, preceded by some preliminary facts.

2. Results

Let F be the function defined by (1.5). Denoting by F (i), i ∈ N ∪ {0}, the i-th
derivative of F (as usual, F (0) := F ), it is easy to prove the following property (cf.
[2, Lemma 2.1]).

Lemma 2.1. There exist t0, t1 ∈ ]0,+∞[, with t0 > t1, such that, for each i = 0, 1
one has

F (i)(t) < 0 if t ∈ ]0, ti[,

F (i)(t) > 0 if t ∈ ]ti,+∞[.
(2.1)

For the sequel, it will be useful to know the behavior in ]0, 1[ of the real functions
of the next three lemmas.

Lemma 2.2. Let x > 0. The function j(t) := log t
1−tx is increasing in ]0, 1[, with

lim
t→1−

j(t) = − 1
x
.

Proof. One has

j′(t) =
t−1(1− tx) + xtx−1 log t

(1− tx)2
= tx

(t−x − 1) + x log t
t(1− tx)2

, for all t ∈ ]0, 1[.

Putting
j̃(t) := (t−x − 1) + x log t, for all t ∈ ]0, 1],
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one has j̃(1) = 0 and

j̃′(t) = −xt−x−1 + xt−1 = xt−1(1− t−x) < 0, for all t ∈ ]0, 1[.

Hence, j̃(t) > 0 for all t ∈ ]0, 1[, and so is j′(t). The limit follows by an immediate
application of L’Hôpital’s rule. �

Lemma 2.3. Let 0 < x < y. The function k(t): = 1−ty
tx−ty is decreasing in ]0, 1[,

with
lim
t→1−

k(t) =
y

y − x
.

Proof. One has

k′(t) =
−yty−1(tx − ty)− (1− ty)(xtx−1 − yty−1)

(tx − ty)2

= − tx−1

(tx − ty)2
((y − x)ty + x− yty−x),

for any t ∈ ]0, 1[. If we define

k̃(t) := (y − x)ty + x− yty−x, for any t ∈ ]0, 1],

we get k̃(1) = 0 and

k̃′(t) = y(y − x)ty−1 − y(y − x)y−x−1 = y(y − x)ty−x−1(tx − 1) < 0,

for all t ∈ ]0, 1[. As a result, k̃(t) > 0 for all t ∈ ]0, 1[ and so k′(t) < 0 for all
t ∈ ]0, 1[. �

Lemma 2.4. Let y ∈ ]0,+∞[ and t ∈ ]0, 1[. The function l(x) := y−x
tx−ty is increas-

ing in [0, y[ and

lim
x→y

l(x) = − 1
ty log t

.

Proof. One has

l′(x) = (tx − ty)−2(−(tx − ty)− (y − x)tx log t)

= (tx − ty)−2tx(ty−x − 1− (y − x) log t),

for all x ∈ ]0, y[. Fix x ∈ [0, y[ and put l̃(τ) := τy−x − 1 − (y − x) log τ , for all
τ ∈ ]0, 1[. One has l̃(1) = 0 and l̃′(τ) = τ−1(y − x)(τy−x − 1) ≤ 0 for all τ ∈ ]0, 1[.
Therefore l̃(τ) ≥ 0 for all τ ∈ ]0, 1[ and so l′(x) = (tx − ty)−2tx l̃(t) ≥ 0 for all
x ∈ ]0, y[. The limit is a consequence of L’Hôpital’s rule. �

The essential part of our approach is the analysis of the following function asso-
ciated with (1.1):

ψ(σ) :=
∫ σ

0

dt

(F (σ)− F (t))1/p
, for each σ ≥ t0. (2.2)

In [7] the authors proved the following basic facts concerning the profile of ψ (cf.
[7, Propositions 1 and 4]).

Lemma 2.5. Let r ∈
]
0, p

p+1

[
, p ∈ ]1,+∞[, r < s < p and let ψ:[t0,+∞[ → R be

the function defined by (2.2). Then:
(i) ψ ∈ C0([t0,+∞)) ∩ C1((t0,+∞));
(ii) limσ→+∞ ψ(σ) = +∞;
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(iii) if s ≥ p
p+1 , there exists δ > 0 small enough such that

0 < ψ′(t0) < +∞ if r ∈ ]0, δ[;

−∞ < ψ′(t0) < 0 if r ∈
] p

p+ 1
− δ, p

p+ 1

[
;

(iv) if s = 2r then

0 < ψ′(t0) < +∞ if p <
2r

1− r
;

ψ′(t0) = 0 if p =
2r

1− r
;

−∞ < ψ′(t0) < 0 if p >
2r

1− r
.

For s < p/(p+1), Lemma 2.5 gives no information about the sign of ψ′(t0) when
r is near s. The next result provides this missing detail.

Lemma 2.6. Assume s < p
p+1 . Then, there exists δ > 0 such that ψ′(t0) > 0, for

each r ∈ ]s− δ, s[.

Proof. For any r ∈ ]0, s[, we can write

ψ′(t0) =
1
p

(s
r

)− r
p(s−r) r1/p(s− r)−

1
p φ̂(r),

where

φ̂(r) :=
∫ 1

0

( s− r
tr − ts

)1/p (p− s)(1− ts)− (p− r)(1− tr)
tr − ts

dt.

For each t ∈ ]0, 1[, using L’Hôpital’s rule, one has

lim
r→s−

( s− r
tr − ts

)1/p (p− s)(1− ts)− (p− r)(1− tr)
tr − ts

=
(
− 1
ts log t

)1/p 1− ts + (p− s)ts log t
ts log t

= (− log t)−
p+1
p t−s/p[1− t−s − (p− s) log t].

Moreover, thanks to Lemma 2.4, we have the estimate∣∣∣( s− r
tr − ts

)1/p (p− s)(1− ts)− (p− r)(1− tr)
tr − ts

∣∣∣
=
( s− r
tr − ts

)1/p∣∣p− r − s− r
tr − ts

(1− ts)
∣∣

≤ t−s/p(− log t)−
1
p

(
p− t−s 1− ts

log t

)
,

(2.3)

and the function

]0, 1[ 3 t 7→ t−s/p(− log t)−
1
p

(
p− t−s 1− ts

log t

)
is summable in [0, 1].

Then, by Lebesgue’s dominated convergence theorem, the function φ̂ admits
limit as r → s− and

lim
r→s−

φ̂(r) =
∫ 1

0

(− log t)−
p+1
p t−s/p[1− t−s − 1− (p− s) log t]dt := φ̄(s).
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Let us to evaluate φ̄(s). An integration by parts yields

φ̄(s) =
∫ 1

0

(− log t)−
p+1
p t−s/p(1− t−s − (p− s) log t)dt

=
∫ 1

0

(− log t)−
p+1
p t−1

(
t1−

s
p − t1−s−

s
p
)
dt+ (p− s)

∫ 1

0

(− log t)−
1
p t−s/pdt

=
[
p(− log t)−

1
p
(
t1−

s
p − t1−s−

s
p
)]1

0

− p
∫ 1

0

(− log t)−
1
p
[(

1− s

p

)
t−s/p −

(
1− s− s

p

)
t−s−

s
p
]
dt

+ (p− s)
∫ 1

0

(− log t)−
1
p t−s/pdt

=
∫ 1

0

(− log t)−
1
p (p− s(p+ 1))t−s

p+1
p dt > 0.

This completes the proof. �

Now, we add a new piece of information on the shape of ψ showing that it
possesses at most one critical point in ]t0,+∞[.

Lemma 2.7. The equation ψ′(σ) = 0 admits at most one solution in ]t0,+∞[.

Proof. After a change of variables, we can write ψ as

ψ(σ) =
∫ 1

0

σ

(F (σ)− F (σt))1/p
dt =

∫ 1

0

dt

(ηt(σ))1/p
, (2.4)

for any σ ∈ [t0,+∞[, where

ηt(σ) :=
1
s

(1− ts)σs−p − 1
r

(1− tr)σr−p

for all t ∈ [0, 1] and for all σ ∈ [t0,+∞[. Then, the first two derivatives of ψ take
the form

ψ′(σ) = −1
p

∫ 1

0

(ηt(σ))−
1
p−1
(s− p

s
(1− ts)σs−p−1 − r − p

r
(1− tr)σr−p−1

)
dt,

ψ′′(σ) =
1
p

(
1 +

1
p

) ∫ 1

0

(ηt(σ))−
1
p−2
(s− p

s
(1− ts)σs−p−1

− r − p
r

(1− tr)σr−p−1
)2

dt

− 1
p

∫ 1

0

(ηt(σ))−
1
p−1
(s− p

s
(s− p− 1)(1− ts)σs−p−2

− r − p
r

(r − p− 1)(1− tr)σr−p−2
)
dt.

Now, fix K ∈ ]p+ 1− s, p+ 1− r[ and put

χ(σ) := σψ′′(σ) +Kψ′(σ), (2.5)

for all σ ∈ [t0,+∞[. For any σ ∈ [t0,+∞[ we can deduce the lower estimate

χ(σ) > −1
p

∫ 1

0

(ηt(σ))−
1
p−1
(s− p

s
(s− p− 1)(1− ts)σs−p−1

− r − p
r

(r − p− 1)(1− tr)σr−p−1
)
dt
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− K

p

∫ 1

0

(ηt(σ))−
1
p−1
(s− p

s
(1− ts)σs−p−1 − r − p

r
(1− tr)σr−p−1

)
dt

=
1
p

∫ 1

0

(ηt(σ))−
1
p−1
(p− s

s
(K − p− 1 + s)(1− ts)σs−p−1

− p− r
r

(K − p− 1 + r)(1− tr)σr−p−1
)
dt

and the choice of K forces χ(σ) > 0. At this point, solving (2.5) for ψ′, one has

ψ′(σ) =
1
σK

(∫ σ

t0

τK−1χ(τ)dτ + c
)

for all σ ∈ [t0,+∞[ and for a suitable constant c ∈ R. In view of the positivity of
χ, ψ′ admits at most one zero in ]t0,+∞[ and the conclusion is achieved. �

Lemma 2.5 leaves the question whether r 7→ ψ′(t0(r)) changes sign at most once
in ]0,min{s, p

p+1}[ open. In the next theorem, we answer this question affirmatively.
This allows us to completely compute the number of solutions to (Pλ,µ) as the
exponent r varies and, in particular, to extend the result in [10] to the case s > 0.

Theorem 2.8. Let p ∈ ]1,+∞[ and s ∈ ]0, p[. Denote by φ:]0,min{s, p
p+1}[→ R

the function

φ(r) := ψ′(t0(r)), for each r ∈]0,min{s, p

p+ 1
}[. (2.6)

Then
(i) if s ≥ p

p+1 , the equation φ(r) = 0 admits exactly one zero, say r∗, in
]0, p

p+1 [, with φ positive in ]0, r∗[ and negative in ]r∗, p
p+1 [;

(ii) if s < p
p+1 , the function φ is positive in ]0, s[.

Proof. To obtain conclusions (i) and (ii) it is sufficient to show that φ changes sign at
most once in ]0,min{s, p

p+1}[. Indeed, if this is true, since φ ∈ C0(]0,min{s, p
p+1}[),

conclusion (i) follows from (iii) of Lemma 2.5, and conclusion (ii) is a consequence
of Lemma 2.6.

Taking (2.4) into account we obtain

ψ′(σ) =
ψ(σ)
σ

+
∫ 1

0

σ(F ′(σ)− tF ′(σt))
p(F (σ)− F (σt))

p+1
p

dt

=
1
p

∫ 1

0

p(F (σ)− F (σt))− σ(F ′(σ)− tF ′(σt))
(F (σ)− F (σt))

p+1
p

dt

=
1
p

∫ 1

0

p−s
s σs(1− ts)− p−r

r σr(1− tr)

(F (σ)− F (σt))
p+1
p

dt

for any σ ∈ ]t0,+∞[. Taking the limit as σ → t0(r) in the above expression and
bearing in mind that t0(r) = ( sr )1/(s−r), we therefore obtain

φ(r) =
1
p

∫ 1

0

p−s
s t0(r)s(1− ts)− p−r

r t0(r)r(1− tr)

(−F (t0(r)t))
p+1
p

dt

=
1
p
t0(r)−

r
p

∫ 1

0

p−s
s t0(r)s−r(1− ts)− p−r

r (1− tr)(
tr

r − t0(r)s−r tss
) p+1

p

dt
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=
1
p

(s
r

)− r
p(s−r)

r1/p
∫ 1

0

(p− s)(1− ts)− (p− r)(1− tr)

(tr − ts)
p+1
p

dt

=
1
p

(s
r

)− r
p(s−r)

r1/p(s− r)
∫ 1

0

p−s
s−r (1− ts)− p−r

s−r (1− tr)

(tr − ts)
p+1
p

dt.

In light of the above manipulations, to conclude the proof it is equivalent to
show that φ̃(r) = 0 has at most one solution in ]0,min{s, p

p+1}[, where

φ̃(r) :=
∫ 1

0

p−s
s−r (1− ts)− p−r

s−r (1− tr)

(tr − ts)
p+1
p

dt (2.7)

for any r ∈]0,min{s, p
p+1}[. Now, the integrand function in (2.7) can be expressed

as
p−s
s−r (1− ts)− p−r

s−r (1− tr)

(tr − ts)
p+1
p

= (1− ts)−
1
p g(t, r)

for all t ∈ ]0, 1[, where

g(t, r) := h(t, r)
(p− r
s− r

− h(t, r)p
)

and

h(t, r) :=
( 1− ts

tr − ts
)1/p

. (2.8)

By an easy calculation we get, for all t ∈ ]0, 1[,

∂h

∂r
(t, r) = −h(t, r)

p
· log t

1− ts−r

and therefore
∂g

∂r
(t, r) =

∂h

∂r
(t, r)

(p− r
s− r

− h(t, r)p
)

+ h(t, r)
( p− s

(s− r)2
− ph(t, r)p−1 ∂h

∂r
(t, r)

)
= −h(t, r)

p
· log t

1− ts−r
(p− r
s− r

− h(t, r)p
)

+ h(t, r)
( p− s

(s− r)2
+ h(t, r)p

log t
1− ts−r

)
=
(p+ 1

p

) log t
1− ts−r

h(t, r)p+1

−
( p− r
p(s− r)

· log t
1− ts−r

− p− s
(s− r)2

)
h(t, r).

Now, consider the function

α(t) :=
(
1− r

p

) 1
s− r

−
(
1 +

1
p

) 1− ts

tr − ts
, t ∈ ]0, 1[.

In view of Lemma 2.3, α is strictly increasing in ]0, 1[ and one has

lim
t→0+

α(t) = −∞,

lim
t→1−

α(t) =
(
1− r

p

) 1
s− r

−
(
1 +

1
p

) s

s− r
.
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Two possible situations, related to the range of s, occur.
(a) If s ≥ p

p+1 , then α(t) < 0 for all t ∈ ]0, 1[;
(b) if 0 < s < p

p+1 , then α(t) < 0 for all t ∈ ]0, 1[ if p − (p + 1)s < s and
p − (p + 1)s < r < s, while the equation α(t) = 0 admits a unique root in
]0, 1[, say t(r), provided that 0 < r < min{s, p− (p+ 1)s}. Moreover, α is
negative in ]0, t(r)[ and positive in ]t(r), 1[.

Notice that in case (b), by the implicit function theorem the function ]0, s[ 3 r 7→
t(r) is continuous in ]0,min{s, p− (p+ 1)s}[. Moreover, when p− (p+ 1)s ∈ ]0, s[,
it is easy to see that

lim
r→p−(p+1)s−

t(r) = 1. (2.9)

Next, define M(r) := 1, for all r ∈]0, s[, if s ≥ p
p+1 ; for s < p

p+1 set instead

M(r) :=

{
− (s−r) log t(r)

1−t(r)s−r if 0 < r < min{s, p− (p+ 1)s}
1 if p− (p+ 1)s < s and p− (p+ 1)s ≤ r < s.

As a function of the variable r, M turns out to be defined in the whole interval
]0, s[ and it is continuous there as, by (2.9) and Lemma 2.2, one has

lim
r→p−(p+1)s−

M(r) = 1, whenever p− (p+ 1)s ∈ ]0, s[.

Also, observe that again by Lemma 2.2 we can infer that

M(r) ≥ 1, for all r ∈ ]0, s[, (2.10)

and that the function

β(t) :=
M(r)
s− r

+
log t

1− ts−r
, t ∈ ]0, 1[,

satisfies the same properties (a) and (b) as the function α. Hence,

α(t)β(t) > 0, for all but at most one t ∈ ]0, 1[. (2.11)

Therefore, taking (2.8) into account and denoting for brevity h(t, r) by h, we obtain

M(r)
p+ 1
p(s− r)

g(t, r)− ∂g

∂r
(t, r)

= −p+ 1
p

(M(r)
s− r

+
log t

1− ts−r
)
hp+1

+
( p− r
p(s− r)

· log t
1− ts−r

− p− s
(s− r)2

+M(r)
(p+ 1)(p− r)
p(s− r)2

)
h

=
[
−
(
1 +

1
p

)(M(r)
s− r

+
log t

1− ts−r
) 1− ts

tr − ts
+
(
1− r

p

) 1
s− r

· log t
1− ts−r

+
1

(s− r)2
(
M(r)(p− r)− (p− s)

)
+
(
1− r

p

) M(r)
(s− r)2

]
h

=
[
−
(
1 +

1
p

)(M(r)
s− r

+
log t

1− ts−r
) 1− ts

tr − ts
+
(
1− r

p

) 1
s− r

( log t
1− ts−r

+
M(r)
s− r

)
+
M(r)(p− r)− (p− s)

(s− r)2
]
h

=
{(M(r)

s− r
+

log t
1− ts−r

)[
−
(
1 +

1
p

) 1− ts

tr − ts
+
(
1− r

p

) 1
s− r

]
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+
M(r)(p− r)− (p− s)

(s− r)2
}
h.

Noticing that by (2.10) one has

M(r)(p− r)− (p− s)
(s− r)2

≥ 1
s− r

> 0,

and recalling (2.11), we can continue the previous chain of computations to finally
arrive at

M(r)
p+ 1
p(s− r)

g(t, r)− ∂g

∂r
(t, r)

≥
(M(r)
s− r

+
log t

1− ts−r
)[
−
(
1 +

1
p

) 1− ts

tr − ts
+
(
1− r

p

) 1
s− r

]
h

= β(t)α(t)h > 0

(2.12)

for all but at most one t ∈ ]0, 1[. Multiplying (2.12) by (1− ts)−
1
p and integrating

between 0 and 1, we obtain

M(r)
p+ 1
p(s− r)

φ̃(r)− φ̃′(r) > 0

for any r ∈]0,min{s, p
p+1}[. If we set

ω(r) := M(r)
p+ 1
p(s− r)

φ̃(r)− φ̃′(r) (2.13)

and solve (2.13) for φ̃ we get, for a fixed r0 ∈]0,min{s, p
p+1}[,

φ̃(r) = e
p+1
p

R r
r0

M(σ)
s−σ dσ

(
−
∫ r

r0

ω(σ)e−
p+1
p

R σ
r0

M(τ)
s−τ dτdσ + c

)
for some c ∈ R. Since ω > 0, φ̃ may vanish at most once in ]0,min{s, p

p+1}[ and
the proof is complete. �

Using all the information obtained up to now, it is not difficult to derive the
following result concerning the exactness of the number of positive solutions to
(1.1).

Theorem 2.9. Let r∗ ∈
]
0, p

p+1

[
be as in Theorem 2.8 and let

λ1 := µ
p−s
p−r

(
2
(p− 1

p

)1/p
∫ t0

0

dt

(−F (t))1/p

) p(s−r)
p−r

. (2.14)

Then:
(i) if s ≥ p

p+1 and r ∈ ]0, r∗], or if s < p
p+1 , problem (1.1) admits no positive

solution for λ < λ1 and a unique positive solution for λ ≥ λ1;
(ii) if s ≥ p

p+1 and r ∈
]
r∗, p

p+1

[
, there exists λ0 ∈ ]0, λ1[ such that problem

(1.1) admits no positive solution for λ < λ0; a unique solution for λ = λ0;
two solutions for λ0 < λ ≤ λ1 and one solution for λ > λ1.

Remark 2.10. As pointed out in the introduction, the solution corresponding to
λ1 in case (i), and one of the solutions corresponding to λ1 in case (ii), are of
compacton-type. In both cases the compacton generates, for λ > λ1, a continuum
of non-negative solutions to (1.1) compactly supported in ]0, 1[. In addition, the
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positive solutions, excluding the compactons, satisfy Hopf’s condition at t = 0 and
t = 1.

Proof of Theorem 2.9. Let L > 0 and consider the problem

−(|u′|p−2u′)′ = us−1 − ur−1 in ]0, L[

u(0) = u(L) = 0.
(2.15)

It is not difficult to verify that the rescaling

u(x) =
(µ
λ

) 1
s−r

v
(
µ

s−p
p(s−r)λ

p−r
p(s−r)x

)
(2.16)

turns any solution u to (1.1) into a solution v to (2.15), with

L := µ
s−p
p(s−r)λ

p−r
p(s−r) , (2.17)

and vice versa. Therefore let us focus on problem (2.15). It is well-known that any
positive solution u to (2.15) is symmetric in [0, L] and therefore

σ := ‖u‖∞ = u
(L

2
)
.

Multiplying the first equation in (2.15) by u′ and integrating from x ∈ ]0, L/2[ to
L/2 we arrive at

p− 1
p
|u′(x)|p = F (σ)− F (u(x)). (2.18)

If we plug the value x = 0 in the above relation, we deduce that F (σ) ≥ 0, and, in
light of Lemma 2.1, that σ ≥ t0. Being u increasing in ]0, L/2[, from (2.18) one has

u′(x) =
( p

p− 1

)1/p

(F (σ)− F (u(x)))1/p (2.19)

and therefore ∫ x

0

u′(y)
(F (σ)− F (u(y)))1/p

dy =
( p

p− 1

)1/p

x.

Putting u(y) = t we get∫ u(x)

0

dt

(F (σ)− F (t))1/p
=
( p

p− 1

)1/p

x, (2.20)

which evaluated at x = L/2 yields

ψ(σ) =
L

2

( p

p− 1

)1/p

. (2.21)

Hence the number of positive solutions to (2.15) amounts to the number of solutions
to (2.21), as L varies in ]0,+∞[.

Starting from these premises, let us prove (i). If s ≥ p
p+1 and r ∈ ]0, r∗], or if

s < p
p+1 , thanks to Theorem 2.8, ψ is increasing in a right neighbourhood of t0

and, by Lemmas 2.5 and 2.7, it cannot admit any maximum. So the number of
solutions to (2.21) is zero if L < L1 := 2(p−1

p )1/pψ(t0), one if L ≥ L1. Now, let us
pass to (ii). If s ≥ p

p+1 and r ∈ ]r∗, p
p+1 [, again due to Theorem 2.8 and Lemmas

2.5 and 2.7, ψ has a global minimum in ]t0,+∞[. So (2.21) will admit no solution

for L < L0 := 2
(
p−1
p

)1/p

min]t0,+∞[ ψ, one solution for L = L0 and L > L1 and
two solutions for 0 < L0 ≤ L1. The conclusion then follows using the rescaling
(2.16)-(2.17). �
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