# EXISTENCE OF SOLUTIONS FOR SUBLINEAR EQUATIONS ON EXTERIOR DOMAINS 

JOSEPH A. IAIA


#### Abstract

In this article we consider the radial solutions of $\Delta u+K(r) f(u)=$ 0 on the exterior of the ball of radius $R>0, B_{R}$, centered at the origin in $\mathbb{R}^{N}$ with $u=0$ on $\partial B_{R}$ and $\lim _{r \rightarrow \infty} u(r)=0$ where $N>2, f$ is odd with $f<0$ on $(0, \beta), f>0$ on $(\beta, \infty), f(u) \sim u^{p}$ with $0<p<1$ for large $u$ and $K(r) \sim r^{-\alpha}$ with $\frac{(N+2)-p(N-2)}{2} \leq \alpha<N-p(N-2)$ for large $r$. We prove existence of $n$ solutions - one with exactly $n$ zeros on $[R, \infty)$ - if $R>0$ is sufficiently small. If $R>0$ is sufficiently large then there are no solutions with $\lim _{r \rightarrow \infty} u(r)=0$.


## 1. Introduction

In this article we study radial solutions of

$$
\begin{gather*}
\Delta u+K(r) f(u)=0 \quad \text { in } \mathbb{R}^{N} \backslash B_{R},  \tag{1.1}\\
u=0 \quad \text { on } \partial B_{R}  \tag{1.2}\\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where $B_{R}$ is the ball of radius $R>0$ centered at the origin in $\mathbb{R}^{N}$ and $K(r)>0$. We assume:
(H1) $f$ is odd and locally Lipschitz, $f<0$ on $(0, \beta), f>0$ on $(\beta, \infty)$, and $f^{\prime}(0)<0$.
Let $F(u)=\int_{0}^{u} f(s) d s$. Since $f$ is odd it follows that $F$ is even and from (H1) it follows that $F$ is bounded below by $-F_{0}<0, F$ has a unique positive zero, $\gamma$, with $0<\beta<\gamma$, and
(H2) $-F_{0}<F<0$ on $(0, \gamma), F>0$ on $(\gamma, \infty)$.
We also assume:
(H3) There exists $p$ with $0<p<1$ such that $f(u)=|u|^{p-1} u+g(u)$ where $\lim _{u \rightarrow \infty} \frac{|g(u)|}{|u|^{p}}=0$ and $g(u) \geq 0$ for $u \geq \gamma$.
In addition, we assume $K$ is differentiable on $(R, \infty)$ and that there exist constants $k_{2}>k_{1}>0$, and $\alpha$ with $\frac{(N+2)-p(N-2)}{2} \leq \alpha<N-p(N-2)$ such that
(H4) $k_{1} r^{-\alpha}<K(r)<k_{2} r^{-\alpha}$ on $[R, \infty)$, and:
(H5) $\lim _{r \rightarrow \infty} \frac{r K^{\prime}}{K}=-\alpha$ for $\frac{(N+2)-p(N-2)}{2} \leq \alpha<N-p(N-2)$, and $\frac{r K^{\prime}}{K}>$ $-2(N-1)$ on $[R, \infty)$.

[^0]Note that (H5) implies $r^{2(N-1)} K(r)$ is increasing.
Interest in the topic for this article comes from recent papers [5, 6, 11, 12, 14 about solutions of differential equations on exterior domains. When $f$ grows superlinearly at infinity - i.e. $\lim _{u \rightarrow \infty} f(u) / u=\infty, \Omega=\mathbb{R}^{N}$, and $K(r) \equiv 1$ then the problem (1.1), (1.3) has been extensively studied [1, 2, 3, 9, 13, 15).

In this article we consider the case where $f$ grows sublinearly at infinity - i.e. $\lim _{u \rightarrow \infty} \frac{f(u)}{u^{p}}=c_{0}>0$ with $0<p<1$ and $K(r) \sim r^{-\alpha}$ with $\frac{(N+2)-p(N-2)}{2} \leq$ $\alpha<N-p(N-2)$. In earlier papers [7, 8, 10] the cases where $f$ is sublinear with $0<\alpha<2, N-p(N-2)<\alpha<2(N-1)$, and $\alpha>2(N-1)$ were investigated.

In 14 existence of a positive solution if $R>0$ is sufficiently small was proved using sub and super solutions when $f$ is semipositone. Here we prove the existence of $n$ solutions if $R>0$ is sufficiently small.

Since we are interested in radial solutions of (1.1)-(1.3) we assume that $u(x)=$ $u(|x|)=u(r)$ where $x \in \mathbb{R}^{N}$ and $r=|x|=\sqrt{x_{1}^{2}+\cdots+x_{N}^{2}}$ so that $u$ solves

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+K(r) f(u(r))=0 \quad \text { on }(R, \infty) \text { where } R>0  \tag{1.4}\\
u(R)=0, \quad u^{\prime}(R)=b \in \mathbb{R} \tag{1.5}
\end{gather*}
$$

In this article we prove the following result.
Theorem 1.1. Assume (H1)-(H5) hold. Then given a nonnegative integer $n$ there exists a solution of (1.4)-1.5 with $n$ zeros on $(R, \infty)$ and $\lim _{r \rightarrow \infty} u(r)=0$ if $R>0$ is sufficiently small.

We note that if $0<\alpha<2$ then it was shown in [7] that there are solutions for all $R>0$ whereas when $\alpha>2$ and $R$ is sufficiently large then it was shown in [8] that there are no solutions of (1.1)-1.3 with $\lim _{r \rightarrow \infty} u(r)=0$. In this paper we prove existence of solutions of 1.1 - 1.3 ) for $\frac{(N+2)-p(N-2)}{2} \leq \alpha<N-p(N-2)$ and $R>0$ sufficiently small. A similar result was proved in [8, [10] for $N-p(N-2)<$ $\alpha<2(N-1)$ and for $\alpha>2(N-1)$.

## 2. Behavior for small $b>0$

We suppose that $U(r)$ solves 1.4 and then make the change of variables:

$$
U(r)=u\left(r^{2-N}\right)
$$

Then for $0<t<\infty$ we see that $u$ satisfies

$$
\begin{equation*}
u^{\prime \prime}+h(t) f(u)=0 \tag{2.1}
\end{equation*}
$$

where

$$
h(t)=\frac{t^{\frac{2(N-1)}{2-N}} K\left(t^{\frac{1}{2-N}}\right)}{(N-2)^{2}}
$$

It follows from (H4), (H5) that

$$
\begin{equation*}
h(t)>0, \quad h^{\prime}(t)<0, \quad h_{1} t^{-q}<h(t)<h_{2} t^{-q} \tag{2.2}
\end{equation*}
$$

for $t>0$ where $q=\frac{2(N-1)-\alpha}{N-2}, h_{i}=\frac{k_{i}}{(N-2)^{2}}$. In addition it follows from (H3), (H5), and 2.2 that

$$
\begin{equation*}
1<p+1<q<2 \tag{2.3}
\end{equation*}
$$

We also assume that

$$
\begin{equation*}
u(0)=0, \quad u^{\prime}(0)=b>0 . \tag{2.4}
\end{equation*}
$$

For the rest of this article we will focus on finding solutions of 2.1, 2.4 such that $u\left(R^{2-N}\right)=0$. If such a solution exists then $U(r)=u\left(r^{2-N}\right)$ will be a solution of (1.1)- 1.3 ).

We first examine (2.1), 2.4 assuming (H1)-(H5). It is straightforward to show that there is a unique solution $u \in C^{1}([0, \epsilon)) \cap C^{2}(0, \epsilon)$ of (2.1) for some $\epsilon>0$ such that (2.4) holds. A proof is provided in the appendix. Then from (H3) since $|f(u)| \leq C_{1}|u|$ for some constant $C_{1}>0$ it follows that the solution of (2.1), (2.4) exists on $(0, \infty)$.

Since $u>0$ for small positive $t$ (by $(\sqrt{2.4})$ ) and since $f(u)<0$ for $0<u<\beta$ by (H1) it follows from 2.1 that $u^{\prime \prime}>0$ when $0<u<\beta$. Therefore $u^{\prime}>u^{\prime}(0)=b$ when $0<u<\beta$. Integrating this on $(0, t)$ and using 2.4 we obtain

$$
\begin{equation*}
u>b t \quad \text { when } 0<u<\beta \tag{2.5}
\end{equation*}
$$

It then follows that there is a smallest positive value of $t, t_{b}$, such that $u\left(t_{b}\right)=\beta$ and $0<u<\beta$ on $\left(0, t_{b}\right)$.

We next show that $u$ gets larger than $\gamma$. So suppose not. That is suppose $0<u<\gamma$ for all $t>0$ and consider

$$
\begin{equation*}
E=\frac{1}{2} \frac{u^{\prime 2}}{h(t)}+F(u) \quad \text { for } t>0 \tag{2.6}
\end{equation*}
$$

Then from (2.1) and 2.2 we have

$$
\begin{equation*}
E^{\prime}=\left(\frac{1}{2} \frac{u^{\prime 2}}{h(t)}+F(u)\right)^{\prime}=-\frac{h^{\prime} u^{\prime 2}}{h^{2}} \geq 0 \tag{2.7}
\end{equation*}
$$

and so by the initial conditions (2.4) we see that

$$
\begin{equation*}
E=\frac{1}{2} \frac{u^{\prime 2}}{h(t)}+F(u)>0 \quad \text { for } t>0 \tag{2.8}
\end{equation*}
$$

Now while $0<u<\gamma$ we have $F(u)<0$ and since $F(\gamma)=0$ with $F^{\prime}(\gamma)=f(\gamma)>$ 0 (since $\gamma>\beta$ ) then we find that $-F(u)>a_{0}(\gamma-u)$ for $\beta<u<\gamma$ for some $a_{0}>0$. Using this in 2.8 we obtain

$$
\begin{equation*}
u^{\prime 2} \geq-2 h F(u)>2 a_{0} h(\gamma-u) \quad \text { for } t>t_{b} \tag{2.9}
\end{equation*}
$$

Then by 2.2 and 2.9 we have

$$
\begin{equation*}
\frac{u^{\prime}}{\sqrt{\gamma-u}}>\sqrt{2 a_{0} h_{1}} t^{-\frac{q}{2}} \quad \text { for } t>t_{b} \tag{2.10}
\end{equation*}
$$

Integrating this on $\left(t_{b}, t\right)$ gives

$$
\begin{equation*}
\sqrt{\gamma-u(t)}<\sqrt{\gamma-\beta}-\sqrt{2 a_{0} h_{1}}\left(\frac{t^{1-\frac{q}{2}}-t_{b}^{1-\frac{q}{2}}}{1-\frac{q}{2}}\right) \quad \text { for } t>t_{b} \tag{2.11}
\end{equation*}
$$

Since $1<q<2$ it follows that the right-hand side of 2.11 goes to $-\infty$ as $t \rightarrow \infty$ contradicting that $0<u<\gamma$. Thus $u$ eventually gets larger than $\gamma$ and so there exists $t_{b, \gamma}>t_{b}$ such that $u\left(t_{b, \gamma}\right)=\gamma$ and $0<u<\gamma$ on $\left(0, t_{b, \gamma}\right)$.

Next we denote $t_{b, 2}$ as the smallest positive value of $t$ such that $u\left(t_{b, 2}\right)=\frac{\beta}{2}$. Note that $t_{b, 2}<t_{b}<t_{b, \gamma}$.
Lemma 2.1. Assume (H1)-(H5) and let $u$ solve 2.1, (2.4). Then $\lim _{b \rightarrow 0^{+}} t_{b, 2}=$ $\infty$.

Proof. From the above arguments we know $u>0$ and $u^{\prime}>0$ on ( $0, t_{b, \gamma}$ ). Also it follows from (H1) that

$$
\begin{equation*}
f(u) \geq-a_{1} u \quad \text { for } u>0 \text { for some } a_{1}>0 \tag{2.12}
\end{equation*}
$$

so that integrating 2.1 twice on $(0, t)$ gives

$$
\begin{equation*}
0<u \leq b t+a_{1} \int_{0}^{t} \int_{0}^{s} h(x) u(x) d x d s \leq b t+a_{1} t \int_{0}^{t} h(x) u(x) d x \tag{2.13}
\end{equation*}
$$

Now let

$$
\begin{equation*}
y=b+a_{1} \int_{0}^{t} h(x) u(x) d x \tag{2.14}
\end{equation*}
$$

Then from (2.13)-(2.14) we have

$$
\begin{equation*}
0<u \leq t y \quad \text { and } \quad y^{\prime}=a_{1} h u \tag{2.15}
\end{equation*}
$$

and from $2.2,2.15$ we obtain

$$
\begin{equation*}
y^{\prime}=a_{1} h u \leq a_{1} t h y \leq a_{1} h_{2} t^{1-q} y \tag{2.16}
\end{equation*}
$$

Dividing 2.16 by $y$, integrating on $(0, t)$, exponentiating, and recalling that $q<2$ gives

$$
\begin{equation*}
u \leq b t \exp \left(\frac{a_{1} h_{2} t^{2-q}}{2-q}\right) \quad \text { for } t>0 \tag{2.17}
\end{equation*}
$$

so that evaluating (2.17) at $t_{b, 2}$ gives

$$
\begin{equation*}
\frac{\beta}{2} \leq b t_{b, 2} \exp \left(\frac{a_{1} h_{2} t_{b, 2}^{2-q}}{2-q}\right) \tag{2.18}
\end{equation*}
$$

Since $q<2$ it then follows from 2.18 that $t_{b, 2} \rightarrow \infty$ as $b \rightarrow 0^{+}$. This completes the proof.

Now let $c=\frac{2-q}{1-p}$ and note from 2.3) and (H5) that $\frac{1}{2} \leq c<1$. We also note that $y=c_{0} t^{c}$ with $c_{0}=c(1-c)^{-\frac{1}{1-p}}>0$ is a solution of $y^{\prime \prime}+\frac{1}{t^{q}} y^{p}=0$ for $t>0$.
Lemma 2.2. Assume (H1)-(H5) and let $u$ solve 2.1), 2.4. Then

$$
\lim _{b \rightarrow 0^{+}} t_{b, 2}^{1-c} u^{\prime}\left(t_{b, 2}\right)=0
$$

Proof. Using 2.2 and 2.12 in 2.1) gives

$$
\begin{equation*}
u^{\prime \prime}-\frac{a_{1} h_{2}}{t^{q}} u \leq 0 \tag{2.19}
\end{equation*}
$$

Letting

$$
\begin{equation*}
u(t)=\sqrt{t} w\left(\frac{2 \sqrt{a_{1} h_{2}}}{2-q} t^{\frac{2-q}{2}}\right) \tag{2.20}
\end{equation*}
$$

then using (2.4) and (2.19) it follows that $w$ satisfies

$$
\begin{equation*}
w^{\prime \prime}+\frac{1}{t} w^{\prime}-\left(1+\frac{1}{(2-q)^{2} t^{2}}\right) w \leq 0, \quad \lim _{t \rightarrow 0^{+}} \frac{w(t)}{t^{\frac{1}{2-q}}}=\left(\frac{2-q}{2 \sqrt{a_{1} h_{2}}}\right)^{\frac{1}{2-q}} b \tag{2.21}
\end{equation*}
$$

Now let $w_{1}$ satisfy

$$
\begin{equation*}
w_{1}^{\prime \prime}+\frac{1}{t} w_{1}^{\prime}-\left(1+\frac{1}{(2-q)^{2} t^{2}}\right) w_{1}=0, \quad \lim _{t \rightarrow 0^{+}} \frac{w_{1}(t)}{t^{\frac{1}{2-q}}}=\left(\frac{2-q}{2 \sqrt{a_{1} h_{2}}}\right)^{\frac{1}{2-q}} b \tag{2.22}
\end{equation*}
$$

That is, $w_{1}$ satisfies the modified Bessel equation and in fact

$$
\begin{equation*}
w_{1}(t)=\left(\frac{2-q}{2 \sqrt{a_{1} h_{2}}}\right)^{\frac{1}{2-q}} \frac{b}{a} I_{\frac{1}{2-q}}(t) \tag{2.23}
\end{equation*}
$$

where $I_{\frac{1}{2-q}}(t)$ is the modified Bessel function of order $\frac{1}{2-q}$ that is finite at the origin. It is well-known [4] that

$$
\begin{gather*}
I_{\frac{1}{2-q}}(t)>0, \quad I_{\frac{1}{2-q}}^{\prime}(t)>0 \quad \text { for } t>0, \lim _{t \rightarrow \infty} I_{\frac{1}{2-q}}(t)=\infty \\
\text { there exists } a>0 \text { such that } \lim _{t \rightarrow 0^{+}} \frac{I_{\frac{1}{2-q}}(t)}{t^{\frac{1}{2-q}}}=a \tag{2.24}
\end{gather*}
$$

It is also true that

$$
\begin{equation*}
\left|\frac{I_{\frac{1}{2-q}}^{\prime}(t)}{I_{\frac{1}{2-q}}(t)}\right| \leq a_{2} \quad \text { for } t>1 \text { for some } a_{2}>0 \tag{2.25}
\end{equation*}
$$

A proof of 2.25 is provided in the appendix.
It then follows from 2.23 , 2.25 that

$$
\begin{equation*}
\frac{w_{1}^{\prime}}{w_{1}}=\frac{I_{\frac{1}{2-q}}^{\prime}}{I_{\frac{1}{2-q}}} \leq a_{2} \quad \text { for } t>1 \tag{2.26}
\end{equation*}
$$

Next multiplying (2.21 by $t w_{1}, 2.22$ by $t w$, and subtracting gives

$$
\begin{equation*}
\left[t\left(w^{\prime} w_{1}-w_{1}^{\prime} w\right)\right]^{\prime} \leq 0 \quad \text { for } t>0 \tag{2.27}
\end{equation*}
$$

Since

$$
\lim _{t \rightarrow 0^{+}} \frac{w(t)}{t^{\frac{1}{2-q}}}=\lim _{t \rightarrow 0^{+}} \frac{w_{1}(t)}{t^{\frac{1}{2-q}}}=\left(\frac{2-q}{2 \sqrt{a_{1} h_{2}}}\right)^{\frac{1}{2-q}} b
$$

and

$$
\lim _{t \rightarrow 0^{+}} \frac{w^{\prime}(t)}{t^{\frac{q-1}{2-q}}}=\lim _{t \rightarrow 0^{+}} \frac{w_{1}^{\prime}(t)}{t^{\frac{q-1}{2-q}}}=\frac{1}{2-q}\left(\frac{2-q}{2 \sqrt{a_{1} h_{2}}}\right)^{\frac{1}{2-q}} b
$$

then integrating 2.27 ) on $(0, t)$ gives

$$
\begin{equation*}
w^{\prime} w_{1}-w w_{1}^{\prime} \leq 0 \quad \text { for } t>0 \tag{2.28}
\end{equation*}
$$

Since $u>0$ on $\left(0, t_{b, 2}\right)$ it follows from 2.20 that $w>0$ on $\left(0, t_{b, 2}\right)$. It also follows that $w_{1}>0$ since $I_{\frac{1}{2-q}}>0$ by 2.24). Now dividing 2.28 by $w w_{1}$, using (2.26), and recalling $t_{b, 2} \rightarrow \infty$ as $b \rightarrow 0^{+}$from Lemma 2.1 gives

$$
\begin{equation*}
\frac{w^{\prime}}{w} \leq \frac{w_{1}^{\prime}}{w_{1}} \leq a_{2} \quad \text { for } t>t_{b, 2} \text { if } b>0 \text { is sufficiently small. } \tag{2.29}
\end{equation*}
$$

Next we return to 2.20 and differentiate to obtain

$$
\begin{equation*}
u^{\prime}=\frac{t^{-1} u}{2}+\sqrt{a_{1} h_{2}} t^{-\frac{q}{2}} u \frac{w^{\prime}}{w} . \tag{2.30}
\end{equation*}
$$

Using (2.29-2.30), Lemma 2.1, and assuming $b>0$ is sufficiently small we obtain

$$
\begin{equation*}
t^{1-c} u^{\prime}=\frac{t^{-c} u}{2}+\sqrt{a_{1} h_{2}} t^{1-c-\frac{q}{2}} u \frac{w^{\prime}}{w} \leq \frac{t^{-c} u}{2}+a_{2} \sqrt{a_{1} h_{2}} t^{1-c-\frac{q}{2}} u \tag{2.31}
\end{equation*}
$$

for $t>t_{b, 2}$. Since $1-c-\frac{q}{2}=-\frac{(2-q)(1+p)}{2(1-p)}<0$ and $\frac{1}{2} \leq c<1$, evaluating 2.31 at $t_{b, 2}$ along with Lemma 2.1 gives

$$
0<t_{b, 2}^{1-c} u^{\prime}\left(t_{b, 2}\right) \leq \frac{\beta t_{b, 2}^{-c}}{4}+\frac{\beta a_{2}}{2} \sqrt{a_{1} h_{2}} t_{b, 2}^{1-c-\frac{q}{2}} \rightarrow 0 \quad \text { as } b \rightarrow 0^{+}
$$

This completes the proof.
Lemma 2.3. Assume (H1)-(H5) and let $u$ solve 2.1, 2.4. Then

$$
\lim _{b \rightarrow 0^{+}} t_{b, \gamma}^{1-c} u^{\prime}\left(t_{b, \gamma}\right)=0
$$

Proof. Rewriting 2.1 we see that

$$
\begin{equation*}
\left(t^{1-c} u^{\prime}\right)^{\prime}=(1-c) t^{-c} u^{\prime}-t^{1-c} h(t) f(u) . \tag{2.32}
\end{equation*}
$$

Integrating this on $\left(t_{b, 2}, t_{b, \gamma}\right)$ gives

$$
\begin{equation*}
t_{b, \gamma}^{1-c} u^{\prime}\left(t_{b, \gamma}\right)=t_{b, 2}^{1-c} u^{\prime}\left(t_{b, 2}\right)+\int_{t_{b, 2}}^{t_{b, \gamma}}(1-c) s^{-c} u^{\prime} d s-\int_{t_{b, 2}}^{t_{b, \gamma}} s^{1-c} h(s) f(u) d s \tag{2.33}
\end{equation*}
$$

The first term on the right-hand side of (2.33) goes to 0 as $b \rightarrow 0^{+}$by Lemma 2.2 Integrating the first integral in 2.33) by parts gives

$$
\begin{equation*}
\int_{t_{b, 2}}^{t_{b, \gamma}}(1-c) s^{-c} u^{\prime} d s=(1-c) t_{b, \gamma}^{-c} \gamma-(1-c) t_{b, 2}^{-c} \frac{\beta}{2}+\int_{t_{b, 2}}^{t_{b, \gamma}} c(1-c) s^{-c-1} u d s \tag{2.34}
\end{equation*}
$$

The first two terms on the right-hand side of this go to 0 as $b \rightarrow 0^{+}$by Lemma 2.1. Since $\frac{\beta}{2}<u<\gamma$ on $\left(t_{b, 2}, t_{b, \gamma}\right)$ estimating the third term on the right-hand side of 2.34 and using Lemma 2.1 we obtain

$$
\begin{equation*}
\left|\int_{t_{b, 2}}^{t_{b, \gamma}} c(1-c) s^{-c-1} u d s\right| \leq(1-c) \gamma\left(t_{b, 2}^{-c}-t_{b, \gamma}^{-c}\right) \rightarrow 0 \quad \text { as } b \rightarrow 0^{+} \tag{2.35}
\end{equation*}
$$

Finally, on $[\beta / 2, \gamma]$ we have $|f| \leq a_{3}$ for some constant $a_{3}>0$ and thus by 2.2 ,

$$
\left|\int_{t_{b, 2}}^{t_{b, \gamma}} s^{1-c} h(s) f(u) d s\right| \leq \frac{a_{3} h_{2}\left(t_{b, \gamma}^{2-q-c}-t_{b, 2}^{2-q-c}\right)}{2-q-c} \rightarrow 0 \quad \text { as } b \rightarrow 0^{+}
$$

since $2-q-c=-\frac{p(2-q)}{1-p}<0$. Thus it follows from Lemma 2.2 and 2.34)-2.35 that the right-hand side of 2.33 goes to 0 as $b \rightarrow 0^{+}$and so the lemma follows. This completes the proof.

Lemma 2.4. Assume (H1)-(H5) and let $u$ solve 2.1), 2.4. Let $u=t^{c} v$. Then $\lim _{b \rightarrow 0^{+}} t_{b, \gamma} v^{\prime}\left(t_{b, \gamma}\right)=0$.

Proof. We make the change of variables $u=t^{c} v$ and after differentiating we obtain

$$
\begin{equation*}
t^{1-c} u^{\prime}=c v+t v^{\prime} \tag{2.36}
\end{equation*}
$$

Evaluating (2.36) at $t_{b, \gamma}$ we see by Lemma 2.3 that the left-hand side of 2.36 goes to 0 as $b \rightarrow 0^{+}$. Also by Lemma 2.1 since $t_{b, \gamma}>t_{b, 2} \rightarrow \infty$ as $b \rightarrow 0^{+}$and since $v\left(t_{b, \gamma}\right)=\frac{u\left(t_{b, \gamma}\right)}{t_{b, \gamma}^{c}}=\frac{\gamma}{t_{b, \gamma}^{c}} \rightarrow 0$ as $b \rightarrow 0^{+}$we see that the first term on the right-hand side of 2.36 goes to 0 as $b \rightarrow 0^{+}$when evaluated at $t_{b, \gamma}$ and thus it follows that

$$
t_{b, \gamma} v^{\prime}\left(t_{b, \gamma}\right) \rightarrow 0 \text { as } b \rightarrow 0^{+} .
$$

This completes the proof.

Next substituting $u=t^{c} v$ into 2.1 and using (H3) gives

$$
\begin{equation*}
t^{2} v^{\prime \prime}+2 c t v^{\prime}+c(c-1) v+t^{q} h(t) v^{p}+t^{2-c} h(t) g\left(t^{c} v\right)=0 \quad \text { for } t>t_{b, \gamma} \tag{2.37}
\end{equation*}
$$

Now for $t>t_{b, \gamma}$ we have $u>\gamma>0$ (and hence $v>0$ ) and then by (H3) we have $g\left(t^{c} v\right)=g(u) \geq 0$. Then by 2.2 we have

$$
\begin{equation*}
t^{2} v^{\prime \prime}+2 c t v^{\prime}+d(v)<0 \quad \text { for } t>t_{b, \gamma} \tag{2.38}
\end{equation*}
$$

where $d(v)=c(c-1) v+h_{1}|v|^{p-1} v$. Next we let $v_{1}$ be the solution of

$$
\begin{gather*}
t^{2} v_{1}^{\prime \prime}+2 c t v_{1}^{\prime}+d\left(v_{1}\right)=0  \tag{2.39}\\
v_{1}\left(t_{b, \gamma}\right)=v\left(t_{b, \gamma}\right), \quad v_{1}^{\prime}\left(t_{b, \gamma}\right)=v^{\prime}\left(t_{b, \gamma}\right) . \tag{2.40}
\end{gather*}
$$

Now let

$$
\begin{equation*}
E_{1}=\frac{1}{2} t^{2} v_{1}^{\prime 2}+D\left(v_{1}\right) \tag{2.41}
\end{equation*}
$$

where $D\left(v_{1}\right) \equiv \int_{0}^{v_{1}} d_{1}(s) d s=\frac{c(c-1)}{2} v_{1}^{2}+\frac{h_{1}}{p+1}\left|v_{1}\right|^{p+1}$. It follows from 2.39 that

$$
\begin{equation*}
E_{1}^{\prime}=(1-2 c) t v_{1}^{\prime 2} \leq 0 \quad \text { since } \frac{1}{2} \leq c<1 \tag{2.42}
\end{equation*}
$$

Note $d(0)=0$ and that $d\left(v_{1}\right)$ is increasing near $v_{1}=0$ since $0<p<1$. Also notice $d\left(v_{1}\right)$ has a unique positive zero at $\alpha_{1}>0$ and $d\left(v_{1}\right)<0$ for $v>\alpha_{1}$. Similarly $D(0)=0$ and $D\left(v_{1}\right)$ is increasing near $v_{1}=0$. In addition, $D$ has a local maximum at $\alpha_{1}$ and a unique positive zero at $\alpha_{2}>\alpha_{1}>0$. Also $D\left(v_{1}\right)<0$ for $v_{1}>\alpha_{2}$.

Next it follows from Lemma 2.4 and since $v_{1}\left(t_{b, \gamma}\right)=v\left(t_{b, \gamma}\right)=\frac{\gamma}{t_{b, \gamma}^{c}} \rightarrow 0$ as $b \rightarrow 0^{+}$ (by Lemma 2.1) that

$$
\begin{equation*}
E_{1}\left(t_{b, \gamma}\right)=\frac{1}{2} t_{b, \gamma}^{2} v_{1}^{\prime 2}\left(t_{b, \gamma}\right)+D\left(v_{1}\left(t_{b, \gamma}\right)\right)=\frac{1}{2} t_{b, \gamma}^{2} v^{\prime 2}\left(t_{b, \gamma}\right)+D\left(v\left(t_{b, \gamma}\right)\right) \rightarrow 0 \tag{2.43}
\end{equation*}
$$

as $b \rightarrow 0^{+}$, and since $E_{1}$ is non-increasing for $\frac{1}{2} \leq c<1$ (by 2.42) it follows that

$$
\begin{equation*}
\frac{1}{2} t^{2} v_{1}^{\prime 2}+D\left(v_{1}\right)=E_{1}(t) \leq E_{1}\left(t_{b, \gamma}\right)<\epsilon \tag{2.44}
\end{equation*}
$$

for $t>t_{b, \gamma}$ and $b$ sufficiently small.
Lemma 2.5. Assume (H1)-(H5) and let $u$ solve 2.1), 2.4). If $b$ is sufficiently small then $v_{1}$ has a local maximum, $M_{1, b}$, and $v_{1}^{\prime}>0$ on $\left(t_{b, \gamma}, M_{1, b}\right)$.
Proof. We suppose by way of contradiction that $v_{1}^{\prime}>0$ for all $t>t_{b, \gamma}$. Then $v_{1}(t)>v_{1}\left(t_{b, \gamma}\right)=\frac{\gamma}{t_{b, \gamma}^{c}}>0$ and by 2.44 if $b$ is sufficiently small then $D\left(v_{1}\right) \leq$ $E_{1}<\epsilon$ if $t>t_{b, \gamma}$ and so it follows that $0<v_{1}<\frac{1}{2} \alpha_{1}$ if $b$ is sufficiently small. In particular, $v_{1}$ is bounded and since $v_{1}$ is increasing then $v_{1} \rightarrow L$ as $t \rightarrow \infty$ where $0<L<\alpha_{1}$. Since $D\left(v_{1}\right) \rightarrow D(L)$ as $t \rightarrow \infty$ and since $E_{1}^{\prime} \leq 0$ it follows that $E_{1}$ has a finite limit as $t \rightarrow \infty$. Thus from 2.41 we have $t^{2} v_{1}^{\prime 2} \rightarrow A \geq 0$ for some $A \geq 0$. If $A>0$ then $v_{1}^{\prime}>\frac{A}{2 t}$ for large $t$ implying $v_{1}(t)>v_{1}\left(t_{0}\right)+A \ln \left(t / t_{0}\right) \rightarrow \infty$ as $t \rightarrow \infty$ contradicting that $v_{1}$ is bounded. It follows therefore that $A=0$ and thus $t v_{1}^{\prime} \rightarrow 0$ as $t \rightarrow \infty$. Using this and taking limits in 2.39 we see that

$$
\lim _{t \rightarrow \infty} t^{2} v_{1}^{\prime \prime}=-d(L)
$$

If $d(L) \neq 0$ then using a similar argument as we just showed with $v_{1}$ would imply that $v_{1}^{\prime}$ is unbounded contradicting $t v_{1}^{\prime} \rightarrow 0$ so it must be that $d(L)=0$ but this is impossible since $0<L<\alpha_{1}$. Therefore from this contradiction we see that $v_{1}$ has
a first local maximum, $M_{1, b}$, and $v_{1}^{\prime}>0$ on $\left(t_{b, \gamma}, M_{1, b}\right)$ if $b>0$ is sufficiently small. This completes the proof.

Lemma 2.6. Assume (H1)-(H5) and let u solve 2.1), 2.4. Then $v$ has a local maximum on $\left(t_{b, \gamma}, M_{1, b}\right)$ if $b$ is sufficiently small.

Proof. We assume $v^{\prime}>0$ on $\left(t_{b, \gamma}, M_{1, b}\right)$ otherwise we are done. Since $v^{\prime}>0$ it follows that $v>v\left(t_{b, \gamma}\right)=\gamma>0$ on $\left(t_{b, \gamma}, M_{1, b}\right)$. Multiplying 2.38) by $v_{1}, 2.39$ by $v$, and subtracting gives

$$
t^{2}\left(v_{1} v^{\prime}-v v_{1}^{\prime}\right)^{\prime}+2 c t\left(v_{1} v^{\prime}-v v_{1}^{\prime}\right)+h_{1}\left(v^{p} v_{1}-v_{1}^{p} v\right) \leq 0
$$

Multiplying this by $t^{2 c-2}$ gives

$$
\begin{equation*}
\left(t^{2 c}\left(v_{1} v^{\prime}-v v_{1}^{\prime}\right)\right)^{\prime}+h_{1} t^{2 c-2} v v_{1}\left(v^{p-1}-v_{1}^{p-1}\right) \leq 0 \quad \text { for } t>t_{b, \gamma} . \tag{2.45}
\end{equation*}
$$

Notice it follows from $2.38-(2.40$ that

$$
t_{b, \gamma}^{2}\left(v^{\prime \prime}\left(t_{b, \gamma}\right)-v_{1}^{\prime \prime}\left(t_{b, \gamma}\right)\right)<0
$$

and so $v<v_{1}$ on $\left(t_{b, \gamma}, t_{b, \gamma}+\epsilon_{0}\right)$ for some $\epsilon_{0}>0$. We next show that $v$ and $v_{1}$ do not intersect on $\left(t_{b, \gamma}, M_{1, b}\right)$. Suppose they did and so there is a $t_{0}$ with $t_{b, \gamma}<t_{0}<M_{1, b}$ such that $v<v_{1}$ on $\left(t_{b, \gamma}, t_{0}\right)$ and $v\left(t_{0}\right)=v_{1}\left(t_{0}\right)$. Integrating 2.45) on $\left(t_{b, \gamma}, t_{0}\right)$ and using 2.40 gives

$$
\begin{equation*}
t_{0}^{2 c}\left(v_{1}\left(t_{0}\right) v^{\prime}\left(t_{0}\right)-v\left(t_{0}\right) v_{1}^{\prime}\left(t_{0}\right)\right)+h_{1} \int_{t_{b, \gamma}}^{t_{0}} t^{2 c-2} v v_{1}\left(v^{p-1}-v_{1}^{p-1}\right) d t \leq 0 \tag{2.46}
\end{equation*}
$$

Since $v<v_{1}$ on $\left(t_{b, \gamma}, t_{0}\right)$ and $0<p<1$ it follows that $v^{p-1}>v_{1}^{p-1}$ on $\left(t_{b, \gamma}, t_{0}\right)$ and so the integral in 2.46 is positive. So from 2.46 we see $\left(v_{1}\left(t_{0}\right) v^{\prime}\left(t_{0}\right)-\right.$ $\left.v\left(t_{0}\right) v_{1}^{\prime}\left(t_{0}\right)\right)=v\left(t_{0}\right)\left(v^{\prime}\left(t_{0}\right)-v_{1}^{\prime}\left(t_{0}\right)\right)<0$ and since $v\left(t_{0}\right)>0$ we see that

$$
\begin{equation*}
v^{\prime}\left(t_{0}\right)<v_{1}^{\prime}\left(t_{0}\right) \tag{2.47}
\end{equation*}
$$

On the other hand, since $v<v_{1}$ on $\left(t_{b, \gamma}, t_{0}\right)$ and $v\left(t_{0}\right)=v_{1}\left(t_{0}\right)$ then $v(t)-v\left(t_{0}\right)<$ $v_{1}(t)-v_{1}\left(t_{0}\right)$ and so $\frac{v(t)-v\left(t_{0}\right)}{t-t_{0}}>\frac{v_{1}(t)-v_{1}\left(t_{0}\right)}{t-t_{0}}$ for $t_{b, \gamma}<t<t_{0}$. Therefore taking limits as $t \rightarrow t_{0}^{-}$gives

$$
\begin{equation*}
v^{\prime}\left(t_{0}\right) \geq v_{1}^{\prime}\left(t_{0}\right) \tag{2.48}
\end{equation*}
$$

which contradicts 2.47). Thus we see that $v<v_{1}$ on $\left(t_{b, \gamma}, M_{1, b}\right)$. Now we integrate 2.45 on ( $t_{b, \gamma}, M_{1, b}$ ) and obtain

$$
\begin{equation*}
M_{1, b}^{2 c} v_{1}\left(M_{1, b}\right) v^{\prime}\left(M_{1, b}\right)+h_{1} \int_{t_{b, \gamma}}^{M_{1, b}} t^{2 c-2} v v_{1}\left(v^{p-1}-v_{1}^{p-1}\right) d t \leq 0 . \tag{2.49}
\end{equation*}
$$

Then as earlier it follows that $v^{p-1}>v_{1}^{p-1}$ on $\left(t_{b, \gamma}, M_{1, b}\right)$ thus the integral term in (2.49) is positive. But also $v_{1}\left(M_{1, b}\right) v^{\prime}\left(M_{1, b}\right) \geq 0$ since $v^{\prime}>0$ on $\left(t_{b, \gamma}, M_{1, b}\right)$ and so we get a contradiction to 2.49. Thus $v$ must have a local maximum, $M_{v, b}$, on $\left(t_{b, \gamma}, M_{1, b}\right)$ if $b>0$ is sufficiently small. This completes the proof.

Lemma 2.7. Assume (H1)-(H5) and let $u$ solve (2.1)-2.4). Then $u$ has a local max if b is sufficiently small.

Proof. Since $u=t^{c} v$, it follows that $u^{\prime}=t^{c-1}\left(t v^{\prime}+c v\right)$ and so in order to show $u^{\prime}<0$ somewhere we want to show that $t v^{\prime}+c v$ gets negative for some $t>t_{b, \gamma}$. So by the way of contradiction let us suppose $u^{\prime}>0$ for $t>t_{b, \gamma}$. Thus it follows
that $u>0$ and hence $v>0$ for $t>t_{b, \gamma}$. We next show that $v<v_{1}$ for $t>t_{b, \gamma}$. Integrating 2.45) on $\left(t_{b, \gamma}, t\right)$ gives

$$
\begin{equation*}
t^{2 c}\left(v_{1} v^{\prime}-v v_{1}^{\prime}\right)+h_{1} \int_{t_{b, \gamma}}^{t} t^{2 c-2} v v_{1}\left(v^{p-1}-v_{1}^{p-1}\right) d t \leq 0 \quad \text { for } t>t_{b, \gamma} \tag{2.50}
\end{equation*}
$$

Now using an identical argument as in Lemma 2.6 it follows that $v$ and $v_{1}$ do not intersect for $t>t_{b, \gamma}$ and thus $0<v<v_{1}$ for $t>t_{b, \gamma}$. It follows then from (2.50) that $v_{1} v^{\prime}-v v_{1}^{\prime}<0$ for $t>t_{b, \gamma}$. And since $v_{1}>v>0$ we then have $\frac{v^{\prime}}{v}<\frac{v_{1}^{\prime}}{v_{1}}$. From this it follows that $t v^{\prime}+c v<t \frac{v_{1}^{\prime}}{v_{1}} v+c v=\frac{v}{v_{1}}\left(t v_{1}^{\prime}+c v_{1}\right)$ for $t>t_{b, \gamma}$. Thus to show $u^{\prime}$ gets negative it suffices to show $t v_{1}^{\prime}+c v_{1}$ gets negative for some $t>t_{b, \gamma}$.

Now recall from Lemma 2.5 that $v_{1}$ has a local maximum at $M_{1, b}$. Thus $v_{1}^{\prime}\left(M_{1, b}\right)=0$ and $v_{1}^{\prime \prime}\left(M_{1, b}\right) \leq 0$. In fact by the uniqueness of solutions of initial value problems $v_{1}^{\prime \prime}\left(M_{1, b}\right)<0$ and so $d\left(v_{1}\left(M_{1, b}\right)\right)>0$. Thus

$$
\begin{equation*}
0<v_{1}\left(M_{1, b}\right)<\alpha_{1} \tag{2.51}
\end{equation*}
$$

Now $v_{1}$ cannot have a positive local minimum at $m_{1, b}>M_{1, b}$ with $v_{1}^{\prime}<0$ on $\left(M_{1, b}, m_{1, b}\right)$ for at such a point we would have $v_{1}^{\prime}\left(m_{1, b}\right)=0$ and $v_{1}^{\prime \prime}\left(m_{1, b}\right) \geq 0$ implying $d\left(v_{1}\left(m_{1, b}\right)\right) \leq 0$ which would imply $v_{1}\left(m_{1, b}\right) \leq 0$ contradicting $0<v<v_{1}$. Thus

$$
\begin{equation*}
v_{1}^{\prime}<0 \text { for } t>M_{1, b} \tag{2.52}
\end{equation*}
$$

Next we observe that if $v_{1}^{\prime \prime}<0$ for $t>M_{1, b}$ then $v_{1}$ has a zero for $t>M_{1, b}$ which implies $v$ has a zero since $v<v_{1}$ but this contradicts that $v>0$. Thus $v_{1}$ has an inflection point $t_{2}>M_{1, b}$ with $v_{1}^{\prime \prime}<0$ on $\left(M_{1, b}, t_{2}\right)$. In addition, $v_{1}$ cannot have another inflection point $t_{3}>t_{2}$ with $v^{\prime \prime}>0$ on $\left(t_{2}, t_{3}\right)$ for at such a point $t_{3}$ then $v_{1}^{\prime}$ would have a local maximum so $v_{1}^{\prime \prime}\left(t_{3}\right)=0$ and $v_{1}^{\prime \prime \prime}\left(t_{3}\right) \leq 0$. Using this and then differentiating 2.39) this implies $\left(c^{2}+c+p h_{1} v_{1}^{p-1}\left(t_{3}\right)\right) v_{1}^{\prime}\left(t_{3}\right) \geq 0$ and so $v_{1}^{\prime}\left(t_{3}\right) \geq 0$ but this contradicts 2.52. Thus $v_{1}^{\prime \prime}>0$ for $t>t_{2}$.

Now substituting that $v_{1}^{\prime \prime}>0$ for $t>t_{2}$ into 2.39 gives:

$$
2 c t v_{1}^{\prime}+d\left(v_{1}\right)<0 \text { for } t>t_{2}
$$

and so rewriting

$$
\begin{equation*}
t v_{1}^{\prime}+c v_{1}<\frac{1+c}{2} v_{1}-\frac{h_{1} v_{1}^{p}}{2 c}=v_{1}^{p}\left(\frac{1+c}{2} v_{1}^{1-p}-\frac{h_{1}}{2 c}\right) \quad \text { for } t>t_{2} \tag{2.53}
\end{equation*}
$$

Now for $b>0$ sufficiently small we know $D\left(v_{1}\right)<\epsilon$ for $t>t_{b, \gamma}$ by 2.44. In particular, $D\left(v_{1}\left(M_{1, b}\right)\right)<\epsilon$ and since we also know 2.51) this implies that for $b>0$ sufficiently small then $v_{1}$ is also arbitrarily small. In particular, for sufficiently small $b>0$ the right-hand side of 2.53 is negative which implies $t v_{1}^{\prime}+c v_{1}$ and hence $u^{\prime}$ gets negative. Therefore $u$ has a local maximum. This completes the proof.

Lemma 2.8. Assume (H1)-(H5) and let u solve 2.1), 2.4. Then u has a zero if $b$ sufficiently small.
Proof. From Lemma 2.8 we know that $u$ has a local maximum, $M_{u, b}$, with $M_{u, b}>$ $t_{b}$, if $b>0$ is sufficiently small and so from (2.1) we see that $u^{\prime \prime}<0$ while $f(u)>0$. It follows then that $u$ must become less than or equal to $\beta$ and so there exists $s_{b}>M_{u, b}$ such that $u\left(s_{b}\right)=\beta$. Returning to 2.8 we see then that $\frac{1}{2} \frac{u^{\prime 2}}{h}+F(u)=$ $E \geq E_{0}>0$ for $t>s_{b}$ and since $F(u)<0$ for $0<u<\beta$ it follows from (2.2) that $-u^{\prime} \geq \sqrt{2 E_{0}} h_{1} t^{-\frac{q}{2}}$ for $t>s_{b}$. Integrating this on $\left(s_{b}, t\right)$ it then follows that
$u(t) \leq u\left(s_{b}\right)-\sqrt{2 E_{0} h_{1}}\left(\frac{t^{1-\frac{q}{2}}-s_{b}^{1-\frac{q}{2}}}{1-\frac{q}{2}}\right) \rightarrow-\infty$ as $t \rightarrow \infty$ since $1<q<2$ and so $u$ has a zero. This completes the proof.

## 3. BEHAVIOR FOR LARGE $b>0$

We now examine (2.1), (2.4) for large $b>0$. We want to show that either $u_{b}>0$ on $(0, \infty)$ or if there exists $z_{u, b}>0$ such that $u_{b}\left(z_{u, b}\right)=0$ with $u>0$ on $\left(0, z_{u, b}\right)$ then $z_{u, b} \rightarrow \infty$ as $b \rightarrow \infty$. So let us suppose that $z_{u, b}$ is finite and suppose there exists $S$ such that $0<z_{u, b} \leq S$ for all large $b$.

Integrating 2.1 twice on $(0, t)$ gives

$$
u_{b}=b t-\int_{0}^{t} \int_{0}^{s} h(x) f\left(u_{b}\right) d x d s
$$

Letting $\psi_{b}=\frac{u_{b}}{b}$ gives

$$
\begin{equation*}
\psi_{b}=t-\int_{0}^{t} \int_{0}^{s} \frac{h(x) f\left(b \psi_{b}\right)}{b} d x d s \tag{3.1}
\end{equation*}
$$

and then letting $\psi_{b}=t y_{b}$ gives

$$
y_{b}=1-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} \frac{h(x) f\left(b x y_{b}\right)}{b} d x d s
$$

It follows from (H1) and (H3) that $|f(u)| \leq C_{1}|u|$ for some $C_{1}>0$. Thus

$$
\begin{equation*}
\left|y_{b}\right| \leq 1+C_{1} \int_{0}^{t} x h(x)\left|y_{b}(x)\right| d x \tag{3.2}
\end{equation*}
$$

We now denote the right-hand side of (3.2) as $\phi_{b}$. Then we see $\phi_{b}^{\prime}=C_{1} t h(t)\left|y_{b}\right|$ and so (3.2) reads $\frac{\phi_{b}^{\prime}}{C_{1} t h}=\left|y_{b}\right| \leq \phi_{b}$. Rewriting and integrating this on $(0, t)$ gives

$$
\frac{\left|\psi_{b}\right|}{t}=\left|y_{b}\right| \leq \phi_{b} \leq \exp \left(\frac{C_{1} h_{2}}{2-q} t^{2-q}\right)
$$

Thus

$$
\begin{equation*}
\left|\psi_{b}\right| \leq t \exp \left(\frac{C_{1} h_{2}}{2-q} t^{2-q}\right) \leq C_{2} \quad \text { on }[0, S] \text { for some constant } C_{2}>0 \tag{3.3}
\end{equation*}
$$

Also from (3.1) we have

$$
\begin{equation*}
\psi_{b}^{\prime}=1-\int_{0}^{t} \frac{h(x) f\left(b \psi_{b}\right)}{b} d x \tag{3.4}
\end{equation*}
$$

It follows then from (3.3)-(3.4), since $|f(u)| \leq C_{1}|u|$, and since $0<t h(t)<h_{2} t^{1-q}$ is integrable near $t=0$ (because $1<q<2$ ) that there is a constant $C_{3}>0$ such that

$$
\begin{equation*}
\left|\psi_{b}^{\prime}\right| \leq 1+C_{1} \int_{0}^{t} h(x)\left|\psi_{b}\right| d x \leq 1+C_{1} \int_{0}^{t} x h(x) \exp \left(\frac{C_{1} h_{2}}{2-q} x^{2-q}\right) d x \leq C_{3} \tag{3.5}
\end{equation*}
$$

on $[0, S]$. Thus from (3.3) and 3.5 we have $\left|\psi_{b}\right|$ and $\left|\psi_{b}^{\prime}\right|$ are uniformly bounded on $[0, S]$ and so the $\left\{\psi_{b}\right\}$ are equicontinuous on $[0, S]$. In addition, differentiating (3.4) and using (3.3) we see there is some constant $C_{4}>0$ such that

$$
\left|\psi_{b}^{\prime \prime}\right| \leq\left|\frac{h(t) f\left(b \psi_{b}\right)}{b}\right| \leq C_{1} h(t)\left|\psi_{b}\right| \leq C_{1} t h(t) \exp \left(\frac{C_{1} h_{2}}{2-q} t^{2-q}\right) \leq C_{4} t^{1-q}
$$

on $[0, S]$. It then follows that

$$
\begin{equation*}
\left|\psi_{b}^{\prime}\left(t_{1}\right)-\psi_{b}^{\prime}\left(t_{2}\right)\right| \leq \int_{t_{1}}^{t_{2}}\left|\psi_{b}^{\prime \prime}\right| \leq \frac{C_{4}}{2-q}\left|t_{2}^{2-q}-t_{1}^{2-q}\right| \quad \text { on }[0, S] \tag{3.6}
\end{equation*}
$$

Thus since $q<2$ we see from (3.6 that $\left\{\psi_{b}^{\prime}\right\}$ are also equicontinuous on $[0, S]$. It then follows by the Arzela-Ascoli theorem that there is a subsequence (still denoted $\psi_{b}$ ) such that

$$
\begin{equation*}
\psi_{b} \rightarrow \psi \text { and } \psi_{b}^{\prime} \rightarrow \psi^{\prime} \text { uniformly on }[0, S] \text { as } b \rightarrow \infty \tag{3.7}
\end{equation*}
$$

Now since $u_{b}$ (and hence $\psi_{b}$ ) has a zero $z_{u, b}$ it follows that $u_{b}$ has a local maximum, $M_{u, b}$, with $0<M_{u, b}<z_{u, b} \leq S$. Then since $E$ is nondecreasing (by 2.7) we have

$$
\frac{1}{2} \frac{u_{b}^{\prime 2}}{h}+F\left(u_{b}\right) \leq F\left(u_{b}\left(M_{u, b}\right)\right) \quad \text { for } 0 \leq t \leq M_{u, b}
$$

Rewriting and integrating this on $\left[0, M_{u, b}\right]$ using 2.2 gives

$$
\begin{aligned}
\int_{0}^{u_{b}\left(M_{u, b}\right)} \frac{d t}{\sqrt{2} \sqrt{F\left(u_{b}\left(M_{u, b}\right)\right)-F(t)}} d t & =\int_{0}^{M_{u, b}} \frac{\left|u_{b}^{\prime}\right|}{\sqrt{2} \sqrt{F\left(u_{b}\left(M_{u, b}\right)\right)-F\left(u_{b}\right)}} d t \\
& \leq \int_{0}^{M_{u, b}} \sqrt{h} d t \\
& \leq \frac{\sqrt{h_{2}} M_{u, b}^{1-\frac{q}{2}}}{1-\frac{q}{2}} .
\end{aligned}
$$

Since $F(t) \geq-F_{0}$ where $F_{0}>0$ it follows that the above inequality and (H3) imply

$$
\frac{u_{b}\left(M_{u, b}\right)}{\sqrt{2} \sqrt{C_{5}\left[u_{b}\left(M_{u, b}\right)\right]^{p+1}+F_{0}}} \leq \frac{\sqrt{h_{2}} M_{u, b}^{1-\frac{q}{2}}}{1-\frac{q}{2}} \leq \frac{\sqrt{h_{2}} S^{1-\frac{q}{2}}}{1-\frac{q}{2}}
$$

for some $C_{5}>0$. It follows from this and since $0<p<1$ that $u_{b}\left(M_{u, b}\right)$ must be bounded and thus $u_{b}$ is bounded. Then since $\psi_{b}=\frac{u}{b}$ it follows that $\psi_{b} \rightarrow 0$ on $[0, S]$. Thus (3.7) implies $\psi \equiv 0$. In addition, (3.7) also implies $\psi_{b}^{\prime} \rightarrow \psi^{\prime} \equiv 0$ but from (3.4) it follows that $0=\psi^{\prime}(0) \leftarrow \psi_{b}^{\prime}(0)=1 \neq 0$ yielding a contradiction. Thus the assumption that the $z_{u, b}$ are bounded must be false. Therefore $z_{u, b} \rightarrow \infty$ as $b \rightarrow \infty$.

## 4. Proof of Theorem 1.1

We now consider the set

$$
S_{0}=\left\{b>0: u_{b}>0 \text { on }\left(0, R^{2-N}\right)\right\} .
$$

From section three it follows that if $b>0$ is sufficiently large then $u_{b}>0$ on $\left(0, R^{2-N}\right)$ and so $S_{0}$ is nonempty. From section two we know that if $b>0$ is sufficiently small then $u_{b}$ will have a zero on $(0, \infty)$ and so then if $R>0$ is sufficiently small then since $N>2$ it follows that $R^{2-N}$ is sufficiently large and thus $u_{b}$ will have a zero on $\left(0, R^{2-N}\right)$. Thus $S_{0}$ is bounded from below by a positive quantity. Then we let

$$
b_{0}=\inf \left\{b>0: u_{b} \text { solves 2.1, 2.4) and } u_{b}>0 \text { on }\left(0, R^{2-N}\right)\right\} .
$$

Then $b_{0}>0$ and a straightforward argument as in 13 shows $u_{b_{0}}>0$ on $\left(0, R^{2-N}\right)$ and $u_{b_{0}}\left(R^{2-N}\right)=0$. We then define

$$
S_{1}=\left\{b>0 \mid u_{b} \text { solves 2.1, 2.4 and has exactly one zero on }\left(0, R^{2-N}\right)\right\}
$$

Choosing $b$ slightly smaller than $b_{0}$ it follows then by continuity with respect to initial conditions that $u_{b}$ will have at least one zero on $\left(0, R^{2-N}\right)$. And as in 13 it follows that if $b$ is sufficiently close to $b_{0}$ then $u_{b}$ has at most one zero on ( $0, R^{2-N}$ ) and so $S_{1}$ is nonempty. Then letting

$$
b_{1}=\inf S_{1}
$$

a similar argument shows $u_{b_{1}}$ has one zero on $\left(0, R^{2-N}\right)$ and $u_{b_{1}}\left(R^{2-N}\right)=0$. In a similar fashion we can show that given any $n$ then if $R>0$ is sufficiently small then there exists $b_{0}, b_{1}, \cdots, b_{n}$ such that $u_{b_{k}}(t)$ has $k$ zeros on $\left(0, R^{2-N}\right)$ and $u_{b_{k}}\left(R^{2-N}\right)=0$. Finally, letting $U_{b_{k}}(t)=u_{b_{k}}\left(t^{2-N}\right)$ it follows that $U_{b_{k}}(t)$ satisfies (1.1)- (1.3) and $U_{b_{k}}$ has $k$ zeros on $(R, \infty)$. This completes the proof of the main theorem.

## 5. Appendix

Lemma 5.1. Assume (H1)-(H5). Then for any $b>0$ there is a solution $u \in$ $C^{1}[0, \epsilon) \cap C^{2}(0, \epsilon)$ of 2.1) on $(0, \epsilon)$ for some $\epsilon>0$ and such that 2.4 holds.

Proof. Integrating (2.1) twice on $(0, t)$ and using (2.4) gives

$$
u=b t-\int_{0}^{t} \int_{0}^{s} h(x) f(u) d x d s
$$

Substituting $u=t v$ gives

$$
\begin{equation*}
v=b-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x) f(x v) d x d s \tag{5.1}
\end{equation*}
$$

Defining the right-hand side of (5.1) as $T v$ then we see that $T: C[0, \epsilon] \rightarrow C[0, \epsilon]$ where $C[0, \epsilon]$ is the set of continuous functions on $[0, \epsilon]$ such that $v(0)=b$ with the supremum norm, $\|\cdot\|$. Then

$$
T v_{1}-T v_{2}=-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x)\left[f\left(x v_{1}\right)-f\left(x v_{2}\right)\right] d x d s
$$

and so

$$
\left|T v_{1}-T v_{2}\right| \leq \frac{L_{1}}{t} \int_{0}^{t} \int_{0}^{s} x h(x)\left|v_{1}-v_{2}\right| d x d s
$$

where $L_{1}$ is the Lipschitz constant for $f$ near $v=b$. Then

$$
\left|T v_{1}-T v_{2}\right| \leq \frac{L_{1} h_{2} \epsilon^{2-q}}{(2-q)(3-q)}\left\|v_{1}-v_{2}\right\|
$$

and so $T$ is a contraction if $\epsilon>0$ is sufficiently small. It then follows from the contraction mapping principle that $v(t)$ is a solution of 5.1 and therefore $u(t)=$ $t v(t)$ satisfies 2.1, 2.4 on $[0, \epsilon]$. This completes the proof.

Lemma 5.2. Let I be the solution of

$$
\begin{equation*}
I^{\prime \prime}+\frac{1}{t} I^{\prime}-\left(1+\frac{1}{(2-q)^{2} t^{2}}\right) I=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} \frac{I(t)}{t^{\frac{1}{2-q}}}=a>0 \tag{5.2}
\end{equation*}
$$

Then there exists a constant $C_{6}>0$ such that

$$
\left|\frac{I^{\prime}}{I}\right| \leq C_{6} \quad \text { for } t \geq 1
$$

Proof. A straightforward computation using 5.2 shows that

$$
\left(t^{2} I^{\prime 2}-t^{2} I-\frac{1}{(2-q)^{2}} I\right)^{\prime}=-t I^{2} \leq 0
$$

Thus since $I(0)=0$, it follows that

$$
t^{2} I^{\prime 2}-t^{2} I^{2}-\frac{1}{(2-q)^{2}} I^{2} \leq 0 \quad \text { for } t>0
$$

Therefore

$$
\frac{I^{\prime 2}}{I^{2}} \leq 1+\frac{1}{(2-q)^{2} t^{2}}
$$

So we see that there exists a $C_{6}>0$ such that

$$
\left|\frac{I^{\prime}}{I}\right| \leq C_{6} \text { for } t>1
$$

This completes the proof.

## References

[1] H. Berestycki, P. L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
[2] H. Berestycki, P. L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
[3] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
[4] G. Birkhoff, G. C. Rota; Ordinary differential equations, Ginn and Company, 1962.
[5] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, Journal of Mathematical Analysis and Applications, Volume 394, Issue 1, 432-437, 2012.
[6] M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains, Boundary Value Problems, 198-207, 2014.
[7] J. Iaia; Existence of solutions for sublinear equations on exterior domains, Electronic Journal of Differential Equations, 2017 No. 253, pp. 1-14, 2017.
[8] J. Iaia; Existence and nonexistence of solutions for sublinear equations on exterior domains, Electronic Journal of Differential Equations, 2917 No. 214, 1-13, 2017.
[9] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
[10] J. Joshi; Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, Electronic Journal of Differential Equations, 2017 No. 133, 1-10, 2017.
[11] E. K. Lee, R. Shivaji, B. Son; Positive radial solutions to classes of singular problems on the exterior of a ball, Journal of Mathematical Analysis and Applications, 434, No. 2, 1597-1611, 2016.
[12] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, Differential and Integral Equations, Volume 24, Number 9/10, 861-875, 2011.
[13] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equations, Volume 83, Issue 2, 368-373, 1990.
[14] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
[15] W. Strauss; Existence of solitary waves in higher dimensions,' Comm. Math. Phys., Volume 55, 149-162, 1977.

Joseph A. Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

E-mail address: iaia@unt.edu


[^0]:    2010 Mathematics Subject Classification. 34B40, 35B05.
    Key words and phrases. Exterior domains; semilinear; sublinear; radial solution.
    (C) 2018 Texas State University.

    Submitted May 10, 2018. Published November 6, 2018.

