Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 181, pp. 1–14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF SOLUTIONS FOR SUBLINEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH A. IAIA

ABSTRACT. In this article we consider the radial solutions of $\Delta u + K(r)f(u) =$ 0 on the exterior of the ball of radius R > 0, B_R , centered at the origin in \mathbb{R}^N with u = 0 on ∂B_R and $\lim_{r \to \infty} u(r) = 0$ where N > 2, f is odd with f < 0 on $(0,\beta), f > 0$ on $(\beta,\infty), f(u) \sim u^p$ with 0 for large <math>u and $K(r) \sim r^{-\alpha}$ with $\frac{(N+2)-p(N-2)}{2} \le \alpha < N-p(N-2)$ for large r. We prove existence of nsolutions - one with exactly n zeros on $[R,\infty)$ - if R > 0 is sufficiently small. If R > 0 is sufficiently large then there are no solutions with $\lim_{r \to \infty} u(r) = 0$.

1. INTRODUCTION

In this article we study radial solutions of

$$\Delta u + K(r)f(u) = 0 \quad \text{in } \mathbb{R}^N \setminus B_R, \tag{1.1}$$

$$u = 0 \quad \text{on } \partial B_R, \tag{1.2}$$

$$u \to 0 \quad \text{as } |x| \to \infty$$
 (1.3)

where B_R is the ball of radius R > 0 centered at the origin in \mathbb{R}^N and K(r) > 0. We assume:

(H1) f is odd and locally Lipschitz, f < 0 on $(0,\beta)$, f > 0 on (β,∞) , and f'(0) < 0.

Let $F(u) = \int_0^u f(s) ds$. Since f is odd it follows that F is even and from (H1) it follows that F is bounded below by $-F_0 < 0$, F has a unique positive zero, γ , with $0 < \beta < \gamma$, and

(H2) $-F_0 < F < 0$ on $(0, \gamma), F > 0$ on (γ, ∞) .

We also assume:

(H3) There exists p with $0 such that <math>f(u) = |u|^{p-1}u + g(u)$ where $\lim_{u\to\infty} \frac{|g(u)|}{|u|^p} = 0$ and $g(u) \ge 0$ for $u \ge \gamma$.

In addition, we assume K is differentiable on (R, ∞) and that there exist constants $k_2 > k_1 > 0$, and α with $\frac{(N+2)-p(N-2)}{2} \le \alpha < N - p(N-2)$ such that

- (H4) $k_1 r^{-\alpha} < K(r) < k_2 r^{-\alpha}$ on $[R, \infty)$, and: (H5) $\lim_{r \to \infty} \frac{rK'}{K} = -\alpha$ for $\frac{(N+2)-p(N-2)}{2} \le \alpha < N p(N-2)$, and $\frac{rK'}{K} > -2(N-1)$ on $[R, \infty)$.

Key words and phrases. Exterior domains; semilinear; sublinear; radial solution.

²⁰¹⁰ Mathematics Subject Classification. 34B40, 35B05.

^{©2018} Texas State University.

Submitted May 10, 2018. Published November 6, 2018.

Note that (H5) implies $r^{2(N-1)}K(r)$ is increasing.

Interest in the topic for this article comes from recent papers [5, 6, 11, 12, 14] about solutions of differential equations on exterior domains. When f grows superlinearly at infinity - i.e. $\lim_{u\to\infty} f(u)/u = \infty$, $\Omega = \mathbb{R}^N$, and $K(r) \equiv 1$ then the problem (1.1), (1.3) has been extensively studied [1, 2, 3, 9, 13, 15].

In this article we consider the case where f grows sublinearly at infinity - i.e. $\lim_{u\to\infty}\frac{f(u)}{u^p} = c_0 > 0$ with $0 and <math>K(r) \sim r^{-\alpha}$ with $\frac{(N+2)-p(N-2)}{2} \leq \alpha < N - p(N-2)$. In earlier papers [7, 8, 10] the cases where f is sublinear with $0 < \alpha < 2$, $N - p(N-2) < \alpha < 2(N-1)$, and $\alpha > 2(N-1)$ were investigated.

In [14] existence of a positive solution if R > 0 is sufficiently small was proved using sub and super solutions when f is semipositone. Here we prove the existence of n solutions if R > 0 is sufficiently small.

Since we are interested in radial solutions of (1.1)-(1.3) we assume that u(x) = u(|x|) = u(r) where $x \in \mathbb{R}^N$ and $r = |x| = \sqrt{x_1^2 + \cdots + x_N^2}$ so that u solves

$$u''(r) + \frac{N-1}{r}u'(r) + K(r)f(u(r)) = 0 \quad \text{on } (R,\infty) \text{ where } R > 0,$$
(1.4)

 $u(R) = 0, \quad u'(R) = b \in \mathbb{R}.$ (1.5)

In this article we prove the following result.

Theorem 1.1. Assume (H1)–(H5) hold. Then given a nonnegative integer n there exists a solution of (1.4)-(1.5) with n zeros on (R, ∞) and $\lim_{r\to\infty} u(r) = 0$ if R > 0 is sufficiently small.

We note that if $0 < \alpha < 2$ then it was shown in [7] that there are solutions for all R > 0 whereas when $\alpha > 2$ and R is sufficiently large then it was shown in [8] that there are no solutions of (1.1)-(1.3) with $\lim_{r\to\infty} u(r) = 0$. In this paper we prove existence of solutions of (1.1)-(1.3) for $\frac{(N+2)-p(N-2)}{2} \le \alpha < N-p(N-2)$ and R > 0 sufficiently small. A similar result was proved in [8], [10] for $N-p(N-2) < \alpha < 2(N-1)$ and for $\alpha > 2(N-1)$.

2. Behavior for small b > 0

We suppose that U(r) solves (1.4) and then make the change of variables:

$$U(r) = u(r^{2-N}).$$

Then for $0 < t < \infty$ we see that u satisfies

$$u'' + h(t)f(u) = 0, (2.1)$$

where

$$h(t) = \frac{t^{\frac{2(N-1)}{2-N}}K(t^{\frac{1}{2-N}})}{(N-2)^2}$$

It follows from (H4), (H5) that

$$h(t) > 0, \quad h'(t) < 0, \quad h_1 t^{-q} < h(t) < h_2 t^{-q}$$
 (2.2)

for t > 0 where $q = \frac{2(N-1)-\alpha}{N-2}$, $h_i = \frac{k_i}{(N-2)^2}$. In addition it follows from (H3), (H5), and (2.2) that

$$1$$

We also assume that

$$u(0) = 0, \quad u'(0) = b > 0.$$
 (2.4)

5

For the rest of this article we will focus on finding solutions of (2.1), (2.4) such that $u(R^{2-N}) = 0$. If such a solution exists then $U(r) = u(r^{2-N})$ will be a solution of (1.1)-(1.3).

We first examine (2.1), (2.4) assuming (H1)–(H5). It is straightforward to show that there is a unique solution $u \in C^1([0,\epsilon)) \cap C^2(0,\epsilon)$ of (2.1) for some $\epsilon > 0$ such that (2.4) holds. A proof is provided in the appendix. Then from (H3) since $|f(u)| \leq C_1|u|$ for some constant $C_1 > 0$ it follows that the solution of (2.1), (2.4) exists on $(0,\infty)$.

Since u > 0 for small positive t (by (2.4)) and since f(u) < 0 for $0 < u < \beta$ by (H1) it follows from (2.1) that u'' > 0 when $0 < u < \beta$. Therefore u' > u'(0) = b when $0 < u < \beta$. Integrating this on (0, t) and using (2.4) we obtain

$$u > bt \quad \text{when } 0 < u < \beta. \tag{2.5}$$

It then follows that there is a smallest positive value of t, t_b , such that $u(t_b) = \beta$ and $0 < u < \beta$ on $(0, t_b)$.

We next show that u gets larger than γ . So suppose not. That is suppose $0 < u < \gamma$ for all t > 0 and consider

$$E = \frac{1}{2} \frac{u^{\prime 2}}{h(t)} + F(u) \quad \text{for } t > 0.$$
 (2.6)

Then from (2.1) and (2.2) we have

$$E' = \left(\frac{1}{2}\frac{u'^2}{h(t)} + F(u)\right)' = -\frac{h'u'^2}{h^2} \ge 0$$
(2.7)

and so by the initial conditions (2.4) we see that

$$E = \frac{1}{2} \frac{u^{\prime 2}}{h(t)} + F(u) > 0 \quad \text{for } t > 0.$$
(2.8)

Now while $0 < u < \gamma$ we have F(u) < 0 and since $F(\gamma) = 0$ with $F'(\gamma) = f(\gamma) > 0$ (since $\gamma > \beta$) then we find that $-F(u) > a_0(\gamma - u)$ for $\beta < u < \gamma$ for some $a_0 > 0$. Using this in (2.8) we obtain

$$u'^{2} \ge -2hF(u) > 2a_{0}h(\gamma - u) \quad \text{for } t > t_{b}.$$
 (2.9)

Then by (2.2) and (2.9) we have

$$\frac{u'}{\sqrt{\gamma - u}} > \sqrt{2a_0h_1}t^{-\frac{q}{2}} \quad \text{for } t > t_b.$$
(2.10)

Integrating this on (t_b, t) gives

$$\sqrt{\gamma - u(t)} < \sqrt{\gamma - \beta} - \sqrt{2a_0h_1} \left(\frac{t^{1 - \frac{q}{2}} - t_b^{1 - \frac{q}{2}}}{1 - \frac{q}{2}}\right) \quad \text{for } t > t_b.$$
(2.11)

Since 1 < q < 2 it follows that the right-hand side of (2.11) goes to $-\infty$ as $t \to \infty$ contradicting that $0 < u < \gamma$. Thus *u* eventually gets larger than γ and so there exists $t_{b,\gamma} > t_b$ such that $u(t_{b,\gamma}) = \gamma$ and $0 < u < \gamma$ on $(0, t_{b,\gamma})$.

Next we denote $t_{b,2}$ as the smallest positive value of t such that $u(t_{b,2}) = \frac{\beta}{2}$. Note that $t_{b,2} < t_b < t_{b,\gamma}$.

Lemma 2.1. Assume (H1)–(H5) and let u solve (2.1), (2.4). Then $\lim_{b\to 0^+} t_{b,2} = \infty$.

Proof. From the above arguments we know u > 0 and u' > 0 on $(0, t_{b,\gamma})$. Also it follows from (H1) that

$$f(u) \ge -a_1 u \quad \text{for } u > 0 \text{ for some } a_1 > 0 \tag{2.12}$$

so that integrating (2.1) twice on (0, t) gives

$$0 < u \le bt + a_1 \int_0^t \int_0^s h(x)u(x) \, dx \, ds \le bt + a_1 t \int_0^t h(x)u(x) \, dx. \tag{2.13}$$

Now let

$$y = b + a_1 \int_0^t h(x)u(x) \, dx. \tag{2.14}$$

Then from (2.13)-(2.14) we have

$$0 < u \le ty \quad \text{and} \quad y' = a_1 h u \tag{2.15}$$

and from (2.2), (2.15) we obtain

$$y' = a_1 h u \le a_1 t h y \le a_1 h_2 t^{1-q} y.$$
(2.16)

Dividing (2.16) by y, integrating on (0, t), exponentiating, and recalling that q < 2 gives

$$u \le bt \exp\left(\frac{a_1 h_2 t^{2-q}}{2-q}\right) \quad \text{for } t > 0 \tag{2.17}$$

so that evaluating (2.17) at $t_{b,2}$ gives

$$\frac{\beta}{2} \le bt_{b,2} \exp\left(\frac{a_1 h_2 t_{b,2}^{2-q}}{2-q}\right).$$
(2.18)

Since q < 2 it then follows from (2.18) that $t_{b,2} \to \infty$ as $b \to 0^+$. This completes the proof.

Now let $c = \frac{2-q}{1-p}$ and note from (2.3) and (H5) that $\frac{1}{2} \leq c < 1$. We also note that $y = c_0 t^c$ with $c_0 = c(1-c)^{-\frac{1}{1-p}} > 0$ is a solution of $y'' + \frac{1}{t^q}y^p = 0$ for t > 0.

Lemma 2.2. Assume (H1)-(H5) and let u solve (2.1), (2.4). Then

$$\lim_{b \to 0^+} t_{b,2}^{1-c} u'(t_{b,2}) = 0$$

Proof. Using (2.2) and (2.12) in (2.1) gives

$$u'' - \frac{a_1 h_2}{t^q} u \le 0. (2.19)$$

Letting

$$u(t) = \sqrt{t} w \left(\frac{2\sqrt{a_1 h_2}}{2 - q} t^{\frac{2 - q}{2}} \right)$$
(2.20)

then using (2.4) and (2.19) it follows that w satisfies

$$w'' + \frac{1}{t}w' - \left(1 + \frac{1}{(2-q)^2t^2}\right)w \le 0, \quad \lim_{t \to 0^+} \frac{w(t)}{t^{\frac{1}{2-q}}} = \left(\frac{2-q}{2\sqrt{a_1h_2}}\right)^{\frac{1}{2-q}}b.$$
(2.21)

Now let w_1 satisfy

$$w_1'' + \frac{1}{t}w_1' - \left(1 + \frac{1}{(2-q)^2t^2}\right)w_1 = 0, \quad \lim_{t \to 0^+} \frac{w_1(t)}{t^{\frac{1}{2-q}}} = \left(\frac{2-q}{2\sqrt{a_1h_2}}\right)^{\frac{1}{2-q}}b. \quad (2.22)$$

That is, w_1 satisfies the modified Bessel equation and in fact

$$w_1(t) = \left(\frac{2-q}{2\sqrt{a_1h_2}}\right)^{\frac{1}{2-q}} \frac{b}{a} I_{\frac{1}{2-q}}(t)$$
(2.23)

where $I_{\frac{1}{2-q}}(t)$ is the modified Bessel function of order $\frac{1}{2-q}$ that is finite at the origin. It is well-known [4] that

$$I_{\frac{1}{2-q}}(t) > 0, \quad I_{\frac{1}{2-q}}(t) > 0 \quad \text{for } t > 0, \lim_{t \to \infty} I_{\frac{1}{2-q}}(t) = \infty,$$

there exists $a > 0$ such that $\lim_{t \to 0^+} \frac{I_{\frac{1}{2-q}}(t)}{t^{\frac{1}{2-q}}} = a.$ (2.24)

It is also true that

$$\left|\frac{I'_{\frac{1}{2-q}}(t)}{I_{\frac{1}{2-q}}(t)}\right| \le a_2 \quad \text{for } t > 1 \text{ for some } a_2 > 0.$$
(2.25)

A proof of (2.25) is provided in the appendix. It then follows from (2.23), (2.25) that

$$\frac{w_1'}{w_1} = \frac{I'_{\frac{1}{2-q}}}{I_{\frac{1}{2-q}}} \le a_2 \quad \text{for } t > 1.$$
(2.26)

Next multiplying (2.21) by tw_1 , (2.22) by tw, and subtracting gives

$$[t(w'w_1 - w'_1w)]' \le 0 \quad \text{for } t > 0.$$
(2.27)

Since

$$\lim_{t \to 0^+} \frac{w(t)}{t^{\frac{1}{2-q}}} = \lim_{t \to 0^+} \frac{w_1(t)}{t^{\frac{1}{2-q}}} = \left(\frac{2-q}{2\sqrt{a_1h_2}}\right)^{\frac{1}{2-q}} b$$

and

$$\lim_{t \to 0^+} \frac{w'(t)}{t^{\frac{q-1}{2-q}}} = \lim_{t \to 0^+} \frac{w'_1(t)}{t^{\frac{q-1}{2-q}}} = \frac{1}{2-q} \Big(\frac{2-q}{2\sqrt{a_1h_2}}\Big)^{\frac{1}{2-q}}b,$$

then integrating (2.27) on (0, t) gives

$$w'w_1 - ww'_1 \le 0 \quad \text{for } t > 0.$$
 (2.28)

Since u > 0 on $(0, t_{b,2})$ it follows from (2.20) that w > 0 on $(0, t_{b,2})$. It also follows that $w_1 > 0$ since $I_{\frac{1}{2-q}} > 0$ by (2.24). Now dividing (2.28) by ww_1 , using (2.26), and recalling $t_{b,2} \to \infty$ as $b \to 0^+$ from Lemma 2.1 gives

$$\frac{w'}{w} \le \frac{w'_1}{w_1} \le a_2 \quad \text{ for } t > t_{b,2} \text{ if } b > 0 \text{ is sufficiently small.}$$
(2.29)

Next we return to (2.20) and differentiate to obtain

$$u' = \frac{t^{-1}u}{2} + \sqrt{a_1h_2}t^{-\frac{q}{2}}u\frac{w'}{w}.$$
(2.30)

Using (2.29)-(2.30), Lemma 2.1, and assuming b > 0 is sufficiently small we obtain

$$t^{1-c}u' = \frac{t^{-c}u}{2} + \sqrt{a_1h_2} t^{1-c-\frac{q}{2}} u \frac{w'}{w} \le \frac{t^{-c}u}{2} + a_2\sqrt{a_1h_2} t^{1-c-\frac{q}{2}} u$$
(2.31)

for $t > t_{b,2}$. Since $1 - c - \frac{q}{2} = -\frac{(2-q)(1+p)}{2(1-p)} < 0$ and $\frac{1}{2} \le c < 1$, evaluating (2.31) at $t_{b,2}$ along with Lemma 2.1 gives

$$0 < t_{b,2}^{1-c} u'(t_{b,2}) \le \frac{\beta t_{b,2}^{-c}}{4} + \frac{\beta a_2}{2} \sqrt{a_1 h_2} t_{b,2}^{1-c-\frac{q}{2}} \to 0 \quad \text{as } b \to 0^+.$$

This completes the proof.

Lemma 2.3. Assume (H1)-(H5) and let u solve (2.1), (2.4). Then

$$\lim_{b \to 0^+} t_{b,\gamma}^{1-c} u'(t_{b,\gamma}) = 0.$$

Proof. Rewriting (2.1) we see that

$$(t^{1-c}u')' = (1-c)t^{-c}u' - t^{1-c}h(t)f(u).$$
(2.32)

Integrating this on $(t_{b,2}, t_{b,\gamma})$ gives

$$t_{b,\gamma}^{1-c}u'(t_{b,\gamma}) = t_{b,2}^{1-c}u'(t_{b,2}) + \int_{t_{b,2}}^{t_{b,\gamma}} (1-c)s^{-c}u'\,ds - \int_{t_{b,2}}^{t_{b,\gamma}} s^{1-c}h(s)f(u)\,ds.$$
(2.33)

The first term on the right-hand side of (2.33) goes to 0 as $b \to 0^+$ by Lemma 2.2. Integrating the first integral in (2.33) by parts gives

$$\int_{t_{b,2}}^{t_{b,\gamma}} (1-c)s^{-c}u'\,ds = (1-c)t_{b,\gamma}^{-c}\gamma - (1-c)t_{b,2}^{-c}\frac{\beta}{2} + \int_{t_{b,2}}^{t_{b,\gamma}} c(1-c)s^{-c-1}u\,ds.$$
(2.34)

The first two terms on the right-hand side of this go to 0 as $b \to 0^+$ by Lemma 2.1. Since $\frac{\beta}{2} < u < \gamma$ on $(t_{b,2}, t_{b,\gamma})$ estimating the third term on the right-hand side of (2.34) and using Lemma 2.1 we obtain

$$\left|\int_{t_{b,2}}^{t_{b,\gamma}} c(1-c)s^{-c-1}u\,ds\right| \le (1-c)\gamma(t_{b,2}^{-c}-t_{b,\gamma}^{-c}) \to 0 \quad \text{as } b \to 0^+.$$
(2.35)

Finally, on $[\beta/2, \gamma]$ we have $|f| \leq a_3$ for some constant $a_3 > 0$ and thus by (2.2),

$$\left|\int_{t_{b,2}}^{t_{b,\gamma}} s^{1-c} h(s) f(u) \, ds\right| \le \frac{a_3 h_2 (t_{b,\gamma}^{2-q-c} - t_{b,2}^{2-q-c})}{2-q-c} \to 0 \quad \text{as } b \to 0^+$$

since $2 - q - c = -\frac{p(2-q)}{1-p} < 0$. Thus it follows from Lemma 2.2 and (2.34)-(2.35) that the right-hand side of (2.33) goes to 0 as $b \to 0^+$ and so the lemma follows. This completes the proof.

Lemma 2.4. Assume (H1)–(H5) and let u solve (2.1), (2.4). Let $u = t^c v$. Then $\lim_{b\to 0^+} t_{b,\gamma} v'(t_{b,\gamma}) = 0$.

Proof. We make the change of variables $u = t^c v$ and after differentiating we obtain

$$t^{1-c}u' = cv + tv'. (2.36)$$

Evaluating (2.36) at $t_{b,\gamma}$ we see by Lemma 2.3 that the left-hand side of (2.36) goes to 0 as $b \to 0^+$. Also by Lemma 2.1 since $t_{b,\gamma} > t_{b,2} \to \infty$ as $b \to 0^+$ and since $v(t_{b,\gamma}) = \frac{u(t_{b,\gamma})}{t_{b,\gamma}^c} = \frac{\gamma}{t_{b,\gamma}^c} \to 0$ as $b \to 0^+$ we see that the first term on the right-hand side of (2.36) goes to 0 as $b \to 0^+$ when evaluated at $t_{b,\gamma}$ and thus it follows that

$$t_{b,\gamma}v'(t_{b,\gamma}) \to 0 \text{ as } b \to 0^+.$$

This completes the proof.

$$t^{2}v'' + 2ctv' + c(c-1)v + t^{q}h(t)v^{p} + t^{2-c}h(t)g(t^{c}v) = 0 \quad \text{for } t > t_{b,\gamma}.$$
 (2.37)

Now for $t > t_{b,\gamma}$ we have $u > \gamma > 0$ (and hence v > 0) and then by (H3) we have $g(t^c v) = g(u) \ge 0$. Then by (2.2) we have

$$t^2 v'' + 2ctv' + d(v) < 0 \quad \text{for } t > t_{b,\gamma}$$
(2.38)

where $d(v) = c(c-1)v + h_1|v|^{p-1}v$. Next we let v_1 be the solution of

$$c^{2}v_{1}'' + 2ctv_{1}' + d(v_{1}) = 0, (2.39)$$

$$v_1(t_{b,\gamma}) = v(t_{b,\gamma}), \quad v'_1(t_{b,\gamma}) = v'(t_{b,\gamma}).$$
 (2.40)

Now let

$$E_1 = \frac{1}{2}t^2v_1^{\prime 2} + D(v_1) \tag{2.41}$$

where $D(v_1) \equiv \int_0^{v_1} d_1(s) \, ds = \frac{c(c-1)}{2} v_1^2 + \frac{h_1}{p+1} |v_1|^{p+1}$. It follows from (2.39) that

$$E'_1 = (1 - 2c)tv'^2_1 \le 0$$
 since $\frac{1}{2} \le c < 1.$ (2.42)

Note d(0) = 0 and that $d(v_1)$ is increasing near $v_1 = 0$ since $0 . Also notice <math>d(v_1)$ has a unique positive zero at $\alpha_1 > 0$ and $d(v_1) < 0$ for $v > \alpha_1$. Similarly D(0) = 0 and $D(v_1)$ is increasing near $v_1 = 0$. In addition, D has a local maximum at α_1 and a unique positive zero at $\alpha_2 > \alpha_1 > 0$. Also $D(v_1) < 0$ for $v_1 > \alpha_2$.

at α_1 and a unique positive zero at $\alpha_2 > \alpha_1 > 0$. Also $D(v_1) < 0$ for $v_1 > \alpha_2$. Next it follows from Lemma 2.4 and since $v_1(t_{b,\gamma}) = v(t_{b,\gamma}) = \frac{\gamma}{t_{b,\gamma}^c} \to 0$ as $b \to 0^+$ (by Lemma 2.1) that

$$E_1(t_{b,\gamma}) = \frac{1}{2} t_{b,\gamma}^2 v_1'^2(t_{b,\gamma}) + D(v_1(t_{b,\gamma})) = \frac{1}{2} t_{b,\gamma}^2 v'^2(t_{b,\gamma}) + D(v(t_{b,\gamma})) \to 0 \quad (2.43)$$

as $b \to 0^+$, and since E_1 is non-increasing for $\frac{1}{2} \leq c < 1$ (by (2.42)) it follows that

$$\frac{1}{2}t^2v_1'^2 + D(v_1) = E_1(t) \le E_1(t_{b,\gamma}) < \epsilon$$
(2.44)

for $t > t_{b,\gamma}$ and b sufficiently small.

Lemma 2.5. Assume (H1)–(H5) and let u solve (2.1), (2.4). If b is sufficiently small then v_1 has a local maximum, $M_{1,b}$, and $v'_1 > 0$ on $(t_{b,\gamma}, M_{1,b})$.

Proof. We suppose by way of contradiction that $v'_1 > 0$ for all $t > t_{b,\gamma}$. Then $v_1(t) > v_1(t_{b,\gamma}) = \frac{\gamma}{t_{b,\gamma}^c} > 0$ and by (2.44) if b is sufficiently small then $D(v_1) \leq E_1 < \epsilon$ if $t > t_{b,\gamma}$ and so it follows that $0 < v_1 < \frac{1}{2}\alpha_1$ if b is sufficiently small. In particular, v_1 is bounded and since v_1 is increasing then $v_1 \to L$ as $t \to \infty$ where $0 < L < \alpha_1$. Since $D(v_1) \to D(L)$ as $t \to \infty$ and since $E'_1 \leq 0$ it follows that E_1 has a finite limit as $t \to \infty$. Thus from (2.41) we have $t^2 v_1'^2 \to A \geq 0$ for some $A \geq 0$. If A > 0 then $v'_1 > \frac{A}{2t}$ for large t implying $v_1(t) > v_1(t_0) + A \ln(t/t_0) \to \infty$ as $t \to \infty$ contradicting that v_1 is bounded. It follows therefore that A = 0 and thus $tv'_1 \to 0$ as $t \to \infty$. Using this and taking limits in (2.39) we see that

$$\lim_{t \to \infty} t^2 v_1'' = -d(L).$$

If $d(L) \neq 0$ then using a similar argument as we just showed with v_1 would imply that v'_1 is unbounded contradicting $tv'_1 \to 0$ so it must be that d(L) = 0 but this is impossible since $0 < L < \alpha_1$. Therefore from this contradiction we see that v_1 has a first local maximum, $M_{1,b}$, and $v'_1 > 0$ on $(t_{b,\gamma}, M_{1,b})$ if b > 0 is sufficiently small. This completes the proof.

Lemma 2.6. Assume (H1)–(H5) and let u solve (2.1), (2.4). Then v has a local maximum on $(t_{b,\gamma}, M_{1,b})$ if b is sufficiently small.

Proof. We assume v' > 0 on $(t_{b,\gamma}, M_{1,b})$ otherwise we are done. Since v' > 0 it follows that $v > v(t_{b,\gamma}) = \gamma > 0$ on $(t_{b,\gamma}, M_{1,b})$. Multiplying (2.38) by v_1 , (2.39) by v, and subtracting gives

$$t^{2}(v_{1}v' - vv'_{1})' + 2ct(v_{1}v' - vv'_{1}) + h_{1}(v^{p}v_{1} - v^{p}_{1}v) \le 0.$$

Multiplying this by t^{2c-2} gives

$$\left(t^{2c}(v_1v'-vv_1')\right)'+h_1t^{2c-2}vv_1(v^{p-1}-v_1^{p-1})\leq 0 \quad \text{for } t>t_{b,\gamma}.$$
(2.45)

Notice it follows from (2.38)-(2.40) that

$$t_{b,\gamma}^2(v''(t_{b,\gamma}) - v_1''(t_{b,\gamma})) < 0$$

and so $v < v_1$ on $(t_{b,\gamma}, t_{b,\gamma} + \epsilon_0)$ for some $\epsilon_0 > 0$. We next show that v and v_1 do not intersect on $(t_{b,\gamma}, M_{1,b})$. Suppose they did and so there is a t_0 with $t_{b,\gamma} < t_0 < M_{1,b}$ such that $v < v_1$ on $(t_{b,\gamma}, t_0)$ and $v(t_0) = v_1(t_0)$. Integrating (2.45) on $(t_{b,\gamma}, t_0)$ and using (2.40) gives

$$t_0^{2c} \left(v_1(t_0) v'(t_0) - v(t_0) v_1'(t_0) \right) + h_1 \int_{t_{b,\gamma}}^{t_0} t^{2c-2} v v_1(v^{p-1} - v_1^{p-1}) \, dt \le 0.$$
 (2.46)

Since $v < v_1$ on $(t_{b,\gamma}, t_0)$ and $0 it follows that <math>v^{p-1} > v_1^{p-1}$ on $(t_{b,\gamma}, t_0)$ and so the integral in (2.46) is positive. So from (2.46) we see $(v_1(t_0)v'(t_0) - v(t_0)v'_1(t_0)) = v(t_0)(v'(t_0) - v'_1(t_0)) < 0$ and since $v(t_0) > 0$ we see that

$$v'(t_0) < v'_1(t_0).$$
 (2.47)

On the other hand, since $v < v_1$ on $(t_{b,\gamma}, t_0)$ and $v(t_0) = v_1(t_0)$ then $v(t) - v(t_0) < v_1(t) - v_1(t_0)$ and so $\frac{v(t) - v(t_0)}{t - t_0} > \frac{v_1(t) - v_1(t_0)}{t - t_0}$ for $t_{b,\gamma} < t < t_0$. Therefore taking limits as $t \to t_0^-$ gives

$$v'(t_0) \ge v_1'(t_0) \tag{2.48}$$

which contradicts (2.47). Thus we see that $v < v_1$ on $(t_{b,\gamma}, M_{1,b})$. Now we integrate (2.45) on $(t_{b,\gamma}, M_{1,b})$ and obtain

$$M_{1,b}^{2c}v_1(M_{1,b})v'(M_{1,b}) + h_1 \int_{t_{b,\gamma}}^{M_{1,b}} t^{2c-2}vv_1(v^{p-1} - v_1^{p-1}) dt \le 0.$$
(2.49)

Then as earlier it follows that $v^{p-1} > v_1^{p-1}$ on $(t_{b,\gamma}, M_{1,b})$ thus the integral term in (2.49) is positive. But also $v_1(M_{1,b})v'(M_{1,b}) \ge 0$ since v' > 0 on $(t_{b,\gamma}, M_{1,b})$ and so we get a contradiction to (2.49). Thus v must have a local maximum, $M_{v,b}$, on $(t_{b,\gamma}, M_{1,b})$ if b > 0 is sufficiently small. This completes the proof. \Box

Lemma 2.7. Assume (H1)–(H5) and let u solve (2.1)-(2.4). Then u has a local max if b is sufficiently small.

Proof. Since $u = t^c v$, it follows that $u' = t^{c-1}(tv' + cv)$ and so in order to show u' < 0 somewhere we want to show that tv' + cv gets negative for some $t > t_{b,\gamma}$. So by the way of contradiction let us suppose u' > 0 for $t > t_{b,\gamma}$. Thus it follows

that u > 0 and hence v > 0 for $t > t_{b,\gamma}$. We next show that $v < v_1$ for $t > t_{b,\gamma}$. Integrating (2.45) on $(t_{b,\gamma}, t)$ gives

$$t^{2c}(v_1v' - vv'_1) + h_1 \int_{t_{b,\gamma}}^t t^{2c-2} vv_1(v^{p-1} - v_1^{p-1}) dt \le 0 \quad \text{for } t > t_{b,\gamma}.$$
(2.50)

Now using an identical argument as in Lemma 2.6 it follows that v and v_1 do not intersect for $t > t_{b,\gamma}$ and thus $0 < v < v_1$ for $t > t_{b,\gamma}$. It follows then from (2.50) that $v_1v' - vv'_1 < 0$ for $t > t_{b,\gamma}$. And since $v_1 > v > 0$ we then have $\frac{v'}{v} < \frac{v'_1}{v_1}$. From this it follows that $tv' + cv < t\frac{v'_1}{v_1}v + cv = \frac{v}{v_1}(tv'_1 + cv_1)$ for $t > t_{b,\gamma}$. Thus to show u' gets negative it suffices to show $tv'_1 + cv_1$ gets negative for some $t > t_{b,\gamma}$.

Now recall from Lemma 2.5 that v_1 has a local maximum at $M_{1,b}$. Thus $v'_1(M_{1,b}) = 0$ and $v''_1(M_{1,b}) \leq 0$. In fact by the uniqueness of solutions of initial value problems $v''_1(M_{1,b}) < 0$ and so $d(v_1(M_{1,b})) > 0$. Thus

$$0 < v_1(M_{1,b}) < \alpha_1. \tag{2.51}$$

Now v_1 cannot have a positive local minimum at $m_{1,b} > M_{1,b}$ with $v'_1 < 0$ on $(M_{1,b}, m_{1,b})$ for at such a point we would have $v'_1(m_{1,b}) = 0$ and $v''_1(m_{1,b}) \ge 0$ implying $d(v_1(m_{1,b})) \le 0$ which would imply $v_1(m_{1,b}) \le 0$ contradicting $0 < v < v_1$. Thus

$$v_1' < 0 \text{ for } t > M_{1,b}.$$
 (2.52)

Next we observe that if $v_1'' < 0$ for $t > M_{1,b}$ then v_1 has a zero for $t > M_{1,b}$ which implies v has a zero since $v < v_1$ but this contradicts that v > 0. Thus v_1 has an inflection point $t_2 > M_{1,b}$ with $v_1'' < 0$ on $(M_{1,b}, t_2)$. In addition, v_1 cannot have another inflection point $t_3 > t_2$ with v'' > 0 on (t_2, t_3) for at such a point t_3 then v_1' would have a local maximum so $v_1''(t_3) = 0$ and $v_1'''(t_3) \le 0$. Using this and then differentiating (2.39) this implies $(c^2 + c + ph_1v_1^{p-1}(t_3))v_1'(t_3) \ge 0$ and so $v_1'(t_3) \ge 0$ but this contradicts (2.52). Thus $v_1'' > 0$ for $t > t_2$.

Now substituting that $v_1'' > 0$ for $t > t_2$ into (2.39) gives:

$$2ctv_1' + d(v_1) < 0$$
 for $t > t_2$

and so rewriting

$$tv_1' + cv_1 < \frac{1+c}{2}v_1 - \frac{h_1v_1^p}{2c} = v_1^p \left(\frac{1+c}{2}v_1^{1-p} - \frac{h_1}{2c}\right) \quad \text{for } t > t_2.$$
(2.53)

Now for b > 0 sufficiently small we know $D(v_1) < \epsilon$ for $t > t_{b,\gamma}$ by (2.44). In particular, $D(v_1(M_{1,b})) < \epsilon$ and since we also know (2.51) this implies that for b > 0sufficiently small then v_1 is also arbitrarily small. In particular, for sufficiently small b > 0 the right-hand side of (2.53) is negative which implies $tv'_1 + cv_1$ and hence u'gets negative. Therefore u has a local maximum. This completes the proof. \Box

Lemma 2.8. Assume (H1)-(H5) and let u solve (2.1), (2.4). Then u has a zero if b sufficiently small.

Proof. From Lemma 2.8 we know that u has a local maximum, $M_{u,b}$, with $M_{u,b} > t_b$, if b > 0 is sufficiently small and so from (2.1) we see that u'' < 0 while f(u) > 0. It follows then that u must become less than or equal to β and so there exists $s_b > M_{u,b}$ such that $u(s_b) = \beta$. Returning to (2.8) we see then that $\frac{1}{2}\frac{u'^2}{h} + F(u) = E \ge E_0 > 0$ for $t > s_b$ and since F(u) < 0 for $0 < u < \beta$ it follows from (2.2) that $-u' \ge \sqrt{2E_0}h_1t^{-\frac{q}{2}}$ for $t > s_b$. Integrating this on (s_b, t) it then follows that

 $u(t) \leq u(s_b) - \sqrt{2E_0h_1} \left(\frac{t^{1-\frac{q}{2}} - s_b^{1-\frac{q}{2}}}{1-\frac{q}{2}}\right) \to -\infty \text{ as } t \to \infty \text{ since } 1 < q < 2 \text{ and so } u \text{ has a zero. This completes the proof.} \qquad \Box$

3. Behavior for large b > 0

We now examine (2.1), (2.4) for large b > 0. We want to show that either $u_b > 0$ on $(0, \infty)$ or if there exists $z_{u,b} > 0$ such that $u_b(z_{u,b}) = 0$ with u > 0 on $(0, z_{u,b})$ then $z_{u,b} \to \infty$ as $b \to \infty$. So let us suppose that $z_{u,b}$ is finite and suppose there exists S such that $0 < z_{u,b} \leq S$ for all large b.

Integrating (2.1) twice on (0, t) gives

$$u_b = bt - \int_0^t \int_0^s h(x) f(u_b) \, dx \, ds.$$

Letting $\psi_b = \frac{u_b}{b}$ gives

$$\psi_b = t - \int_0^t \int_0^s \frac{h(x)f(b\psi_b)}{b} \, dx \, ds \tag{3.1}$$

and then letting $\psi_b = ty_b$ gives

$$y_b = 1 - \frac{1}{t} \int_0^t \int_0^s \frac{h(x)f(bxy_b)}{b} \, dx \, ds.$$

It follows from (H1) and (H3) that $|f(u)| \leq C_1 |u|$ for some $C_1 > 0$. Thus

$$|y_b| \le 1 + C_1 \int_0^t xh(x)|y_b(x)| \, dx.$$
(3.2)

We now denote the right-hand side of (3.2) as ϕ_b . Then we see $\phi'_b = C_1 th(t)|y_b|$ and so (3.2) reads $\frac{\phi'_b}{C_1 th} = |y_b| \le \phi_b$. Rewriting and integrating this on (0, t) gives

$$\frac{|\psi_b|}{t} = |y_b| \le \phi_b \le \exp\left(\frac{C_1 h_2}{2-q} t^{2-q}\right).$$

Thus

$$|\psi_b| \le t \exp\left(\frac{C_1 h_2}{2-q} t^{2-q}\right) \le C_2 \quad \text{on } [0, S] \text{ for some constant } C_2 > 0.$$
(3.3)

Also from (3.1) we have

$$\psi'_{b} = 1 - \int_{0}^{t} \frac{h(x)f(b\psi_{b})}{b} \, dx. \tag{3.4}$$

It follows then from (3.3)-(3.4), since $|f(u)| \leq C_1 |u|$, and since $0 < th(t) < h_2 t^{1-q}$ is integrable near t = 0 (because 1 < q < 2) that there is a constant $C_3 > 0$ such that

$$|\psi_b'| \le 1 + C_1 \int_0^t h(x) |\psi_b| \, dx \le 1 + C_1 \int_0^t x h(x) \exp\left(\frac{C_1 h_2}{2 - q} x^{2 - q}\right) \, dx \le C_3 \quad (3.5)$$

on [0, S]. Thus from (3.3) and (3.5) we have $|\psi_b|$ and $|\psi'_b|$ are uniformly bounded on [0, S] and so the $\{\psi_b\}$ are equicontinuous on [0, S]. In addition, differentiating (3.4) and using (3.3) we see there is some constant $C_4 > 0$ such that

$$|\psi_b''| \le \left|\frac{h(t)f(b\psi_b)}{b}\right| \le C_1 h(t)|\psi_b| \le C_1 th(t) \exp\left(\frac{C_1 h_2}{2-q} t^{2-q}\right) \le C_4 t^{1-q}$$

on [0, S]. It then follows that

$$|\psi_b'(t_1) - \psi_b'(t_2)| \le \int_{t_1}^{t_2} |\psi_b''| \le \frac{C_4}{2-q} |t_2^{2-q} - t_1^{2-q}| \quad \text{on } [0, S].$$
(3.6)

Thus since q < 2 we see from (3.6) that $\{\psi'_b\}$ are also equicontinuous on [0, S]. It then follows by the Arzela-Ascoli theorem that there is a subsequence (still denoted ψ_b) such that

$$\psi_b \to \psi \text{ and } \psi'_b \to \psi' \text{ uniformly on } [0, S] \text{ as } b \to \infty.$$
 (3.7)

Now since u_b (and hence ψ_b) has a zero $z_{u,b}$ it follows that u_b has a local maximum, $M_{u,b}$, with $0 < M_{u,b} < z_{u,b} \le S$. Then since E is nondecreasing (by (2.7)) we have

$$\frac{1}{2}\frac{u_b'^2}{h} + F(u_b) \le F(u_b(M_{u,b})) \quad \text{for } 0 \le t \le M_{u,b}.$$

Rewriting and integrating this on $[0, M_{u,b}]$ using (2.2) gives

$$\int_{0}^{u_{b}(M_{u,b})} \frac{dt}{\sqrt{2}\sqrt{F(u_{b}(M_{u,b})) - F(t)}} dt = \int_{0}^{M_{u,b}} \frac{|u_{b}'|}{\sqrt{2}\sqrt{F(u_{b}(M_{u,b})) - F(u_{b})}} dt$$
$$\leq \int_{0}^{M_{u,b}} \sqrt{h} dt$$
$$\leq \frac{\sqrt{h_{2}}M_{u,b}^{1-\frac{q}{2}}}{1-\frac{q}{2}}.$$

Since $F(t) \ge -F_0$ where $F_0 > 0$ it follows that the above inequality and (H3) imply

$$\frac{u_b(M_{u,b})}{\sqrt{2}\sqrt{C_5[u_b(M_{u,b})]^{p+1} + F_0}} \le \frac{\sqrt{h_2}M_{u,b}^{1-\frac{q}{2}}}{1-\frac{q}{2}} \le \frac{\sqrt{h_2}S^{1-\frac{q}{2}}}{1-\frac{q}{2}}$$

for some $C_5 > 0$. It follows from this and since $0 that <math>u_b(M_{u,b})$ must be bounded and thus u_b is bounded. Then since $\psi_b = \frac{u}{b}$ it follows that $\psi_b \to 0$ on [0, S]. Thus (3.7) implies $\psi \equiv 0$. In addition, (3.7) also implies $\psi'_b \to \psi' \equiv 0$ but from (3.4) it follows that $0 = \psi'(0) \leftarrow \psi'_b(0) = 1 \neq 0$ yielding a contradiction. Thus the assumption that the $z_{u,b}$ are bounded must be false. Therefore $z_{u,b} \to \infty$ as $b \to \infty$.

4. Proof of Theorem 1.1

We now consider the set

$$S_0 = \{b > 0 : u_b > 0 \text{ on } (0, R^{2-N})\}.$$

From section three it follows that if b > 0 is sufficiently large then $u_b > 0$ on $(0, R^{2-N})$ and so S_0 is nonempty. From section two we know that if b > 0 is sufficiently small then u_b will have a zero on $(0, \infty)$ and so then if R > 0 is sufficiently small then since N > 2 it follows that R^{2-N} is sufficiently large and thus u_b will have a zero on $(0, R^{2-N})$. Thus S_0 is bounded from below by a positive quantity. Then we let

$$b_0 = \inf\{b > 0 : u_b \text{ solves } (2.1), (2.4) \text{ and } u_b > 0 \text{ on } (0, \mathbb{R}^{2-N})\}.$$

Then $b_0 > 0$ and a straightforward argument as in [13] shows $u_{b_0} > 0$ on $(0, R^{2-N})$ and $u_{b_0}(R^{2-N}) = 0$. We then define

 $S_1 = \{b > 0 | u_b \text{ solves } (2.1), (2.4) \text{ and has exactly one zero on } (0, R^{2-N})\}.$

Choosing b slightly smaller than b_0 it follows then by continuity with respect to initial conditions that u_b will have at least one zero on $(0, R^{2-N})$. And as in [13] it follows that if b is sufficiently close to b_0 then u_b has at most one zero on $(0, R^{2-N})$ and so S_1 is nonempty. Then letting

$$b_1 = \inf S_1$$

a similar argument shows u_{b_1} has one zero on $(0, R^{2-N})$ and $u_{b_1}(R^{2-N}) = 0$. In a similar fashion we can show that given any n then if R > 0 is sufficiently small then there exists b_0, b_1, \dots, b_n such that $u_{b_k}(t)$ has k zeros on $(0, R^{2-N})$ and $u_{b_k}(R^{2-N}) = 0$. Finally, letting $U_{b_k}(t) = u_{b_k}(t^{2-N})$ it follows that $U_{b_k}(t)$ satisfies (1.1)-(1.3) and U_{b_k} has k zeros on (R, ∞) . This completes the proof of the main theorem.

5. Appendix

Lemma 5.1. Assume (H1)–(H5). Then for any b > 0 there is a solution $u \in C^1[0,\epsilon) \cap C^2(0,\epsilon)$ of (2.1) on $(0,\epsilon)$ for some $\epsilon > 0$ and such that (2.4) holds.

Proof. Integrating (2.1) twice on (0, t) and using (2.4) gives

$$u = bt - \int_0^t \int_0^s h(x)f(u) \, dx \, ds.$$

Substituting u = tv gives

$$v = b - \frac{1}{t} \int_0^t \int_0^s h(x) f(xv) \, dx \, ds.$$
 (5.1)

Defining the right-hand side of (5.1) as Tv then we see that $T : C[0, \epsilon] \to C[0, \epsilon]$ where $C[0, \epsilon]$ is the set of continuous functions on $[0, \epsilon]$ such that v(0) = b with the supremum norm, $\|\cdot\|$. Then

$$Tv_1 - Tv_2 = -\frac{1}{t} \int_0^t \int_0^s h(x) [f(xv_1) - f(xv_2)] \, dx \, ds$$

and so

$$|Tv_1 - Tv_2| \le \frac{L_1}{t} \int_0^t \int_0^s xh(x)|v_1 - v_2| \, dx \, ds$$

where L_1 is the Lipschitz constant for f near v = b. Then

$$|Tv_1 - Tv_2| \le \frac{L_1 h_2 \epsilon^{2-q}}{(2-q)(3-q)} ||v_1 - v_2||$$

and so T is a contraction if $\epsilon > 0$ is sufficiently small. It then follows from the contraction mapping principle that v(t) is a solution of (5.1) and therefore u(t) = tv(t) satisfies (2.1), (2.4) on $[0, \epsilon]$. This completes the proof.

Lemma 5.2. Let I be the solution of

$$I'' + \frac{1}{t}I' - \left(1 + \frac{1}{(2-q)^2t^2}\right)I = 0 \quad and \quad \lim_{t \to 0^+} \frac{I(t)}{t^{\frac{1}{2-q}}} = a > 0.$$
(5.2)

Then there exists a constant $C_6 > 0$ such that

$$\left|\frac{I'}{I}\right| \le C_6 \quad for \ t \ge 1$$
.

Proof. A straightforward computation using (5.2) shows that

$$\left(t^2 I'^2 - t^2 I - \frac{1}{(2-q)^2}I\right)' = -tI^2 \le 0.$$

Thus since I(0) = 0, it follows that

$$t^{2}I'^{2} - t^{2}I^{2} - \frac{1}{(2-q)^{2}}I^{2} \le 0 \text{ for } t > 0.$$

Therefore

$$\frac{I'^2}{I^2} \le 1 + \frac{1}{(2-q)^2 t^2} \,.$$

So we see that there exists a $C_6 > 0$ such that

$$\left|\frac{I'}{I}\right| \le C_6 \text{ for } t > 1.$$

This completes the proof.

References

- H. Berestycki, P. L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
- H. Berestycki, P. L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
- [3] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
- [4] G. Birkhoff, G. C. Rota; Ordinary differential equations, Ginn and Company, 1962.
- [5] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, *Journal of Mathematical Analysis and Applications*, Volume 394, Issue 1, 432-437, 2012.
- [6] M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains, *Boundary Value Problems*, 198-207, 2014.
- [7] J. Iaia; Existence of solutions for sublinear equations on exterior domains, *Electronic Journal of Differential Equations*, 2017 No. 253, pp. 1-14, 2017.
- [8] J. Iaia; Existence and nonexistence of solutions for sublinear equations on exterior domains, Electronic Journal of Differential Equations, 2917 No. 214, 1-13, 2017.
- [9] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
- [10] J. Joshi; Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, *Electronic Journal of Differential Equations*, 2017 No. 133, 1-10, 2017.
- [11] E. K. Lee, R. Shivaji, B. Son; Positive radial solutions to classes of singular problems on the exterior of a ball, *Journal of Mathematical Analysis and Applications*, 434, No. 2, 1597-1611, 2016.
- [12] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, *Differential and Integral Equations*, Volume 24, Number 9/10, 861-875, 2011.
- [13] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros, *Journal of Differential Equations*, Volume 83, Issue 2, 368-373, 1990.
- [14] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
- [15] W. Strauss; Existence of solitary waves in higher dimensions,' Comm. Math. Phys., Volume 55, 149-162, 1977.

Joseph A. Iaia

Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

 $E\text{-}mail \ address: \verb"iaia@unt.edu"$