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SUFFICIENT CONDITIONS FOR THE EXISTENCE OF
NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER

DIFFERENTIAL EQUATIONS WITH MULTIPLE
ADVANCED ARGUMENTS

JULIO G. DIX

Abstract. This article concerns the existence of non-oscillatory solutions to

the equation

x′(t) =

mX
k=1

ak(t)x(hk(t)),

where ak ≥ 0 and hk(t) ≥ t. We generalize existing results and then give an

answer to the open question stated in [4]. Moreover we present a new condition

based on the integral of (
P
ak)2.

1. Introduction

In this article we show sufficient conditions for the existence of non-oscillatory
solutions to the equation

x′(t) =
m∑
k=1

ak(t)x(hk(t)) , (1.1)

where ak, and hk are in C([t0,∞),R) with ak(t) ≥ 0, and hk(t) ≥ t.
Advanced equations have applications in real world problems where the current

rate of change may depend on future events. Such phenomena happen in popula-
tion dynamics and in economics, see [7]. For additional information on advanced
equations see the books [1, 2, 8, 9, 10, 11].

By a solution we mean a nontrivial function x ∈ C1([t0,∞),R) that satisfies
(1.1). A solution is called oscillatory if it has arbitrarily large zeros; otherwise is
non-oscillatory. Note that if x is a positive solution of (1.1) for sufficient large t,
then −x is also a solution; so among non-oscillatory solutions, we only consider
positive solutions.

The main two approaches for solving (1.1) are: using a fixed point argument,
and solving an inequality that implies the solvability of (1.1). In this article we use
the second approach. It is well known that the existence of positive solutions to
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(1.1) is equivalent to the existence of a solution to the inequality

λ(t) ≥
m∑
k=1

ak(t) exp
(∫ hk(t)

t

λ(s) ds
)
∀t ≥ t0 . (1.2)

However there is no specific way for finding solutions to (1.2). Our strategy is
to define solutions λ of special form, and then find the corresponding inequalities
for
∑
ak that guarantee the existence of solutions to (1.2). These inequalities can

include values
∑
ak(t), or integrals of

∑
ak. In some publications, the inequalities

are called pointwise and integral conditions, respectively. Here, we generalize some
of the existing conditions and then give an answer to the open question stated in
[4] (see inequality (3.6)). Also we present a new condition based on the integral of
(
∑
ak)2.

The following theorem shows sufficient conditions for the existence of solutions
to (1.1); see [1, Thm. 5.1], and for m = 1 with h1(t) = t+ τ , see [6, Thm. 1]. The
converse of the theorem is easy to prove by using λ(t) = x′(t)/x(t).

Theorem 1.1. Suppose that inequality (1.2) has a non-negative solution that is
integrable on each interval [t0, b]. Then (1.1) has a positive solution for t ≥ t0.

Note that letting

h(t) = max{hk(t) : k = 1, 2, . . . ,m} , (1.3)

it follows that solutions to

λ(t) ≥
m∑
k=1

ak(t) exp
(∫ h(t)

t

λ(s) ds
)
∀t ≥ t0 . (1.4)

are also solutions to (1.2). Furthermore, if there is a constant τ > 0 such that

h(t)− t ≤ τ, ∀t ≥ t0 , (1.5)

then solutions to

λ(t) ≥
m∑
k=1

ak(t) exp
(∫ t+τ

t

λ(s) ds
)
∀t ≥ t0 (1.6)

are also solutions to (1.4), and hence to (1.2).

2. Conditions using point values of
∑
ak

Initially we look for a constant solution to (1.6). This leads to an extension of
the well-known condition 1/(τe) ≥ a1(t), see [11].

Theorem 2.1. Under assumption (1.5), the condition

1
τe
≥

m∑
k=1

ak(t) ∀t ≥ t0 ≥ 1 (2.1)

is sufficient for the existence of solutions to (1.1).

Proof. Let λ(t) = λ0 be a constant. In this case, assuming (1.5), condition (1.6) is
implied by

λ0 ≥
( m∑
k=1

ak(t)
)
eλ0τ ∀t ≥ t0 .
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Note that the mapping λ0 7→ λ0/e
λ0τ has its maximum at λ0 = 1/τ . With this

value we obtain (2.1) which implies the existence of a solution to (1.6), and hence
the existence of a positive solution to (1.1). �

Next we perturb the constant solution 1/τ , with a positive function that tends
to zero as t→ 0 and leads to a simple integral in (1.6).

Theorem 2.2. Under assumption (1.5), the condition

1
τe

(
1 +

τ

2t
)
/
(
1 +

τ

t

)1/2 ≥ m∑
k=1

ak(t) ∀t ≥ t0 (2.2)

is sufficient for the existence of solutions to (1.1).

Proof. We look for solutions, to (1.6), of the form λ(t) = 1
τ + α

t , where α ≥ 0 and
t ≥ 1. In this case (1.6) is implied by

1
τ

+
α

t
≥
( m∑
k=1

ak(t)
)

exp
(∫ t+τ

t

(1
τ

+
α

s

)
ds =

( m∑
k=1

ak(t)
)
e
(
1 +

τ

t

)α
which is equivalent to

1
τe

(
1 +

ατ

t

)
/
(
1 +

τ

t

)α ≥ m∑
k=1

ak(t) ∀t ≥ 1 . (2.3)

Note that for t ≥ 1 and 0 ≤ α ≤ 1, using two terms of the Taylor series for the
mapping x 7→ (1 + x)α about x = 0, we have(

1 +
ατ

t

)
/
(
1 +

τ

t

)α ≥ (1 +
ατ

t

)
/
(
1 +

ατ

t

)
= 1 ,

with equality when α = 0 or α = 1. Therefore (2.3) is less restrictive, on
∑
ak,

than (2.1). Setting α = 1/2, we have condition (2.2) which implies the existence of
solutions to (1.6); thus the existence of solutions to (1.1). �

Another perturbation of the constant solution 1/τ is λ(t) = 1
τ + α

t2 with α ≥ 0
and t ≥ 1. In this case assuming (1.5), condition (1.6) is implied by

1
τ

+
α

t2
≥
( m∑
k=1

ak(t)
)

exp
(∫ t+τ

t

(1
τ

+
α

s2
)
ds
)

=
( m∑
k=1

ak(t)
)
e exp

( ατ

t(t+ τ)

)
.

Then the condition

1
τe

(
1 +

ατ

t2
)
/ exp

( ατ

t(t+ τ)
)
≥

m∑
k=1

ak(t) ∀t ≥ 1 . (2.4)

is sufficient for the existence of a positive solution to (1.1). Since

exp
( ατ

t(t+ τ)
)
≥ 1 +

ατ

t(t+ τ)
≥ 1 +

ατ

t2
,

the coefficient of 1
τe in (2.4) is less than 1. Therefore, (2.4) is more restrictive, on∑

ak, than (2.1). Then there is no advantage in using (2.4) instead of (2.1).
Next we consider the perturbed function λ(t) = 1

τ + α
t ln(t) with α ≥ 0 and t ≥ e.

Under assumption (1.5), condition (1.6) is implied by

1
τ

+
α

t ln(t)
≥
( m∑
k=1

ak(t)
)

exp
(∫ t+τ

t

(1
τ

+
α

s ln(s)
)
ds
)
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=
( m∑
k=1

ak(t)
)
e
( ln(t+ τ)

ln(t)

)α
.

Then the condition

1
τe

(
1 +

ατ

t ln(t)

)/( ln(t+ τ)
ln(t)

)α
≥

m∑
k=1

ak(t) ∀t ≥ e . (2.5)

is sufficient for the existence of a positive solution (1.1). There is no optimal value
for α in (2.5), and if its exists, it depends on τ .

To compare (2.5) with (2.2) we graph the upper bounds in both inequalities.
The graph corresponding to (2.5) is eventually above the graph corresponding to
(2.2) for each α. This indicates that (2.5) is less restrictive, on

∑
ak, than (2.2).

Next we consider the perturbed function λ(t) = 1
τ + α

t ln(t) ln(ln(t)) with α ≥ 0 and
t ≥ ee. This leads to the condition

1
τe

(
1 +

ατ

t ln(t) ln(ln(t))

)/( ln
(

ln(t+ τ)
)

ln
(

ln(t)
) )α

≥
m∑
k=1

ak(t) ∀t ≥ ee . (2.6)

which is sufficient for the existence of a positive solution (1.1). Graphing their
upper bounds, we conclude that (2.6) is less restrictive than (2.2), but more restric-
tive than (2.5). Apparently further iterations of the logarithm do not lead to less
restrictive conditions.

Combining two of the perturbations above, we have λ(t) = 1
τ + 1

2t + 1
2t ln(t) . For

this λ, we obtain the condition

1
τe

(
1 +

τ

2t ln(t)

)/( ln(t+ τ)
ln(t)

)1/2

≥
m∑
k=1

ak(t) . (2.7)

Using the the same λ and Taylor polynomials, Diblik [3] obtained the condition

1
τe

(
1 +

τ2

8t2
)
≥ a1(t) . (2.8)

Comparing the graphs of their bounds, we realize that (2.7) is less restrictive than
(2.8). Some other functions λ have been considered in [6], such as

λ(t) =
1
τ

(
1 +

τ

2t
+

τ

2t ln(t)
+ · · ·+ τ

2t ln(t) ln(ln(t)) · · · ln(. . . ln(t))

)
.

We conclude this section by stating that there are many good choices for λ, but
there is no known optimal choice.

3. Conditions using weighted integrals of
∑
ak

Initially we look for solutions to (1.4), of the form λ(t) =
∑m
k=1 ak(t)eδ, where δ

is a constant. Under assumption (1.3), condition (1.4) is implied by

eδ
( m∑
k=1

ak(t)
)
≥
( m∑
k=1

ak(t)
)

exp
(
eδ
∫ h(t)

t

m∑
k=1

ak(s) ds
)

which is equivalent to
δ

eδ
≥
∫ h(t)

t

m∑
k=1

ak(s) ds .
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Note that the mapping δ 7→ δ/eδ has its maximun when δ = 1. Therefore we set

1
e
≥
∫ h(t)

t

m∑
k=1

ak(s) ds ∀t ≥ t0 (3.1)

as a sufficient condition for the existence of positive solutions for (1.1). This con-
dition is the same as in [1, Corollary 5.1]. Also when m = 1 and h(t) = t + τ ,
condition (3.1) becomes the classical condition 1/e ≥

∫ t+τ
t

a1(s) ds. It is also well
known that if lim inft→∞

∫ t+τ
t

a1(s) ds > 1/e, then every solution of (1.1) with
m = 1 is oscillatory; see [8, p. 31]

Now we consider a perturbation of the solution λ(t) =
∑m
k=1 ak(t)e, by using a

non-negative function w that decays to zero as t→∞. Let

λ(t) =
m∑
k=1

ak(t)e1+w(t) .

Then under assumption (1.3), condition (1.4) is implied by( m∑
k=1

ak(t)
)
e1+w(t) ≥

( m∑
k=1

ak(t)
)

exp
(∫ h(t)

t

e1+w(s)
m∑
k=1

ak(s) ds
)

which is equivalent to the condition

1
e

(
1 + w(t)

)
≥
∫ h(t)

t

ew(s)
m∑
k=1

ak(s) ds ∀t ≥ t0 , (3.2)

which correspond to [4, Lemma 1]. This is a sufficient condition, but it is an implicit
condition. With the goal of separating the variables w and

∑
ak(s) in the above

inequality, we assume that w is non-decreasing. Then we obtain the condition

1
e

(
1 + w(t)

)
/ew(t) ≥

∫ h(t)

t

m∑
k=1

ak(s) ds ∀t ≥ t0 . (3.3)

The variables are separated, but (3.3) is more restrictive than (3.2), because of the
inequality 1 + w ≤ ew.

Next we follow the approach in [4] of partitioning the interval [t, t + τ ] into n
subintervals of equal length, τ/n.

Theorem 3.1. Assume (1.4), n ≥ 2, and w is non-increasing. Also assume that
there exists a non-increasing function βn,τ such that∫ t+τ/n

t

m∑
k=1

ak(s) ds ≤ βn,τ (t), (3.4)

and

1
e

(
1 + w(t)

)
≥ βn,τ (t+

τ

n
)
n∑
i=1

exp
(
w(t+

(i− 1)τ
n

)
)
, (3.5)

for all t ≥ t0. Then (3.2) is satisfied so that there exists a positive solution to (1.1).

Proof. Note that the right-hand side of (3.2) satisfies∫ t+τ

t

ew(s)
m∑
k=1

ak(s) ds =
n∑
i=1

∫ t+iτ/n

t+(i−1)τ/n

ew(s)
m∑
k=1

ak(s) ds
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≤
n∑
i=1

exp
(
w(t+ (i− 1)τ/n)

) ∫ t+iτ/n

t+(i−1)τ/n

m∑
k=1

ak(s) ds

≤ βn,τ (t+
τ

n
)
n∑
i=1

exp
(
w(t+

(i− 1)τ
n

)
)
.

This inequality and (3.5) imply (3.2); thus there exists a positive solution to (1.1).
�

A concrete example of Theorem 3.1 was obtained in [4], where

βn,τ (t) =
1
ne

+
µ(n− 1)2τ2

8n3t2e
and w(t) =

(n− 1)τ
2nt

,

with 0 < µ < 1 and n ≥ 2.
Trying to address the case n = 1, Diblik [4] formulated the open question: Prove

of disprove that if for some µ ∈ (0, 1) and t0 > 0,

sup
t≥t0

t2
(∫ t+τ

t

a1(s) ds− 1
e

)
≤ µτ2

8e
, (3.6)

then there exists a positive solution to (1.1) with m = 1 and h(t) = t+τ . A positive
answer to this question is found as a particular case of the next Theorem. First we
rewrite (3.6) as (3.7) below.

Theorem 3.2. Assume that (1.5) holds and∫ t+τ

t

m∑
k=1

ak(s) ds ≤ 1
e

(
1 +

µτ2

8t2
)

(3.7)

for some µ ∈ (0, 1) and all t ≥ t0. Then there exist a positive solution to (1.1).

Proof. Our strategy is to show that (2.2) is satisfied, so that Theorem 2.2 can
be applied. Since

∑
ak is a continuous function, by the mean value theorem for

integrals, there exists ξ ∈ [t, t+ τ ] such that∫ t+τ

t

m∑
k=1

ak(s) ds = τ

m∑
k=1

ak(ξ) .

Note that ξ depends on t, τ, ak. Then by (3.7), and since t ≤ ξ ≤ t+ τ , we have
m∑
k=1

ak(ξ) ≤ 1
eτ

(
1 +

µτ2

8ξ2
)
≤ 1
eτ

(
1 +

µτ2

8(t− τ)2
)
.

To show that
∑
ak satisfies (2.2), we need to show that

1
τe

(
1 +

τ

2t
)
/
(
1 +

τ

t

)1/2 ≥ 1
eτ

(
1 +

µτ2

8(t− τ)2
)
. (3.8)

Squaring both sides, this inequality is equivalent to

1 +
τ

t
+
τ2

4t2

≥ 1 +
τ

t
+

µτ2

4(t− τ)2
+

µτ3

4t(t− τ)2
+

µ2τ4

64(t− τ)4
+

µ2τ5

64t(t− τ)4
.
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Note that
τ2

4t2
− µτ2

4(t− τ)2
=
τ2

4

( 1− µ
(t− τ)2

− 2τ
t(t− τ)2

+
τ2

t2(t− τ)2
)
.

Since 1−µ
(t−τ)2 > 0 and its decay is slower that the other two terms as t → ∞, the

above inequality is true for t large enough. Therefore
∑
ak satisfies (2.2), and by

Theorem 2.2 there exists a positive solution to (1.1). The proof is complete. �

We conclude this section by remarking that (3.7) is less restrictive than (3.1).
Also for some examples the pair (3.4)-(3.5) is less restrictive than (3.7), but for
other examples is more restrictive.

4. Conditions using integrals of (
∑
ak)2

In this section we define solutions of (1.4) depending on
∑
ak and obtain integral

conditions for (
∑
ak)2.

Theorem 4.1. Under assumption (1.3), the existence of a non-negative and con-
tinuous function g such that

g2(t)/
(∫ h(t)

t

e2g(s) ds
)
≥
∫ t+τ

t

( m∑
k=1

ak(s)
)2

ds ∀t ≥ t0 (4.1)

implies the existence of a positive solution to (1.1).

Proof. Letting λ(t) =
∑m
k=1 ak(t)eg(t), condition (1.4) is implied by( m∑

k=1

ak(t)
)
eg(t) ≥

( m∑
k=1

ak(t)
)

exp
(∫ h(t)

t

m∑
k=1

ak(s)eg(s) ds
)

which is equivalent to

g(t) ≥
∫ h(t)

t

eg(s)
m∑
k=1

ak(s) ds .

From (4.1) and the Cauchy-Schwarz inequality, we have

g2(t) ≥
(∫ h(t)

t

e2g(s) ds
)(∫ h(t)

t

( m∑
k=1

ak(s)
)2
ds
)
≥
(∫ h(t)

t

eg(s)
m∑
k=1

ak(s) ds
)2

.

Therefore λ(t) is a solution of (1.4), which implies the existence of a positive solution
to (1.1). �

Now we consider g(t) = R, where R > 0. Then (4.1) is implied by

R2

(h(t)− t)e2R
≥
∫ h(t)

t

( m∑
k=1

ak(s)
)2
ds .

Assuming (1.5) and recalling that R/eR ≤ 1/e for all R, we have the condition

1
τe2
≥
∫ t+τ

t

( m∑
k=1

ak(s)
)2
ds ∀t ≥ t0 . (4.2)

This is a sufficient condition for the existence of a positive solution to (1.1), because
λ(t) =

∑m
k=1 ak(t)e is a solution of (1.4).
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Now we consider the perturbed function g(t) = 1 + 1
2 ln(1 + τ/t). Then∫ t+τ

t

e2g(s) ds =
∫ t+τ

t

e2(1 + τ/s) ds = τe2
(

1 + ln
(
1 + τ/t

))
.

Following the above process we set

1
τe2

(
1 +

1
2

ln(1 + τ/t)
)2
/
(
1 + ln(1 + τ/t)

)
≥
∫ t+τ

t

( m∑
k=1

ak(s)
)2
ds ∀t ≥ t0 (4.3)

as a sufficient condition for the existence of a positive solution to (1.1). Note that
expanding the square above, we have(

1 +
1
2

ln(1 + τ/t)
)2 = 1 + ln(1 + τ/t) +

(1
2

ln(1 + τ/t)
)2

≥ 1 + ln(1 + τ/t) .

Therefore the coefficient of 1/(τe2) in (4.3) is greater than 1; thus (4.3) is less
restrictive than (4.2).

Now we consider the perturbed function g(t) = 1 + 1
2 ln

(
1 + τ/(t ln(t)

)
. Then∫ t+τ

t

e2g(s) ds =
∫ t+τ

t

e2(1 + τ/(s ln(s)) ds = τe2
(

1 + ln
( ln(t+ τ)

ln(t)
))
.

Following the above process we set

1
τe2

(
1+

1
2

ln
(
1+τ/(t ln(t)

))2

/
(

1+ln
( ln(1 + τ)

ln(t)
))
≥
∫ t+τ

t

( m∑
k=1

ak(s)
)2
ds (4.4)

as a sufficient condition for the existence of a positive solution to (1.1). Graphing
their upper bounds we notice that (4.3) is less restrictive than (4.4). As an example
of a function that satisfies (4.4) but not (4.3), we have a1(t) = (1 + τ/(t2), when
m = 1 in (1.1).

We conclude this section with a theorem that uses
∫

(
∑
ak)2 to establish the

oscillation of all solutions.

Theorem 4.2. Assume that m = 1, 0 ≤ a1(t) ≤ amax < ∞ and h(t) = t + τ for
all t ≥ t0. If

1
τe2

< lim inf
t→∞

∫ t+τ

t

a2
1(s) ds , (4.5)

then all solutions to (1.1) are oscillatory.

Proof. The strategy is to show that 1/e < lim inft→∞
∫ t+τ
t

a1(s) ds which implies
the oscillation of all solutions. From (4.5), there exist t1 and ε > 0 such that

1
τe2

+ ε ≤
∫ t+τ

t

a2
1(s) ds ∀t ≥ t1 .

Then

ε ≤
∫ t+τ

t

(
a2
1(s)− 1

τ2e2
)
ds =

∫ t+τ

t

(
a1(s) +

1
τe

)(
a1(s)− 1

τe

)
ds

≤ (amax +
1
τe

)
∫ t+τ

t

(
a1(s)− 1

τe

)
ds
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Therefore,

ε

(amax + 1
τe )
≤
∫ t+τ

t

a1(s) ds−
∫ t+τ

t

1
τe
ds ∀t ≥ t1 ,

which implies
1
e

+
ε

(amax + 1
τe )
≤ lim inf

t→∞

∫ t+τ

t

a1(s) ds .

Thus, all solutions of (1.1) are oscillatory. �
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