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EXPONENTIAL ESTIMATES FOR QUANTUM GRAPHS
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Abstract. The article studies the exponential localization of eigenfunctions

associated with isolated eigenvalues of Schrödinger operators on infinite metric

graphs. We strengthen the result obtained in [3] providing a bound for the
rate of exponential localization in terms of the distance between the eigenvalue

and the essential spectrum. In particular, if the spectrum is purely discrete,

then the eigenfunctions decay super-exponentially.

1. Introduction

A quantum graph is a metric graph equipped with a self-adjoint Hamiltonian.
For a comprehensive introduction to quantum graphs we refer to [4, 6, 11, 12] and
references therein). Other aspects of differential equations on graphs and networks
are available in [13, 14, 15] and references therein.

Typically, Hamiltonians are operators of Schrödinger type generated by the
second-order differential expression

− d2

dx2
+ V (x)

on the edges of graph and certain conditions at the vertices. In this paper we use
the Kirchhoff vertex conditions and impose sufficiently weak assumptions on the
potential V under which the operator is self-adjoint and bounded below.

Our main concern in this paper is the exponential localization of eigenfunctions
associated with isolated eigenvalues. In the case of classical Schrödinger opera-
tors this topic goes back to Schnol’s paper [20] (see also [7]). For one-dimensional
operators similar results were obtained in [16, 21]. The current state of the art
of the topic is reviewed in [10, 18]. The first localization result for operators on
metric graphs is obtained in [3]. The approach in that paper relies upon an elemen-
tary perturbation theory for linear operators and provides the exponential decay of
eigenfunctions with sufficiently small rate. Papers [8, 9] are devoted to an extension
of Agmon’s geometric approach to quantum graphs.

In this article we obtain a stronger result on exponential decay of eigenfunction
than in [3]. We provide a bound for the rate of decay in terms of the distance
between the associated eigenvalue and the essential spectrum. Though not optimal,
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the bound is strong enough to imply that all eigenfunctions decay superexponentiall
fast provided that the spectrum is purely discrete. The techniques relies upon
estimates of the derivative of solution to the Schrödinger equation in terms of
the solution itself on certain special domains. Such domains, called quasi-balls
and quasi-annuli, are defined in terms of properly regularized distance function
introduced in [3]. This approach can be considered as a suitable variant of the
original Schnol’s method [20]. Also it permits us to obtain an extension to quantum
graphs for another Schnol’s result [20] that provides an estimate for the distance
from a real number to the spectrum in terms of exponential growth of solution to the
Schrödinger equation, and known as Schnol’s theorem [18] in the classical setting.
As consequence, we have a condition for a point to belong to the spectrum in terms
of such solutions. Under some stronger assumptions the last result is obtained in
[12]. As an application, we give sufficient conditions under which eigenfunctions
belong to all Lp spaces.

This article is organized as follows. In Section 2 we recall basic information
about metric graphs and Schrödinger operators on them. Section 3 is the technical
core of the paper. In Section 4 we prove the main results while Section 5 is dealing
with some consequences of the main results.

2. Metric graphs and Schrödinger operators

Let us consider a graph Γ = (E, V ) with countably infinite sets of edges E
and vertices V . We allow loops and multiple edges, and assume that the graph is
connected, i.e., any two vertices are terminal vertices of a path of edges. Recall
that the degree deg(v) of a vertex v ∈ V is the number of edges emanating from
v. We assume that all vertices of Γ have finite degrees which are positive due to
the connectedness of Γ. For any vertex v ∈ V we denote by Ev the set of edges
adjacent to v.

The graph Γ is said to be a metric graph if each edge e is identified with an interval
[0, le] of real line. We always assume that there exist two positive constants l and
l such that

l ≤ le ≤ l (2.1)

for all e ∈ E. If e ∈ E, we denote by xe the induced coordinate of e (we often skip
the index e in this notation). The same symbol x is often used for a point on Γ.

The distance d(x, y) between two points x and y in Γ is defined as the length of a
shortest path that connects these points. Furthermore, there is a natural measure,
dx, on Γ which coincides with the Lebesgue measure on each edge. Thus, Γ is a
non-compact metric measure space. We fix an arbitrary vertex o ∈ V considered
as an origin and set

d(x) = d(x, o) . (2.2)

We utilize the standard notation Lp(Γ), 1 ≤ p ≤ ∞, for the Lebesgue spaces on
Γ with respect to the measure dx. The norm in a Banach space E is denoted by
‖ · ‖E , and we set ‖ · ‖ = ‖ · ‖L2 . The space Lploc(Γ), 1 ≤ p ≤ ∞, consists of all
measurable functions f on Γ such that f |e ∈ Lp(e) for all e ∈ E.

The Sobolev space H1(Γ) consists of all continuous complex valued functions f
on Γ such that f |e ∈ H1(e) for all edges e ∈ E and

‖f‖2H1 =
∑
e∈E
‖f‖2H1(e) <∞ .
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For every function f ∈ H1(Γ) we have f(x) → 0 as x → ∞ in the sense that
d(x) → ∞. Furthermore, there is a continuous, dense embedding H1(Γ) ⊂ Lp(Γ)
if p ≥ 2.

The space BS(Γ) of Stepanov bounded functions (known also under the name
uniform L1 space [18]) consists of all functions f ∈ L1

loc(Γ) such that

‖f‖BS = sup
e∈E
‖f‖L1(e) <∞ .

We need the following inequality (see [2, Lemma 2.1]). For every ε > 0,∫
Γ

|f(x)||u(x)|2dx ≤ ‖f‖BS
(
ε‖u′‖2 + (ε−1 + l−1)‖u‖2

)
, (2.3)

whenever f ∈ BS(Γ) and u ∈ H1(Γ).
Let V (x) be a real function on Γ. Throughout this paper we accept the following

assumption

(A1) The function V is locally integrable on Γ and V− ∈ BS(Γ).

Here and thereafter we use the notation a+ = max[a, 0] and a− = −min[a, 0].
We consider the Schrödinger operator L associated with the differential expres-

sion,

L = − d2

dx2
+ V (x)

together with certain vertex conditions. The domain D(L) of L consists of all
u ∈ L2(Γ) such that u and u′ are absolutely continuous on each edge of Γ (hence,
u′′ ∈ L1

loc(Γ)),

u is continuous at all vertices of Γ , (2.4)∑
e∈Ev

du

dne
(v) = 0 (2.5)

for all vertices v ∈ V , where d
dne

stands for the outward derivatives at the endpoints
of the edge e, and Lu ∈ L2(Γ). Then the action of L is defined by Lu = Lu for all
u ∈ D(L). As shown in [2], L is a densely defined, self-adjoint operator in L2(Γ).
Furthermore, L is bounded below and D(L) ⊂ H1(Γ). Notice that conditions (2.4)
and (2.5) are called Kirchhoff vertex conditions. Alternatively, the operator L can
be defined in terms of quadratic forms [2].

Note that the distance function d is not smooth and does not satisfy the Kirchhoff
vertex conditions. To overcome this difficulty, we need the following lemma (see [3,
Lemma 4.1]).

Lemma 2.1. There exists a function η ∈ C(Γ × Γ) such that for every y ∈ Γ the
function η(·, y) belongs to C2(e) on each edge e, its first and second derivatives with
respect to the first variable are bounded on Γ uniformly with respect to y, η satisfies
the Kirchhoff vertex conditions with respect to the first variable, and

d(x, y)− c0 ≤ η(x, y) ≤ d(x, y) + c0 , (x, y) ∈ Γ× Γ , (2.6)

with c0 > 0 independent of (x, y).

To abbreviate we set η(x) = η(x, o).
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3. Preliminary results

First we provide a corrected version of [7, Theorem 10, Section 3] (no proof is
given there).

Lemma 3.1. Let A be a self-adjoint operator in a Hilbert space H, with the domain
D(A), λ0 ∈ R, and δ > 0. The spectral subspace of A that corresponds to the
interval [λ0− δ, λ0 + δ] is infinite dimensional if and only if there exists a sequence
un ∈ D(A) such that ‖un‖ = 1, un → 0 weakly in H and ‖Aun − λ0un‖ ≤ δ for all
n.

Proof. Without loss, we may assume that λ0 = 0.
(a) Sufficiency. Let ∆ = [−δ, δ]. Assume that dimE(∆)H = ∞. Then there

exists an orthonormal sequence un ∈ D(A)∩E(∆)H such that un → 0 weakly and

‖Aun‖2 =
∫

∆

λ2d(E(λ)un, un) ≤
∫

∆

δ2d(E(λ)un, un) = δ2‖un‖2 = δ2.

(b) Necessity. Suppose the contrary. Then σ(A)∩∆ consists of finite number of
isolated eigenvalues of finite multiplicity. Therefore, there exists δ1 > δ such that

σ(A) ∩∆1 = σ(A) ∩∆ ,

where ∆1 = [−δ1, δ1]. Then

δ2
1 = δ2

1‖un‖2

=
∫

∆1

δ2
1d(E(λ)un, un) +

∫
R\∆1

δ2
1d(E(λ)un, un)

≤
∫

∆1

δ2
1d(E(λ)un, un) +

∫
R\∆1

λ2d(E(λ)un, un)

≤
∫

∆1

δ2
1d(E(λ)un, un) +

∫
R
λ2d(E(λ)un, un)

= δ2
1‖E(∆1)un‖2 + ‖Aun‖2

= δ2
1‖E(∆)un‖2 + ‖Aun‖2

≤ δ2
1‖E(∆)un‖2 + δ2.

Since un → 0 weakly and E(∆)H is finite dimensional, then ‖E(∆)un‖ → 0.
Passing to the limit, we obtain that δ1 ≤ δ, a contradiction. �

Remark 3.2. We recall an easy consequence of the spectral theorem. If A is a
self-adjoint operator and σ(A) ∩ [λ0 − δ, λ0 + δ] = ∅, then

‖Au− λ0u‖ > δ‖u‖
for all u ∈ D(A), u 6= 0.

Given x0 ∈ Γ and R > 0, we introduce balls

B(x0, R) = {x ∈ Γ : d(x, x0) ≤ R}
and quasi-balls

Ω(x0, R) = {x ∈ Γ : η(x, x0) ≤ R}.
If x0 = 0, we use the abbreviations B(R) and Ω(R), respectively. For R > c0,
inequality (2.6) implies that

B(x0, R− c0) ⊂ Ω(x0, R) ⊂ B(x0, R+ c0). (3.1)
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A solution of equation

− u′′ + V (x)u− λu = 0, (3.2)

is a function u on Γ such that u and u′ are absolutely continuous on each edge of
Γ and (3.2) holds almost everywhere.

Lemma 3.3. Let R1 < R and x0 ∈ Γ. If u is a solution of (3.2) that satisfies the
Kirchhoff vertex conditions, then∫

Ω(x0,R1)

|u′(x)|2dx ≤ C(‖(V − λ)−‖BS + 1)2

∫
Ω(x0,R)

|u(x)|2dx, (3.3)

where C > 0 depends on R−R1 but not on x0 and λ.

Proof. Without loss of generality, we assume that λ = 0. Let ψ(r), r ∈ R, be a
smooth function such that 0 ≤ ψ(r) ≤ 1 for all r ∈ R, ψ(r) = 1 for r ≤ R1, ψ(r) = 0
for r ≥ R, and |ψ′(r)| and |ψ′′(r)| are bounded by a constant that depends only on
R−R1. By Lemma 2.1, the function

ϕ(x) = ψ(η(x, x0))

is smooth on every edge of Γ and satisfies Kirchhoff vertex conditions (2.4) and
(2.5).

Since u(x) and ϕ2(x)u(x) satisfy the Kirchhoff condition, and suppϕ2u ⊂ Ω(x0, R),
integration by parts implies

0 =
∫

Γ

(Lu)(ϕ2u)dx =
∫

Γ

{
u′(ϕ2u)′ + V (x)(ϕu)2

}
dx

=
∫

Γ

{
(ϕ2)′uu′ + ϕ2(u′)2 + V (x)(ϕu)2

}
dx

(3.4)

and ∫
Γ

(ϕ2)′uu′dx =
1
2

∫
Γ

(ϕ2)′(u2)′dx = −1
2

∫
Γ

(ϕ2)′′u2dx . (3.5)

It follows from (3.4) and (3.5) that∫
Γ

ϕ2(u′)2dx =
1
2

∫
Γ

(ϕ2)′′u2dx−
∫

Γ

V (x)(ϕu)2dx .

Hence,

‖ϕu′‖2 ≤ 1
2
‖ |(ϕ2)′′|1/2u‖2 +

∫
Γ

V −(x)(ϕu)2dx . (3.6)

By inequality (2.3), for any ε > 0 the integral in the right-hand side of (3.6) is
bounded above by

‖V −‖BS(ε‖ϕu′ + ϕ′u‖2 + (ε−1 + l−1)‖ϕu‖2) .

Taking ε = 1/(4‖V −‖BS), using the inequality

‖ϕu′ + ϕ′u‖2 ≤ 2(‖ϕu′‖2 + ‖ϕ′u‖2) ,

and estimating ‖ϕ′u‖ and ‖|(ϕ2)′′|1/2u‖ in terms of∫
Ω(x0,R)

|u(x)|2dx ,

from (3.6), we obtain

‖ϕu′‖2 ≤ C(‖V −‖BS + 1)2

∫
Ω(x0,R)

|u(x)|2dx .
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Since the left-hand side of (3.3) does not exceed ‖ϕu′‖2, the result follows. �

Also we need an estimate of type (3.3) on quasi-annuli

Ω(x0, R
′, R) = {x ∈ Γ : R′ ≤ η(x, x0) ≤ R} .

Lemma 3.4. Let R′ < R′1 < R1 < R and x0 ∈ Γ. If u is a solution of (3.2) that
satisfies the Kirchhoff vertex conditions, then∫

Ω(x0,R′
1,R1)

|u′(x)|2dx ≤ C(‖(V − λ)−‖BS + 1)2

∫
Ω(x0,R′,R)

|u(x)|2dx,

where C > 0 depends on R−R1 and R′1 −R′ but not on x0 and λ.

Proof. We follow the same arguments as in the proof of Lemma 3.3. The main
difference is that now we choose a smooth function ψ(r), r ∈ R, such that 0 ≤
ψ(r) ≤ 1 for all r ∈ R, ψ(r) = 1 if R′1 ≤ r ≤ R1 and ψ(r) = 0 if either r ≤ R′

or r ≥ R. The function ψ can be chosen in such a way that its first and second
derivatives are bounded by a constant that depends only on R − R1 and R′1 − R′.
Then we use the test function ϕ2(x)u(x), where ϕ(x) = ψ(η(x)). �

4. Exponential estimates

We begin with the exponential decay of eigenfunctions.

Theorem 4.1. There exists a constant c > 0, independent of V , with the following
property. If u ∈ L2(Γ) is an eigenfunction of L associated with an isolated eigen-
value λ of finite multiplicity, and κ is the distance from λ to σess(L), then for any
α > 0 such that

α < ln
(

1 +
κ2

c(‖(V − λ)−‖BS + 1)2

)
then

|u(x)| ≤ Cαe−
α
2 d(x) , x ∈ Γ , (4.1)

for some Cα > 0. If, in addition, σ(L) is purely discrete, then (4.1) holds for all
α > 0.

Proof. Without loss of generality, we assume that λ = 0. Consider the function

J(r) =
∫

Ωc(r)

|u(x)|2dx ,

where the superscript c stands for the complement of a subset in Γ. Let A be the
set of all α such that

J(r) ≤ Ce−αr , r > 0 , (4.2)
with some C = C(α) > 0, and let α0 = supA.

Assume that α0 6= +∞. Then for every δ > 0 and every C > 0 there exists a
sequence rn →∞ satisfying

J(rn) > Ce−(α0+δ)rn . (4.3)

As a consequence, given δ > 0, there exists a sequence ρn →∞ such that

J(ρn) ≤ eα0+δJ(ρn + 1). (4.4)

Indeed, if this is not so, then

J(r) < e−(α0+δ)J(r − 1)
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for all r > r0. Iterating this inequality, we obtain that

J(r) < Ce−(α0+δ)r

for some C > 0 which contradicts (4.3).
Now we choose a smooth function ϕ on R such that 0 ≤ ϕ(r) ≤ 1 for all r ∈ R

and

ϕ(r) =

{
0 for r ≤ 1/4
1 for r ≥ 3/4

and set ϕn(x) = ϕ(η(x) − ρn). Then we define the functions un(x) = ϕn(x)u(x)
and vn(x) = ‖un‖−1un(x). By Lemma 2.1, both functions un and vn satisfy the
Kirchhoff vertex conditions. Notice that ‖vn‖ = 1 and supp vn ⊂ Ωc(ρn + 1/4).
Hence, vn → 0 weakly in L2(Γ). It is easily seen that

‖un(x)‖2 ≥ J(ρn + 1) ≥ e−(α0+δ)J(ρn) . (4.5)

On the other hand,
Lun = −ϕ′′un − 2ϕ′u′n .

Therefore,

‖Lun‖ ≤ C1

{∫
Ω(ρn+ 1

4 ,ρn+ 3
4 )

|u′|2dx
}1/2

+ C2

{∫
Ω(ρn,ρn+1)

|u|2dx
}1/2

.

By Lemma 3.4 and inequalities (4.4) and (4.5),

‖Lun‖2 ≤ a
∫

Ω(ρn,ρn+1)

|u|2dx

= a[J(ρn)− J(ρn+1)] ≤ a[J(ρn)− e−(α0+δ)J(ρn)]

= aJ(ρn){1− e−(α0+δ)} ≤ ae(α0+δ){1− e−(α0+δ)}‖un‖2

≤ a{eα0+δ − 1}‖un‖2 ,

where a = c(‖V −‖BS + 1)2. Hence,

‖Lvn‖ ≤ a(eα0+δ − 1) .

Using Lemma 3.1, we conclude that

κ2 ≤ a(eα0+δ − 1) .

Since δ > 0 is arbitrary, it follows that κ2 ≤ a(eα0 − 1) and

α0 ≥ ln
(

1 +
κ2

a

)
.

As consequence, for any α < ln
(
1+ κ2

a

)
there exists a constant C = C(α) such that∫

Ωc(r)

|u(x)|2dx ≤ Ce−αr (4.6)

for all r ≥ 0 provided that α0 < ∞. If α0 = ∞, inequality (4.6) holds trivially.
Finally, the previous argument shows that if κ =∞, then α0 =∞, and inequality
(4.6) holds in all possible cases.
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Now we show that integral estimate (4.6) implies uniform decay of (4.1). The
inclusion Ω(r) ⊂ B(r + c0) implies that Bc(r + c0) ⊂ Ωc(r). As consequence,∫

Bc(r+c0)

|u(x)|2dx ≤ Ce−αr (4.7)

for all r ≥ 0. Since, by (3.1),

B(x0, R− c0) ⊂ Ω(x0, R) ⊂ B(x0, R+ c0) ,

we have that, for any y ∈ Γ,

B(y, l̄) ⊂ Ω(y, l̄ + c0) ⊂ Ω(y, l̄ + c0 + 1) ⊂ B(y, l̄ + 2c0 + 1) ,

where l̄ is defined by (2.1). If

d(y) = d(y, o) > (r + c0) + (l̄ + 2c0 + 1) = r + l̄ + 3c0 + 1 ,

then B(y, l̄ + 2c0 + 1) ∩B(r + c0) = ∅ and, hence,

Ω(y, l̄ + c0 + 1) ⊂ B(y, l̄ + 2c0 + 1) ⊂ Bc(r + c0) .

By (4.7), ∫
Ω(y,l̄+c0+1)

|u(x)|2dx ≤ Ce−αr , (4.8)

and, by Lemma 3.3,∫
B(y,l̄)

|u′(x)|2dx ≤
∫

Ω(y,l̄+c0)

|u′(x)|2dx

≤ C1

∫
Ω(y,l̄+c0+1)

|u(x)|2dx

≤ C2e
−αr .

(4.9)

Since all edges have length less than or equal to l̄, there is an edge e ⊂ B(y, l̄)
that contains y. By (4.9), ∫

e

|u′(x)|2dx ≤ C2e
−αr ,

while (4.6) yields ∫
e

|u(x)|2dx ≤ Ce−αr .

Hence,
‖u‖2H1(e) ≤ C3e

−αr .

Since the length le satisfies le ≥ l > 0, then the embedding constant of H1(e) ⊂
L∞(e) is independent of le. As consequence,

|u(y)| ≤ C4e
−αr/2 .

Now, we take y ∈ Γ such that

ρ = d(y) = r + l̄ + 3c0 + 2 .

Then r = ρ− λ̄− 3c0 − 2, and

|u(y)| ≤ C̃e−αρ/2 ,
where

C̃ = C4e
α
2 (l̄+3c0+2) .

This completes the proof. �
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Corollary 4.2. Assume that the spectrum of L is purely discrete. If u is an eigen-
function of L, then for any α > 0 there exists Cα > 0 such that

|u(x)| ≤ Cαe−αd(x) , x ∈ Γ .

Now we provide an estimate for the distance between λ ∈ R and the spectrum
σ(L) in terms of solutions to equation (3.2).

Theorem 4.3. There exists a constant c > 0, independent of V , with the following
property. Suppose that u 6= 0 is a solution of equation (3.2) on Γ that satisfies the
Kirchhoff vertex conditions and∫

B(r)

|u(x)|2dx ≤ Ceαr (4.10)

for some α > 0 and C > 0, then the distance of the point λ from σ(L) does not
exceed

c(‖(V − λ)−‖BS + 1)(eα − 1)1/2 .

In particular, if (4.10) holds for all α > 0 with C = Cα > 0, then λ ∈ σ(L).

Proof. Without lost of generality assume that λ = 0. By (3.1),∫
B(r−c0)

|u(x)|2dx ≤
∫

Ω(r)

|u(x)|2dx ≤
∫
B(r+c0)

|u(x)|2dx .

Hence, the function

J(r) =
∫

Ω(r)

|u(x)|2dx

satisfies J(r) ≤ Ceαr for some C > 0.
For any given δ > 0, there exists a sequence ρn →∞ such that

J(ρn+1) < eα+δJ(ρn) . (4.11)

If not, then
J(r) > eα+δJ(r − 1)

for all sufficiently large r. Iterating this inequality, we obtain that

J(r) ≥ Ce(α+δ)r ,

with C > 0, which is incompatible with (4.10).
As in the proof of Theorem 4.1, we choose a smooth function ϕ on R such that

0 ≤ ϕ(r) ≤ 1 for all r ∈ R and

ϕ(r) =

{
0 for r ≤ 1/4
1 for r ≥ 3/4 ,

and set ϕn(x) = ϕ(η(x)− ρn). Then we define the function

un(x) = {1− ϕn(x)}u(x) .

Note that suppun ⊂ Ωc(ρn + 1/4), and un satisfies the Kirchhoff conditions. It is
easily seen that

‖un(x)‖2 ≥ J(ρn) . (4.12)

On the other hand,
Lun = −ϕ′′nu− 2ϕ′nu

′
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and, hence,

‖Lun‖ ≤ C1

{∫
Ω(ρn+ 1

4 ,ρn+ 3
4 )

|u′|2dx
}1/2

+ C2

{∫
Ω(ρn,ρn+1)

|u|2dx
}1/2

.

Using Lemma 3.4 and inequalities (4.11) and (4.12), we obtain

‖Lun‖2 ≤ C(‖V −‖BS + 1)2

∫
Ω(ρn,ρn+1)

|u(x)|2dx,

= C(‖V −‖BS + 1)2{J(ρn+1)− J(ρn)}

≤ C(‖V −‖BS + 1)2(eα+δ − 1)J(ρn)

≤ C(‖V −‖BS + 1)2(eα+δ − 1)‖un‖2.
Thus,

‖Lun‖ ≤ c(‖V −‖BS + 1)(eα+δ − 1)
1/2‖un‖ ,

where c =
√
C. From this inequality and Remark 3.2, it follows that the distance

to the point λ from σ(L) does not exceed

c(‖V −‖BS + 1)(eα+δ − 1)1/2 ,

and since the number δ > 0 is arbitrary, the result follows. �

5. Applications

In this section we make an additional assumption. Namely, we assume that there
exist µ > 0 and Cµ > 0 such that for all r > 0,

|B(r)| ≤ Cµeµr , (5.1)

where |S| is the measure of S ⊂ Γ. The infimum of all such µ is denoted by µ0.
If µ0 > 0, the graph Γ is of exponential growth. Otherwise, if µ0 = 0, then Γ is of
sub-exponential growth.

Let u be a continuous function on Γ such that

|u(x)| ≤ Cαe−αd(x)

with positive constants α and Cα. If p ∈ [0,∞) and µ < αp, with µ from inequality
(5.1), then∫

Γ

|u(x)|pdx ≤
∞∑
n=1

∫
B(n)\B(n−1)

|u(x)|pdx ≤ C
∞∑
n=1

e−(αp−µ)n <∞ ,

and, hence, u ∈ Lp(Γ). Together with Theorem 4.1, this implies the following
results.

Corollary 5.1. Assume that Γ is of sub-exponential growth. If u ∈ L2(Γ) is
an eigenfunction associated with an isolated eigenvalue of finite multiplicity, then
u ∈ Lp(Γ) for all p ∈ [1,∞].

Corollary 5.2. Assume that Γ is of exponential growth and the spectrum of L is
purely discrete. If u ∈ L2(Γ) is any eigenfunction of L, then u ∈ Lp(Γ) for all
p ∈ [1,∞].

Note that these statements are non-trivial only in the case when p ∈ [1, 2) because
u ∈ H1(Γ) ⊂ Lp(Γ) if p ∈ [2,∞]. The following statement is an easy consequence
of Theorem 4.3.
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Corollary 5.3. Let u 6= 0 be a solution of (3.2) on Γ that satisfies the Kirchhoff
vertex conditions and, for some β > 0 and Cb > 0,

|u(x)| ≤ Cβeβd(x) ,

and β0 is the infimum of all such β. Then the distance of the point λ from σ(L)
does not exceed

c(‖(V − λ)−‖BS + 1)(e2β0+µ0 − 1)1/2 ,

where the constant c > 0 is independent of V . In particular, if β0 = µ0 = 0, then
λ ∈ σ(L).

In Corollary 5.3, β0 = µ0 = 0 means that both the graph Γ and the solution u
are of sub-exponential growth. Also we point out that if u is bounded, then β0 = 0.
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