
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 156, pp. 1–17.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

FRACTIONAL p-LAPLACIAN EQUATIONS ON
RIEMANNIAN MANIFOLDS

LIFENG GUO, BINLIN ZHANG, YADONG ZHANG

Communicated by Vicentiu D. Radulescu

Abstract. In this article we establish the theory of fractional Sobolev spaces

on Riemannian manifolds. As a consequence we investigate some important
properties, such as the reflexivity, separability, the embedding theorem and

so on. As an application, we consider fractional p-Laplacian equations with

homogeneous Dirichlet boundary conditions

(−∆g)s
pu(x) = f(x, u) in Ω,

u = 0 in M \ Ω,

where N > ps with s ∈ (0, 1), p ∈ (1,∞), (−∆g)s
p is the fractional p-Laplacian

on Riemannian manifolds, (M, g) is a compact Riemannian N−manifold, Ω

is an open bounded subset of M with smooth boundary ∂Ω, and f is a
Carathéodory function satisfying the Ambrosetti-Rabinowitz type condition.

By using variational methods, we obtain the existence of nontrivial weak solu-
tions when the nonlinearity f satisfies sub-linear or super-linear growth con-

ditions.

1. Introduction

Recently, great attention has been paid on the study of problem involving frac-
tional and non-local operators. This type of problem arises in many applications,
such as, continuum mechanics, phase transition phenomena, population dynamics
and game theory, as they are the typical outcome of stochastically stabilization
of Lévy processes, see [3, 7, 19] and the references therein. Here we would like
to point out some interesting models involving the fractional Laplacian, such as,
the fractional Lane-Emden equation (see [11]), the fractional Schrödinger equation
(see [37, 38]), the fractional Kirchhoff equation (see [12, 27, 28, 36]), the fractional
Cahn-Hilliard, Allen-Cahn and porous medium equations (see [2, 33]), the frac-
tional Yamabe problem (see [9]) and so on, have attracted recently considerable
attention. Indeed, the literature on non-local operators and their applications is
very interesting and quite large, we refer the interested reader to [5, 8, 21, 22] and
the references therein. For the basic properties of fractional Sobolev spaces, we
refer the interested reader to [10, 24].
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In this article we deal with the fractional p–Laplace problem

(−∆g)spu(x) = f(x, u) in Ω,

u = 0 in M \ Ω,
(1.1)

where N > ps with s ∈ (0, 1), p ∈ (1,∞), (M, g) is a compact Riemannian
N−manifold, Ω ⊂ M is an open bounded set with smooth boundary ∂Ω, f :
Ω×R→ R is a Carathéodory function and (−∆g)spu(x) is the fractional p-Laplace
operator which (up to normalization factors) may be defined as

(−∆g)spu(x) = 2 lim
ε→0+

∫
M\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
(dg(x, y))N+ps

dµg(y)

for x ∈M , where Bx(ε) denotes the geodesic ball of M of center x and radius ε and
dg(x, y) defines a distance on M whose topology coincides with the original one of
M , see Section 2 for more details.

In the Euclidean case, problem (1.1) reduces to the fractional Laplacian problem
as p = 2:

(−∆)su(x) = f(x, u) in Ω,

u = 0 in RN \ Ω.
(1.2)

One typical feature of problem (1.2) is the nonlocality, in the sense that the value
of (−∆)su(x) at any point x ∈ Ω depends not only on Ω, but actually on the
entire space RN . The functional framework that takes into account problem (1.2)
with Dirichlet boundary condition was introduced in [29, 30]. It is well known that
problem (1.1) has been used to model some physical phenomena occurring in nonlo-
cal reaction-diffusion problems, non-Newtonian fluid, non-Newtonian filtration and
turbulent flows of a gas in a porous medium, and so on. In the non-Newtonian
fluid theory, the quantity p is characteristic of the medium. Media with p > 2
are called dilatant fluid and those with p < 2 are called pseudoplastics. If p = 2,
they are Newtonian fluids. Concerning the fractional Sobolev spaces in RN and its
applications to the qualitative analysis of solutions for problem (1.2), we refer to
[18, 17, 20, 25, 23, 31, 35] and the references therein for further details.

In recent years, the conformal fractional Laplacian has received a lot of atten-
tion. More precisely, the conformal fractional Laplacian is defined on the boundary
of a Poincaré-Einstein manifold in view of scattering theory, see [14] for all the
necessary background. Caffarelli and Silvestre [8] presented a construction for the
standard fractional Laplacian (−∆RN )s as a Dirichlet-to-Neumann operator of a
uniformly degenerate elliptic boundary value problem. In the manifold case, Chang
and González [9] linked the original definition of the conformal fractional Laplacian
coming from scattering theory to a Dirichlet-to-Neumann operator for a related
elliptic extension problem, thus allowing for an analytic treatment of Yamabe-type
problems in the non-local setting, see [15]. As for several definitions of fractional
Laplace operator and their interrelation, we refer to [10] for more details.

Inspired by the above works, we are interested in considering the integral def-
inition of fractional Laplacian from RN to Riemannian manifolds. To our best
knowledge, there is no result along this line. It is worth to point out that our defi-
nition seems easier to be understood than the conformal fractional Laplacian, just
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from the analytic points of view. In the mean time, our definition would be con-
venient to generalize some related existence results on fractional Laplace equations
exploited by variational methods to those of Riemannian manifolds.

As an application of the fractional Sobelev spaces on Riemannian manifolds, we
will consider the existence of weak solutions for problem (1.1). For this purpose, we
assume that Ω ⊂ M is a open bounded set and f : Ω × R → R is a Carathéodory
function satisfying the following:

(A1) There exist a > 0 and 1 < q < p∗s = Np/(N − ps) such that

|f(x, η)| ≤ a(1 + |η|q−1),

for a.e. x ∈ Ω, η ∈ R;
(A2) There exist γ > p and r > 0 such that for a.e. x ∈ Ω and r ∈ R, |ξ| ≥ r,

0 < γF (x, ξ) ≤ ξf(x, ξ),

where F (x, ξ) =
∫ ξ

0
f(x, τ)dτ ;

(A3) It holds

lim
ζ→0

f(x, ζ)
|ζ|p−1

= 0 uniformly for a. e. x ∈ Ω;

(A4) There exist a1 > 0 and an open bounded set Ω0 ⊂ Ω such that

|f(x, ρ)| ≥ a1|ρ|q−1 for a.e. x ∈ Ω0 and all ρ ∈ R.

Now, we give the definition of weak solutions for problem (1.1).

Definition 1.1. We say that u ∈W s,p
0 (Ω) is a weak solution of problem (1.1), if∫∫

M×M

|u(x)− u(y)|p−2(u(x)− u(y))
(dg(x, y))N+ps

dµg(x)dµg(y)

=
∫

Ω

f(x, u(x))ϕ(x)dµg(x),

for any ϕ ∈W s,p
0 (M), where space W s,p

0 (M) will be introduced in Section 2.

Then, by variational methods, we can get the following existence results for
problem (1.1).

Theorem 1.2. Let (A1) and (A4) hold. If 1 < q < p, then the problem (1.1) has
a nontrivial weak solution in W s,p

0 (M).

Theorem 1.3. Let (A1)–(A3) hold. If p < q < p∗s, then problem (1.1) has a
nontrivial weak solution in W s,p

0 (M).

Remark 1.4. Theorems 1.2 and 1.3 can be viewed as the counterpart of [34,
Theorems 1.1 and 1.2] on compact Riemannian N -manifold in the non-Kirchhoff
case.

This article is organized as follows. In Section 2, we will present some neces-
sary definitions and properties of space W s,p

0 (M). In Section 3, using variational
methods, we obtain the existence of weak solutions for problem (1.1) in two cases:
1 < q < p and p < q < p∗s.
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2. Fractional Sobolev space on Riemannian manifolds

Let we first recall some basic material on Riemannian geometry (see [4, 16]).
Let (M, g) be a smooth Riemannian N−manifold, and let ∇ be the Levi-Civita
connection. For u ∈ C∞(M), then ∇ku denotes the k−th covariant derivative of
u. In local coordinates, the pointwise norm of ∇ku is given by

|∇ku| = gi1j1 · · · gikjk(∇ku)i1i2...ik(∇ku)j1j2...jk
When k = 1, the components of ∇u in local coordinates are given by (∇u)i = ∇iu.
By definition one has that

|∇u| =
∞∑

i,j=1

gij∇iu∇ju

Given (M, g) a smooth Riemannian N−manifold, and γ : [a, b]→ M a curve of
class C1, the length of γ is

L(γ) =
∫ b

a

√
g
(
γ(t)

)((dγ
dt

)
(t),
(dγ
dt

)
(t)
)
dµ.

For x, y ∈M , let C1
x,y be the space of piecewise C1 curves γ : [a, b]→M such that

γ(a) = x and γ(b) = y. Then dg(x, y) = infC1
x,y
L(γ) defines a distance on M whose

topology coincides with the original one of M . In particular, by Stine’s theorem,
a smooth Riemannian manifold is paracompact. By definition, dg is the distance
associated to g.

Given (M, g) a smooth Riemannian N -manifold, one can define a natural positive
Radon measure on M . In particular, the theory of the Lebesgue integral can be
applied. For (Ωi, ϕi)i∈I some atlas of M , we shall say that a family (Ωj , ϕj , ηj)j∈J
is a partition of unity subordinate to (Ωi, ϕi)i∈I . As one can easily check, for any
atlas (Ωi, ϕi)i∈I of M , there exists a partition of unity (Ωj , ϕj , ηj)j∈J subordinate
(Ωi, ϕi)i∈I . Then we can define the Riemannian measure as follows: given u : M →
R is continuous with compact support, and given (Ωi, ϕi)i∈I is an atlas of M ,∫

M

u(x)dµg(x) =
∑
k∈J

∫
ϕk(Ωk)

(√
det(gij)ηku

)
◦ ϕ−1

k (x)dx,

where (Ωj , ϕj , ηj)j∈J is a partition of unity subordinate to (Ωi, ϕi)i∈I , dµg(x) =√
det(gij)dx is the Riemannian volume element on (M, g), where the gij are the

components of the Riemannian metric g in the chart and dx is the Lebesgue volume
element of RN .

In what follows, we give some basic results that will be used in the next section.
In the Euclidean case, we refer to [13, 29, 30, 34] for related results. Let 0 < s <
1 < p <∞ be real numbers and the fractional critical exponent p∗s be defined as

p∗s =

{
Np
N−sp if sp < N

∞ if sp ≥ N.

This section is devoted to the definition of the fractional Sobolev spaces on
Riemannian manifolds. We start by fixing the fractional exponent s in (0, 1). For
any p ∈ [1,+∞), we define W s,p(M) as follows:

W s,p(M) =
{
u ∈ Lp(M) :

|u(x)− u(y)|
(dg(x, y))

n
p+s
∈ Lp(M ×M)

}
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i.e, an intermediary Banach space between Lp(M) and W s,p(M), endowed with the
natural norm

‖u‖W s,p(M) =
(∫

M

|u(x)|pdµg(x) + [u]pW s,p(M)

)1/p

,

where the term

[u]W s,p(M) =
(∫∫

M×M

|u(x)− u(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

)1/p

.

is the so-called Gagliardo (semi)norm of u.
It is easy to prove that ‖ · ‖W s,p(M) is a norm on W s,p(M). We will work in the

closed linear subspace

W s,p
0 (M) =

{
u ∈W s,p(M) : supp(u) is a compact subset of M

}
,

where supp(u) = {x ∈M : u(x) 6= 0}.

Lemma 2.1. Let (M,dg) be a complete Riemannian N−manifold with finite vol-
ume, then C∞0 (M) ⊂W s,p

0 (M).

Proof. For v ∈ C∞0 (M), we only need to check that∫∫
M×M

|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y) <∞.

Notice that

|v(x)− v(y)| ≤ ‖∇v‖L∞(M)dg(x, y),

|v(x)− v(y)| ≤ 2‖v‖L∞(M)

for all x, y ∈M . Thus,

|v(x))− v(y))|p ≤ (2‖v‖C1(M))p min{(dg(x, y))p, 1}.
Therefore,∫∫

M×M

|(ηsv)(x)− (ηsv)(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

≤ Vol(M)(2‖v‖C1(M))p
∫∫

M×M

min{(dg(x, y))p, 1}
(dg(x, y))N+sp

dµg(x)dµg(y) <∞.

Consequently, for v ∈ C∞0 (M) we have∫∫
M×M

|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y) <∞.

This implies v ∈W s,p
0 (M). �

Remark 2.2. Lemma 2.1 and the fact that C∞0 (M) is dense in Lp(M) (see for
example [16]), imply that C∞0 (M) is dense also in W s,p(M).

Remark 2.3. The space W s,p
0 (M) is the closure of C∞0 (M) in W s,p(M).

Lemma 2.4. Let (M,dg) be a compact Riemannian N−manifold. Then
(1) there exists a positive constant C1 = C1(N, p, q, s) such that for any v ∈

W s,p
0 (M) and 1 ≤ q ≤ p∗s,

‖v‖pLq(M) ≤ C1

∫∫
M×M

|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y).
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(2) there exists a constant C̃ = C̃(N, p, q, s) such that for any v ∈W s,p
0 (M),∫∫

M×M

|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

≤ ‖v‖pW s,p(M)

≤ C̃
∫∫

M×M

|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y).

Proof. Let v ∈W s,p
0 (M). Since M is compact, M can be covered by a finite number

of charts
(Bxk(r), ϕk)k=1,2,...,m

satisfying

B0(r/2) ⊂ ϕk(Bxk(r)) ⊂ B0(2r) and
1
Q
δij ≤ gsij ≤ Qδij , (2.1)

where gsij are bilinear forms, Q > 1 is given, Bxk(r) denotes the ball of M of center
xk and radius r, B0(2r) denotes the Euclidean ball of RN of center 0 and radius
2r. Moreover, we have

1
C
|ϕ−1
k (y1)− ϕ−1

k (y2)| ≤ dg(y1, y2) ≤ C|ϕ−1
k (y1)− ϕ−1

k (y2)|, (2.2)

for y1, y2 ∈ Bxk(r) where C > 1 is given.
Let (ηk) be a smooth partition of unity subordinate to the covering Bxk(r). For

any k, using [10, Theorem 6.5], we obtain

‖v‖pLq(M) ≤ 2p
m∑
k=1

‖ηkv‖pLq(M)

≤ 2
pq+pN
q

m∑
k=1

‖(ηkv) ◦ ϕ−1‖p
Lq(RN )

≤ C02
pq+pN
q

m∑
k=1

∫∫
RN×RN

|(ηkv)(ϕ−1
k (x))− (ηkv)(ϕ−1

k (y))|p

|x− y|N+ps
dx dy

≤ CC02
pq+pN
q +2N

m∑
k=1

∫∫
M×M

|(ηkv)(x̄)− (ηkv)(ȳ)|p

(dg(x̄, ȳ))N+ps
dµg(x̄)dµg(ȳ)

≤ mCC02
pq+pN
q +2N

∫∫
M×M

|v(x̄)− v(ȳ)|p

(dg(x̄, ȳ))N+ps
dµg(x̄)dµg(ȳ)

= C1

∫∫
M×M

|v(x̄)− v(ȳ)|p

(dg(x̄, ȳ))N+ps
dµg(x̄)dµg(ȳ),

(2.3)

where C1 = mCC02
pq+pN
q +2N is a positive constant depending only on N, s, p, q.

Thus, we obtain the assertion (1). The assertion (2) easily follows by combining
the definition of norm of W s,p(M) with (2.3). �

Remark 2.5. By Lemma 2.4, we obtain an equivalent norm on W s,p
0 (M) defined

as

‖v‖W s,p
0 (M) =

(∫∫
M×M

|u(x)− u(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

)1/p

,

for all v ∈W s,p
0 (M).
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Lemma 2.6. Let (M,dg) be a compact Riemannian N -manifold, p ∈ [1,∞] and
s ∈ (0, 1). Then

‖u‖W s,p(M) ≤ ‖u‖W 1,p(M)

for some suitable positive constant C = C(N, s, p) ≥ 1. In particular,

W 1,p(M) ⊆W s,p(M).

Proof. Let γ : [0, 1]→M be the minimizing geodesic from x and y, where x, y ∈M .
Then for v ∈W s,p(M) we have∫

M

∫
M∩{dg(x,y)<1}

|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

≤
∫
M

∫
M∩{dg(x,y)<1}

∫ 1

0

|∇v(γ(t))|p

(dg(x, y))N+ps−p dtdµg(y)dµg(x)

≤
∫
M

‖∇v‖Lp(M)

(dg(x, y))N+ps−p dµg(y)

≤ C(N, s, p)‖∇v‖Lp(M)

(2.4)

and ∫
M

∫
M∩{dg(x,y)≥1}

|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

≤ 2p−1

∫
M

∫
M∩{dg(x,y)≥1}

|v(x)|p − |v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

≤ C(N, p)‖v‖Lp(M).

(2.5)

From (2.4) and (2.5) it follows that

‖v‖W s,p(M) ≤ C(N, s, p)‖v‖W 1,p(M).

Thus the proof is complete. �

Remark 2.7. Remark 2.2 and Lemma 2.6, imply that W 1,p(M) is dense also in
W s,p(M).

Lemma 2.8. Let (M,dg) be a compact Riemannian N−manifold. Then W s,p(M)
is separable.

Proof. Since W 1,p(M) is a separable Banach space (see [16]), there exists a count-
able dense subset A of W 1,p(M). We claim that A is also dense in W s,p(M). For
each u ∈ W s,p(M), there exists a sequence {un}n in W 1,p(M) such that un → u
strongly in W s,p(M), by the density of W 1,p(M) in W s,p(M). Hence, for each
n ≥ 1, there exists a sequence {um,n}m in A such that

lim
m→∞

‖um,n − un‖W 1,p(M) = 0.

By the standard diagonal process, there exists a sequence {umn,n}n ⊆ {um,n}m
such that

lim
n→∞

‖umn,n − un‖W 1,p(M) = 0.

Therefore, Lemma 2.6 yields

‖umn,n − u‖W s,p(M) ≤ ‖umn,n − un‖W s,p(M) + ‖un − u‖W s,p(M)

≤ C‖umn,n − un‖W 1,p(M) + ‖un − u‖W s,p(M).
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This implies that umn,n → u strongly in W s,p(M) as n→∞. Hence A is dense in
W s,p(M). This, together with the countability of A, completes the proof. �

Lemma 2.9. If (M,dg) is a complete Riemannian N -manifold, then W s,p
0 (M) is

a Banach space.

Proof. We only need to check that W s,p
0 (M) is complete with respect to the norm

‖ · ‖W s,p
0 (M). Let {ut} be a cauchy sequence in W s,p

0 (M). Thus, for any ε > 0 there
exists Nε such that if n,m ≥ Nε, then

‖un − um‖pLp(M) ≤ ‖un − um‖
p
W s,p

0 (M)
< ε. (2.6)

Let {Gl} be a sequence of compact sets such that Gl ⊂ Gl+1 ⊂ M for l ∈ N and
M = ∪∞l=1Gl. Then the sequence {ut} is Cauchy in each Lp(Gl) for l ∈ N. By
induction we may find subsequences {u(l)

t }t and u(l) ∈ Lp(Gl) such that u(l)
t → u(l)

a.e. on Gl for l ∈ N, and u(l+1)χGl = u(l). Thus, limτ→∞ u
(τ)
τ = limτ→∞ u(τ)χGτ =

u a.e. on M . Therefore, by the Fatou Lemma and the second inequality in (2.6)
with ε = 1, we have∫∫

M×M

|u(x)− u(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

≤ lim inf
τ→∞

∫∫
M×M

|u(τ)
τ (x)− u(τ)

τ (y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

≤ lim inf
τ→∞

(
‖u(τ)

τ − uµ1‖W s,p
0 (M) + ‖uµ1‖W s,p

0 (M)

)p
≤
(

1 + ‖uµ1‖W s,p
0 (M)

)p
<∞.

Thus, u ∈ W s,p
0 (M). Let t ≥ µε, by the second inequality in (2.6) and Fatou’s

lemma, we obtain

‖ut − u‖pW s,p
0 (M)

≤ lim inf
τ→∞

‖ut − u(τ)
τ ‖

p
W s,p

0 (M)
≤ ε,

that is, un → u strongly in W s,p
0 (M) as n→∞. �

Lemma 2.10. Let (M,dg) be a complete Riemannian N -manifold. Then W s,p
0 (M)

is uniformly convex.

Proof. Let u, v ∈W s,p
0 (M) satisfy ‖u‖W s,p

0 (M) = ‖v‖W s,p
0 (M) = 1 and ‖u−v‖W s,p

0 (M) ≥
ε, where ε ∈ (0, 2).
Case p ≥ 2. By [1, inequality (28)], we have

‖u+ v

2
‖p
W s,p

0 (M)
+ ‖u− v

2
‖p
W s,p

0 (M)

≤ 1
2

∫∫
M×M

|u(x)− u(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

+
1
2

∫∫
M×M

|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

=
1
2
‖u‖p

W s,p
0 (M)

+
1
2
‖v‖p

W s,p
0 (M)

= 1.

(2.7)

From (2.7) it follows that ‖u+v
2 ‖

p
W s,p

0 (M)
≤ 1 − (ε/2)p. Taking δ = δ(ε) such that

1− (ε/2)p = (1− δ)p, we obtain ‖u+v
2 ‖W s,p

0 (M) ≤ (1− δ).
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Case 1 < p < 2. Note that

‖u‖p
′

W s,p
0 (M)

=
[ ∫∫

M×M

(( |u(x)− u(y)|
(dg(x, y))

N
p +s

)p′)p−1

dµg(x)dµg(y)
] 1
p−1

,

where p′ = p/(p − 1). With the help of the reverse Minkowski inequality (see [1,
Theorem 2.13]) and the inequality (27) in [1], we obtain

‖u+ v

2
‖p
′

W s,p
0 (M)

+ ‖u− v
2
‖p
′

W s,p
0 (M)

≤
{∫∫

M×M

[(
| (u(x)− u(y)) + (v(x)− v(y))

2(dg(x, y))
N
p +s

|
)p′

+
(
| (u(x)− u(y))− (v(x)− v(y))

2(dg(x, y))
N
p +s

|
)p′]p−1

dµg(x)dµg(y)
} 1
p−1

≤
(1

2
‖u‖p

W s,p
0 (M)

+
1
2
‖v‖p

W s,p
0 (M)

)p′−1

= 1.

(2.8)

By (2.8), we have

‖u+ v

2
‖p
′

W s,p
0 (M)

≤ 1− εp
′

2p′
.

Taking δ = δ(ε) such that 1− (ε/2)p
′

= (1− δ)p′ , we obtain the desired conclusion.
�

Remark 2.11. According to [1, Theorem 1.21], W s,p
0 (M) is a reflexive Banach

space.

Lemma 2.12. Let (M,dg) be a compact Riemannian N -manifold and {vj} be a
bounded sequence in W s,p

0 (M). Then, there exists v ∈ Lq(M) such that up to a
subsequence,

vj → v strongly in Lq(M), as j →∞,
for any q ∈ [1, p∗s).

Proof. For any {vj}, which is a bounded sequence in W s,p
0 (M). Since M is compact,

M can be covered by a finite number of charts (Ωk, ϕk)k=1,2,...,m such that for any
k the components gkij of g in (Ωk, ϕk) satisfying

1
2
δij ≤ gkij ≤ 2δij

are bilinear forms. Let (ηk) be a smooth partition of unity subordinate to the
covering (Ωk). By means of Corollary 7.2 in [10], for any k, there exists ωk ∈ Lq(RN )
such that

(ηkvj) ◦ ϕ−1 → ωk strongly in Lq(ϕk(Ωk)), as j →∞.

Then
ηkvj → ωk ◦ ϕ = uk strongly in Lq(Ωk), as j →∞.

Furthermore, we can define v =
∑m
k=1 us ∈ Lq(M) satisfying

vj → v strongly in Lq(M), as j →∞.

Thus, the proof is complete. �
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3. Proofs of main restults

Following the approach of [34], we will give the proofs of Theorems 1.2 and 1.3.
For the reader’s convenience, here we give a detailed treatment. For u ∈W s,p

0 (M),
we define

J(u) =
1
p

∫∫
M×M

|u(x)− u(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y), H(u) =

∫
Ω

F (x, u)dµg(x),

I(u) = J(u)−H(u).

Obviously, the energy functional I : W s,p
0 (M) → R associated with problem (1.1)

is well defined.

Lemma 3.1. If f satisfies (A1), then the functional H ∈ C1(W s,p
0 (M),R) and

〈H ′(u), v〉 =
∫

Ω

f(x, u)vdµg(x) for all u, v ∈W s,p
0 (Ω).

Proof. (i) H is Gâteaux-differentiable in W s,p
0 (M). Let u, v ∈ W s,p

0 (M). For each
x ∈ Ω and 0 < |t| < 1, by the mean value theorem, there exits 0 < δ < 1,

1
t
(F (x, u+ tv)− F (x, u)) =

1
t

∫ u+tv

0

f(x, s)ds− 1
t

∫ u

0

f(x, s)ds

=
1
t

∫ u+tv

u

f(x, s)ds

= f(x, u+ δtv)v.

Combining (A1) with Young’s inequality, we obtain

|f(x, u+ δtv)v| ≤ a(|v|+ |u+ δtv|q−1|v|)
≤ a(2|v|q + |u+ δtv|q + 1) ≤ a2q(|v|q + |u|q + 1).

Since 1 < q < p∗s, by Lemma 2.4 we have u, v ∈ Lq(M). Moreover, the Lebesgue’s
dominated convergence theorem implies

lim
t→0

1
t
(H(u+ tv)−H(u)) = lim

t→0

∫
Ω

f(x, u+ δtv)vdµg(x)

=
∫

Ω

lim
t→0

f(x, u+ δtv)vdµg(x) =
∫

Ω

f(x, u)vdµg(x).

(ii) The continuity of Gateaux-derivative. Let {un} ⊂ W s,p
0 (M), u ∈ W s,p

0 (M)
such that un → u strongly in W s,p

0 (M) as n → ∞. Without loss of generality, we
assume that un → u a.e. in Ω. In view of (A1), for any measurable subset U ⊂ Ω,∫

U

|f(x, un)|q
′
dµg(x) ≤ 2

q+1
q−1 a

q
q−1

(∫
U

|un|qdµg(x) + µ(U)
)
,

where µ(U) denotes the N dimensional Radon measure of set U . Since 1 < q < p∗s,
by Lemma 2.4 and Hölder’s inequality, we have∫

U

|f(x, un)|q
′
dµg(x) ≤ 2

q+1
q−1 a

q
q−1

(
‖un|q‖

L
p∗s
q (U)

‖1‖
L

p∗s
p∗s−q (U)

+ µ(U)
)

≤ C(µ(U))
p∗s−q
p∗s + Cµ(U).

(3.1)
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It follows from (3.1) that the sequence {|f(x, un)−f(x, u)|q′} is uniformly bounded
and equi-integrable in L1(Ω). The Vitali convergence theorem implies

lim
n→∞

∫
Ω

|f(x, un)− f(x, u)|q′dµg(x) = 0.

Thus, by Hölder’s inequality and Lemma 2.4(1), we obtain

‖H ′(un)−H ′(u)‖ ≤ ‖f(x, un)− f(x, u)‖Lq′ (Ω)‖ϕ‖Lq(Ω)

≤ C1/p
1 ‖f(x, un)− f(x, u)‖Lq′ (Ω) → 0,

as n→∞. Hence, we complete the proof. �

Using the same strategy as in Lemma 3.1, we have

Lemma 3.2. The functional J ∈ C1(W s,p
0 (M),R) and

〈J ′(u), v〉 =
∫∫

M×M

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
(dg(x, y))N+ps

dµg(x)dµg(y),

for all u, v ∈ W s,p
0 (M). Moreover, for each u ∈ W s,p

0 (M), J ′(u) ∈ W s,p
0 (M)∗,

where W s,p
0 (M)∗ denotes the dual space of W s,p

0 (M).

Proof. Firstly, it is easy to see that

〈J ′(u), v〉

=
∫∫

M×M

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
(dg(x, y))N+ps

dµg(x)dµg(y),
(3.2)

for all u, v ∈ W s,p
0 (M). It follows from (3.2) that for each u ∈ W s,p

0 (M), J ′(u) ∈
W s,p

0 (M)∗.
Next, we prove that J ∈ C1(W s,p

0 (M),R). Let {un} ⊂ W s,p
0 (M), u ∈ W s,p

0 (M)
with un → u strongly in W s,p

0 (M) as n → ∞. By Lemma 2.12 there exists a
subsequence of {un} still denoted by {un} such that un → u a.e. in Ω. Then the
sequence{ |un(x)− un(y)|p−2(un(x)− un(y))

(dg(x, y))
N+ps
p′

}
n

is bounded in Lp
′
(Ω× Ω),

and

Mn(x, y) :=
|un(x)− un(y)|p−2(un(x)− un(y))

(dg(x, y))
N+ps
p′

→M(x, y) :=
|u(x)− u(y)|p−2(u(x)− u(y))

(dg(x, y))
N+ps
p′

a.e. in M ×M . Thus, the Brézis-Lieb Lemma (see [6]) implies

lim
n→∞

∫∫
M×M

(Mn(x, y)−M(x, y))p
′
dµg(x)dµg(y)

= lim
n→∞

∫∫
M×M

([un]W s,p(M) − [u]W s,p(M))dµg(x)dµg(y).
(3.3)

The fact that un → u strongly in W s,p
0 (M) implies

lim
n→∞

∫∫
M×M

(Mn(x, y)−M(x, y))p
′
dµg(x)dµg(y) = 0. (3.4)
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Combining (3.4) with the Hölder inequality, we have

‖J ′(un)− J ′(u)‖ = sup
v∈W s,p

0 (Ω), ‖v‖Ws,p
0 (Ω)≤1

|〈J ′(un)− J ′(u), v〉| → 0,

as n→∞. �

Combining Lemmas 3.1 and 3.2, we obtain that I ∈ C1(W s,p
0 (M),R) and

〈I ′(u), v〉 =
∫∫

M×M

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))
(dg(x, y))N+ps

dµg(x)dµg(y)

−
∫

Ω

f(x, u)vdµg(x),

for all u, v ∈W s,p
0 (Ω).

Case 1: 1 < q < p. In this subsection, we prove the existence of weak solutions of
problem (1.1), where the growth exponent q of function f satisfies 1 < q < p.

Lemma 3.3. Let (A1) be satisfied. Then the functional I ∈ C1(W s,p
0 (M),R) is

weakly lower semi-continuous.

Proof. Firstly, we notice that the map v 7→ ‖v‖p
W s,p

0 (M)
is lower semi-continuous in

the weak topology of W s,p
0 (M). Indeed, we define a functional ψ : W s,p

0 (M) → R
as

ψ(v) =
∫∫

M×M

|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y).

Similar to Lemma 3.2, we obtain ψ ∈ C1(W s,p
0 (M)) and

〈ψ′(w), v〉

= p

∫∫
M×M

|w(x)− w(y)|p−2(w(x)− w(y))(v(x)− v(y))
(dg(x, y))N+ps

dµg(x)dµg(y),

for all w, v ∈W s,p
0 (M). Note that

ψ
(w + v

2
)
≤
∫∫

M×M

2−1|w(x)− w(y)|p + 2−1|v(x)− v(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

=
1
2
ψ(w) +

1
2
ψ(v).

Thus, ψ is a convex functional in W s,p
0 (M). Furthermore, ψ is subdifferentiable and

the subdifferential denoted by ∂ψ satisfies ∂ψ(u) = {ψ′(u)} for each u ∈ W s,p
0 (M)

(see [26, Proposition 1.1]). Now, let {vn} ⊂ W s,p
0 (M), v ∈ W s,p

0 (M) with vn ⇀ v
weakly in W s,p

0 (M) as n→∞. Then it follows from the definition of subdifferential
that

ψ(vn)− ψ(v) ≥ 〈ψ′(v), vn − v〉.

Hence, we obtain ψ(v) ≤ lim infn→∞ ψ(vn), that is, the map v 7→ ‖v‖p
W s,p

0 (M)
is

weakly lower semi-continuous.
Let un ⇀ u weakly in W s,p

0 (M). By assumption (H1) and Lemma 2.12, up to
a subsequence, un → u strongly in Lq(Ω). Without loss of generality, we assume
that un → u a.e. in Ω. Assumption (A1) implies

F (x, t) ≤ a
(
|t|+ q−1|t|q

)
≤ 2a(|t|q + 1).
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Thus, for any measurable subset U ⊂ Ω,∫
U

|F (x, un)|dµg(x) ≤ 2a
∫
U

|un|qdx+ 2aµ(U).

From 1 < q < p∗s, Lemma 2.4 and Hölder’s inequality, we have∫
U

|F (x, un)|dµg(x) ≤ 2a‖un|q‖
L
p∗s
q (U)

‖1‖
L

p∗s
p∗s−q (U)

+ 2aµ(U)

≤ 2aC‖un‖qW s,p
0 (M)

(µ(U))
p∗s−q
p∗s + 2aµ(U).

Similar to the proof of Lemma 3.1, we obtain

lim
n→∞

∫
Ω

F (x, un)dµg(x) =
∫

Ω

F (x, u)dµg(x).

Thus, the functional H is weakly continuous. Furthermore, we obtain that I is
weakly lower semi-continuous. �

Proof of Theorem 1.2. By (A1), we have |F (x, t)| ≤ 2a(|t|p + 1). Thus, by Lemma
2.4, we obtain

I(u) ≥ 1
p

∫∫
M×M

|u(x)− u(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)− 2a

∫
Ω

|u|qdµg(x)− 2aµ(Ω)

≥ 1
p
‖u‖p

W s,p
0 (M)

− 2aC
q
p

1 ‖u‖
q
W s,p

0 (M)
− 2aµ(Ω).

Since q < p, we have I(u) → ∞ as ‖u‖W s,p
0 (M) → ∞. By Lemma 3.3, I is weakly

lower semi-continuous on W s,p
0 (M). So the functional I has a minimum point u0 in

W s,p
0 (Ω) (see [32, Theorem 1.2]) and u0 ∈ W s,p

0 (M) is a weak solution of problem
(1.1). �

Case 2: p < q < p∗s.

Lemma 3.4. Let f satisfy (A1) and (A3). If p < q < p∗s, then there exist ρ > 0
and α > 0 such that

I(u) ≥ α > 0,
for any u ∈W s,p

0 (M) with ‖u‖W s,p
0 (M) = ρ.

Proof. In view of (A1) and (A3), for any ε > 0, there exists C(ε) > 0 such that for
any ξ ∈ R and a.e. x ∈ Ω, we have

|F (x, ξ)| ≤ ε|ξ|p + C(ε)|ξ|q. (3.5)

Let u ∈W s,p
0 (M). By (3.5) and Lemma 2.4, we obtain

I(u) ≥ 1
p

∫∫
M×M

|u(x)− u(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)− ε

∫
Ω

|u(x)|pdµg(x)

− C(ε)
∫

Ω

|u(x)|qdµg(x)

≥ 1
p
‖u‖p

W s,p
0 (M)

− εC1‖u‖pW s,p
0 (M)

− C(ε)C
q
p

1 ‖u‖
q
W s,p

0 (M)
.

(3.6)

Choosing ε = 1/(2pC1), from (3.6) we have

I(u) ≥ 1
2p
‖u‖p

W s,p
0 (M)

− C‖u‖q
W s,p

0 (M)
≥ ‖u‖p

W s,p
0 (M)

( 1
2p
− C‖u‖q−p

W s,p
0 (M)

)
,
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where C is a constant only depending on N, s, p. Now, let ‖u‖W s,p
0 (M) = ρ > 0.

Since q > p, we can choose ρ sufficiently small such that 1/(2p) − Cρq−p > 0, so
that

I(u) ≥ ρp
( 1

2p
− Cρq−p

)
=: α > 0.

As desired. �

Lemma 3.5. Let f satisfies (A1)–(A3). If p < q < p∗s, then there exists e ∈ C∞0 (Ω)
such that ‖e‖W s,p

0 (M) ≥ ρ and I(ρ) < α, where ρ and α are given in Lemma 3.4.

Proof. From (A2) it follows that

F (x, ξ) ≥ r−γ min{F (x, r), F (x,−r)}|ξ|γ , (3.7)

for all |ξ| > r and a.e. x ∈ Ω. Thus, by (3.7) and F (x, ξ) ≤ max|ξ|≤r F (x, ξ) for all
|ξ| ≤ r, we obtain

F (x, ξ) ≥ r−γ min{F (x, r), F (x,−r)}|ξ|γ −max
|ξ|≤r

F (x, ξ)

−min{F (x, r), F (x,−r)},
(3.8)

for any ξ ∈ R and a.e. x ∈ Ω.
By Lemma 2.1, we can fix u0 ∈ C∞0 (Ω) such that ‖u0‖W s,p

0 (M) = 1. Now, let
t ≥ 1. By (3.8), we have

I(tu0) =
1
p

∫∫
M×M

|tu0(x)− tu0(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)−

∫
Ω

F (x, tu0(x))dµg(x)

≤ tp

p
− r−γtγ

∫
Ω

min{F (x, r), F (x,−r)}|u0(x)|γdµg(x)

+
∫

Ω

max
|ξ|≤r

F (x, ξ) + min{F (x, r), F (x,−r)}dµg(x).

Using (A1) and (A2), we obtain that 0 < F (x, ξ) ≤ a(|r| + |r|q) for |ξ| ≤ r a. e.
x ∈ Ω. Thus, 0 < min{F (x, r), F (x,−r)} < a(|r| + |r|q) a.e. x ∈ Ω. Since γ > p
by assumption (A2), passing to the limit as t→∞, we obtain that I(tu0)→ −∞.
Thus, the assertion follows by taking e = Tu0 with T sufficiently large. �

Definition 3.6. We say that I satisfies (PS) condition in W s,p
0 (M), if for any

sequence {un} ⊂ W s,p
0 (M) such that I(un) is bounded and I ′(un)→ 0 as n→∞,

there exists a convergent subsequence of {un}.

Lemma 3.7. Let f satisfy (A1)–(A3). If p < q < p∗s, then the functional I satisfies
the (PS) condition.

Proof. For any sequence {un} ⊂W s,p
0 (M) such that I(un) is bounded and I ′(un)→

0 as n → ∞, there exits C > 0 such that |〈I ′(un), un〉| ≤ C‖un‖W s,p
0 (M) and

|I(un)| ≤ C. By (A1), we have∣∣ ∫
Ω

T
{|un|≤r}

(F (x, un)− γ−1f(x, un)un)dµg(x)|

≤ (a+ γ−1)(r + rq)|Ω| ≤ C,
(3.9)

where {|un| ≤ r} = {x ∈ Ω : |un(x)| ≤ r}. Thus, by (H2) and (3.9), we obtain

C + C‖un‖W s,p
0 (M) ≥ I(un)− 1

γ
〈I ′(un), un〉
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≥
(1
p
− 1
γ

)∫∫
M×M

|un(x)− un(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)

−
∫

Ω
T
{|un|≤r}

(
F (x, un)− γ−1f(x, un)un

)
dµg(x)

≥
(1
p
− 1
γ

)∫∫
M×M

|un(x)− un(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)− C,

where C denotes various positive constants. Hence, {un} is bounded in W s,p
0 (M).

Since W s,p
0 (M) is a reflexive Banach space, up to a subsequence, still denoted by

{un} such that un ⇀ u weakly in W s,p
0 (M). Then 〈I ′(un), un − u〉 → 0.

For each ϕ ∈W s,p
0 (M) we define a functional T : W s,p

0 (M)→ (W s,p
0 (M))′ by

〈T (ϕ), v〉 =
∫∫

M×M

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))
(dg(x, y))N+ps

(v(x)− v(y))dµg(x)dµg(y),

for all v ∈ W s,p
0 (M). Clearly, by the Hölder inequality, T (ϕ) is also continuous,

being
|〈T (ϕ), v〉| ≤ ‖ϕ‖p−1

W s,p
0 (M)

‖v‖W s,p
0 (M) for all v ∈W s,p

0 (M).

Thus, we have

〈I ′(un), un − u〉 = 〈T (un), un − u〉 −
∫

Ω

f(x, un)(un − u)dµg(x)→ 0 (3.10)

as n→∞. Moreover, by Lemma 2.12, up to a subsequence,

un → u strongly in Lq(Ω) and a.e. in Ω.

Thus, f(x, un)(un − u)→ 0 a.e. in Ω as n→∞. It is easy to check that sequence
{f(x, un)(un − u)} is uniformly bounded and equi-integrable in L1(Ω). Hence, the
Vitali convergence theorem implies

lim
n→∞

∫
Ω

f(x, un)(un − u)dµg(x) = 0.

Therefore, from (3.10) it follows that

lim
n→∞

〈T (un), un − u〉 = 0.

Furthermore, by the weak convergence of {un} in W s,p
0 (M), we obtain

lim
n→∞

〈T (un)− T (u), un − u〉 = 0.

Let us recall the well–known vector inequalities:(
|ξ|p−2ξ − |η|p−2η

)
· (ξ − η) ≥ Cp|ξ − η|p, p ≥ 2;(

|ξ|p−2ξ − |η|p−2η
)
· (ξ − η) ≥ C̃p

|ξ − η|2

(|ξ|+ |η|)2−p , 1 < p < 2,

for all ξ, η ∈ RN , where Cp, C̃p are constants depending only on p. From which it
is easy to verify that for p > 2 and 1 < p < 2, we have∫∫

M×M

|un(x)− un(y)− u(x) + u(y)|p

(dg(x, y))N+ps
dµg(x)dµg(y)→ 0, (3.11)

as n → ∞. Hence, from (3.11) we obtain that un → u strongly in W s,p
0 (M) as

n→∞. Therefore, the proof is complete. �
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Proof of Theorem 1.3. According to Lemmas 3.4–3.7, the Mountain Pass Theorem
[32, Theorem 6.1] implies that there exists a critical point u ∈W s,p

0 (M) for problem
(1.1). �
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[3] D. Applebaum; Lévy processes–from probability to finance quantum groups, Notices Amer.

Math. Soc., 51 (2004), 1336–1347.
[4] T. Audin; Nonliner analysis on manifolds, Monge-Ampére equations, Springer-Verlag, 1982.
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