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Abstract. We study an initial boundary value problem for Kirchhoff-type

parabolic equation with the fractional p-Laplacian. We first discuss the blow

up of solutions in finite time with three initial energy levels: subcritical, critical
and supercritical initial energy levels. Then we estimate an upper bound of

the blowup time for low and for high initial energies.

1. Introduction

In this article we consider the parabolic initial boundary value problem involving
the fractional p-Laplacian

∂tu+ [u](λ−1)p
s,p LpKu = |u|q−2u, in Ω× R+, ∂tu = ∂u/∂t,

u(x, 0) = u0(x), in Ω,

u(x, t) = 0, in (RN\Ω)× R+
0 ,

(1.1)

where [u]s,p =
( ∫∫

Q
|u(x, t)− u(y, t)|pK(x− y) dx dy

)1/p, p and q satisfy 2 < pλ <

q < p∗s with λ ∈ [1, p∗s/p) and p∗s := Np/(N − sp), s ∈ (0, 1), Ω ⊂ RN is a bounded
domain with Lipschitz boundary ∂Ω. The initial function is u0 ≥ 0 on Ω, LpK is a
nonlocal integro-differential operator, which is defined by

LpKϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2[ϕ(x)− ϕ(y)]K(x− y)dy,

for any ϕ ∈ C∞0 (RN ), whereBε(x) denotes the ball in RN with radius ε > 0 centered
at x ∈ RN . The kernel K : RN \ {0} → R+ satisfies the following assumptions

(A1) m(x)K ∈ L1(RN ), where m(x) = min{|x|p, 1}; there exists K0 > 0, such
that K(x) ≥ K0|x|−(N+ps) for a.e. x ∈ RN \ {0}.

A typical example for K is the singular kernel K(x) = |x|−(N+ps). In this way,
LpKϕ(x) = (−∆)spϕ(x) for all ϕ(x) ∈ C∞0 (RN ). We refer the reader to [7, 14, 22, 39]
for further details on fractional Laplacian and the fractional Sobolev spaces. In this
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case, [u]s,p becomes the celebrated Gagliardo semi-norm. As well known, prob-
lem (1.1) has been used to model some physical phenomena occurring in nonlocal
reaction-diffusion problems, non-Newtonian fluid, non-Newtonian filtration and tur-
bulent flows of a gas in a porous medium, and so on. In the non-Newtonian fluid
theory, the quantity p is characteristic of the medium. Media with p > 2 are called
dilatant fluid and those with p < 2 are called pseudoplastics. If p = 2, they are
Newtonian fluids.

To explain the motivation for problem (1.1), let us introduce a prototype of
nonlocal problem (1.1) in RN × R+

0 . Nonlocal evolutions of the form

∂tu(x, t) =
∫

RN
[u(y, t)− u(x, t)]K(x− y)dy, (1.2)

and its variants, have been recently used to model diffusion processes. More pre-
cisely, as stated, if u(x, t) is thought of as a density of population at the point x and
time t and K(x − y) is thought of as the probability distribution of jumping from
location y to location x, then

∫
RN u(y, t)K(x− y)dy is the rate at which individuals

are arriving at position x from all other places and
∫

RN u(x, t)K(x−y)dy is the rate
at which they are leaving location x to travel to all other sites. If we consider the
effects of total population, then problem (1.2) becomes

∂tu(x, t) = M
(∫∫

R2N
|u(x, t)− u(y, t)|2K(x− y) dx dy

)
×
∫

RN
[u(y, t)− u(x, t)]K(x− y)dy,

(1.3)

where the coefficient M : R+
0 → R+

0 accounts for the possible changes of total
population in RN . This signifies that the behavior of individuals is subject to total
population, such as the diffusion process of bacteria. As a matter of fact, model
(1.3) is meaningful, since the way of measurements are usually taken in average
sense. It is worthy pointing out that there are some papers dedicated to the study
of Kirchhoff-type parabolic problems. For example, Gobbino in [11] investigated
the properties of solutions for the degenerate parabolic equations of Kirchhoff type

ut −M
(∫

RN
|∇u|2dx

)
∆u = 0, (1.4)

where the Kirchhoff function M : R+
0 → R+

0 is continuous, which have been studied
by many authors, see [11] and the references therein for more details; see also [3, 26]
for wave equations of Kirchhoff type.

In the classical case, let us sketch the recent advances concerning the equation

ut −∆u = f(u). (1.5)

Liu and Zhao [16] considered the initial-boundary value problem with initial data
J(u0) < d for I(u0) < 0 and I(u0) ≥ 0, and initial data J(u0) = d for I(u0) ≥ 0.
In [30] Xu studied the same problem with critical initial data J(u0) = d, I(u0) < 0,
and initial data J(u0) > d, I(u0) > 0. A powerful technique for treating the above
problem is the so-called potential well method, which was established by Payne and
Sattinger [25]. Gazzola and Weth [12] studied the initial-boundary value problem
of (1.5), where f(u) = |u|p−1u. They proved finite time blow-up of solutions with
high initial energy J(u0) > d by the comparison principle and variational methods.
Xu and Su [32] studied the initial boundary value problem of ut −∆ut −∆u = up.
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More precisely, they used the family of the potential wells to prove the nonexistence
of solutions with initial energy J(u0) ≤ d, and obtained finite time blowup with
high initial energy J(u0) > d by comparison principle. Very recently, Xu et al. in
[33] discussed the same problem and established a new finite time blowup theorem
for the solution of problem for arbitrary high initial energy.

In the fractional case, Caffarelli and Silvestre [4] introduced the s-harmonic ex-
tension to define the fractional Laplacian operator. Nezza et al. [22] established
the corresponding Sobolev inequality and Poincaré inequality on the cone Sobolev
spaces. Fu and Pucci in [8] proved the existence of global solutions with exponen-
tial decay and showed the blow-up in finite time of solutions to the space-fractional
diffusion problem

ut + (−∆)su = |u|p−1u, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ Rn \ Ω, t ≥ 0,

(1.6)

provided that M ≡ 1 and p satisfies 1 < p ≤ 2∗s − 1 = n+2s
n−2s . More works on

fractional equations can be found in [1, 13, 18, 29] and the references therein.
In recent years, a lot of interest has grown about Kirchhoff-type problems, see

for example [3, 10, 27, 35]. In these papers, to obtain the existence of weak solu-
tions, the authors always assume that the Kirchhoff function M : R+

0 → R+ is a
continuous and nondecreasing function and satisfies the following conditions:

there exists m0 > 0 such that M(t) ≥ m0 for all t ∈ R+
0 . (1.7)

A typical example is M(t) = m0 +btm with m0 > 0, b ≥ 0 for all t ∈ R+
0 . Naturally,

we distinguish the problem into non-degenerate and degenerate cases in accordance
with M(0) > 0 and M(0) = 0 respectively. It is worthwhile pointing out that
the degenerate case is rather interesting and is treated in well-known papers in
Kirchhoff theory, see for example [5]. From a physical point of view, the fact that
M(0) = 0 means that the base tension of the string is zero. For some recent results
in the degenerate case, see for instance [2, 6, 20, 28, 31, 36] and the references
therein. In these papers, the Kirchhoff function M was assumed to fulfill more
general conditions which cover the degenerate case. In this paper, we assume that
M is the simple power function M(t) = tλ−1 with λ ∈ [1, p∗s/p) for all t ∈ R+

0 ,
which implies problem (1.1) is degenerate, see [34, 37, 38] for more results about
this type. Pan et al. [24] first studied the global solutions for degenerate Kirchhoff-
type wave problem in the setting of fractional Laplacian by combing the Galerkin
method with potential well theory. Pan et al. [23] investigated for the first time
the existence of a global solution for degenerate Kirchhoff-type diffusion problems
involving fractional p-Laplacian by combing the Galerkin method with potential
well theory. Recently, Xiang et al. [19] studied a diffusion model of Kirchhoff-type
driven by a nonlocal integro-differential operator, and obtained the existence of
nonnegative local solutions. Also, they showed that the nonnegative local solutions
blow up in finite time with arbitrary negative initial energy. In particular, the
authors gave an estimate for the lower and upper bounds of the blow-up time
under certain hypotheses on M which cover the degenerate case M(0) = 0.

Zhou and Yang [40] studied an evolution m-Laplace equation involving variable
source in which the upper bound of the blowup time for the blow-up solutions with
positive initial energy was estimated. Xu et al. [33] discussed the initial boundary
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value problem of ut−∆ut−∆u = up, and estimated the upper bound of the blowup
time for arbitrary high initial energy.

Motivated by the above works, we complete the picture of weak solutions for
problem (1.1) in the setting of fractional p-Laplacian by potential well theory and
concave function method. More precisely, we shall prove the finite time blow-up of
solutions for problem (1.1) at three different energy levels: J(u0) < d, J(u0) = d,
J(u0) > d. Furthermore, we will estimate the upper bound of the blowup time at
low initial energy and arbitrary high initial energy.

The outline of this paper is as follows. In Section 2, we recall some necessary
definitions and properties of the fractional Sobolev spaces and introduce the family
of potential wells. In Section 3, we prove the finite time blow-up for problem (1.1)
with low initial energy J(u0) < d and estimate the upper bound of the blowup
time. In Section 4, we show the finite time blow-up for problem (1.1) with critical
energy J(u0) = d. In Section 5, we establish a new finite time blowup theorem
for the solution of problem (1.1) for arbitrary high initial energy and estimate the
upper bound of the blowup time.

2. Preliminaries

2.1. Functional spaces. In this section, we first recall some definitions and prop-
erties of the fractional Sobolev spaces, see [9, 22, 35] for further details.

Let 0 < s < 1 < p <∞ be real numbers and the fractional critical exponent p∗s
be defined as

p∗s =

{
Np
N−sp , if sp < N,

∞, if sp ≥ N.
(2.1)

In the following, we denote Q = R2N \ G, where

G = C(Ω)× C(Ω) ⊂ R2N ,

and G = RN \ Ω. W is a linear space of Lebesgue measurable functions from RN
to R such that the restriction to Ω of any function u in W belongs to Lp(Ω) and∫∫

Q

|u(x)− u(y)|pK(x− y) dx dy <∞.

The space W is equipped with the norm

‖u‖W =
(
‖u‖Lp(Ω) +

∫∫
Q

|u(x)− u(y)|pK(x− y) dx dy
)1/p

.

It is easy to get that ‖ · ‖W is a norm on W , see [35]. We shall work in the closed
linear subspace

W0 = {u ∈W : u(x) = 0 a.e. in RN \ Ω}. (2.2)

For any p ∈ [1,+∞), we define the fractional Sobolev space W s,p(Ω) as follows

W s,p(Ω) =
{
u ∈ Lp(Ω) :

|u(x)− u(y)|p

|x− y|N+ps
∈ Lp(Ω× Ω)

}
,

endowed with the norm

‖u‖W s,p(Ω) =
(
‖u‖Lp(Ω) +

∫∫
Ω

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

.
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Lemma 2.1 ([35, Lemma 2.3]). Let K : RN \ {0} → R+ satisfy assumption(A1).
Then there exists a positive constant C0 = C0(N, p, s) such that for any v ∈ W0

and q ∈ [1, p∗s],

‖v‖pLq(Ω) ≤ C0

∫∫
Ω×Ω

|v(x)− v(y)|p

|x− y|N+ps
dx dy

≤ C0

K0

∫∫
Q

|v(x)− v(y)|pK(x− y) dx dy.

Definition 2.2. Let p ≥ 1 and W be a reflexive Banach space. A function f
defined and measurable in Q belongs to the space Lp(0, T ;W ), if

‖f‖Lp(0, T ;W ) =
(∫ T

0

‖f(x, t)‖pW dt
)1/p

<∞,

Using [8], we can get an equivalent norm on W0 defined as

‖v‖W0(Ω) =
(∫∫

Q

|v(x)− v(y)|pK(x− y) dx dy
)1/p

.

Definition 2.3. A function u ∈ L∞(0,∞;W0) is said to be a (weak) solution of
problem (1.1), if ut ∈ L2(0,∞;L2(Ω)) and for a.e. t > 0,∫

Ω

∂tu(x, t)φdx+ 〈u, φ〉W0 =
∫

Ω

|u|q−2uφdx,

where

〈u, φ〉W0 = M(‖u‖pW0
)
∫∫

Q

|u(x, t)− u(y, t)|p−2[u(x, t)− u(y, t)]

× [φ(x)− φ(y)]K(x− y) dx dy,

for any φ ∈W0.

Then we introduce some functionals

J(u) =
1
pλ
‖u‖pλW0

− 1
q
‖u‖qq, (2.3)

I(u) = ‖u‖pλW0
− ‖u‖qq, (2.4)

and the potential well

W = {u ∈W0 | I(u) > 0, J(u) < d} ∪ {0},
V = {u ∈W0 | I(u) < 0, J(u) < d}, d = inf

u∈N
J(u).

The Nehari manifold

N = {u ∈W0 : I(u) = 0, ‖u‖W0 6= 0},

separates the two unbounded sets

N+ = {u ∈W0 | I(u) > 0}, N− = {u ∈W0 | I(u) < 0}.
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2.2. Family of potential wells. In this section, we introduce a family of potential
wells Wδ and its corresponding sets Vδ, and give a series of their properties for
problem (1.1). Firstly, let the definitions of functionals J(u), I(u) and the potential
well W with its depth d given above hold. Next, we give some properties of above
sets and functionals.

For δ > 0, we define

Iδ(u) = δ‖u‖pλW0
− ‖u‖qq, d(δ) = inf

u∈Nδ
J(u),

Nδ = {u ∈W0 | Iδ(u) = 0, ‖u‖W0 6= 0}, r(δ) =
( δ

Cq∗

) 1
q−pλ

,

where C∗ is the embedding constant from W0 into Lq(Ω).
For 0 < δ < q/(pλ), we define

Wδ = {u ∈W0 | Iδ(u) > 0, J(u) < d(δ)} ∪ {0},
Vδ = {u ∈W0 | Iδ(u) < 0, J(u) < d(δ)},∫ t

0

‖uτ‖22dτ + J(u) ≤ J(u0) . (2.5)

Lemma 2.4. Let u ∈W0. Then we have
(i) If Iδ(u) < 0, then ‖u‖W0 > r(δ). In particular, if I(u) < 0, then ‖u‖W0 >

r(1).
(ii) If Iδ(u) = 0, then ‖u‖W0 ≥ r(δ) or ‖u‖W0 = 0. In particular, if I(u) = 0,

then ‖u‖W0 ≥ r(1) or ‖u‖W0 = 0.
(iii) If Iδu = 0 and ‖u‖W0 6= 0, then J(u) > 0 for 0 < δ < q/(pλ), J(u) = 0 for

δ = q/(pλ), J(u) < 0 for δ > q/(pλ).

Proof. (i) It is easy to see that ‖u‖W0 6= 0 thanks to Iδ(u) < 0. Thus from

δ‖u‖pλW0
< ‖u‖qq ≤ Cq∗‖u‖

q
W0

= Cq∗‖u‖
pλ
W0
‖u‖q−pλW0

,

we obtain ‖u‖W0 > r(δ).
(ii) On the one hand, if ‖u‖W0 = 0, then Iδ(u) = 0. On the other hand, if

‖u‖W0 6= 0 and Iδ(u) = 0, then by

δ‖u‖pλW0
= ‖u‖qq ≤ Cq∗‖u‖

pλ
W0
‖u‖q−pλW0

,

we obtain ‖u‖W0 ≥ r(δ).
(iii) The conclusion follows from Lemma 2.4(ii) and by Iδ(u) = 0, we have

J(u) =
( 1
pλ
− δ

q

)
‖u‖pλW0

+
δ

q
‖u‖pλW0

− 1
q
‖u‖qq

=
( 1
pλ
− δ

q

)
‖u‖pλW0

+
1
q
Iδu ,

which implies (iii). �

Lemma 2.5. d(δ) satisfies the following properties:
(i) d(δ) ≥ a(δ)rpλ(δ) for a(δ) = 1/(pλ)− δ/q, 0 < δ < q/(pλ).
(ii) limδ→0 d(δ) = 0, d(q/(pλ)) = 0 and d(δ) < 0 for δ > q/(pλ).

(iii) d(δ) is increasing on 0 < δ ≤ 1, decreasing on 1 ≤ δ ≤ q/(pλ) and takes
the maximum d = d(1) at δ = 1.
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Proof. (i) If u ∈ N , then by lemma 2.4(ii) we have ‖u‖W0 ≥ r(δ). Hence from

J(u) =
( 1
pλ
− δ

q

)
‖u‖pλW0

+
1
q
Iδ(u) = a(δ)‖u‖pλW0

≥ a(δ)rpλ(δ),

it follows that d(δ) ≥ a(δ)rpλ(δ).
(ii) For any u ∈W0, ‖u‖W0 6= 0, we define θ = θ(δ) by

δ‖θu‖pλW0
= ‖θu‖qq, (2.6)

i.e. δ‖u‖pλW0
= θq−pλ‖u‖qq. Hence, for any δ > 0, there exists a unique

θ(δ) =
(δ‖u‖pλW0

‖u‖qq

) 1
q−pλ

,

satisfying (2.6), which implies that θu ∈ Nδ, we have limδ→0 θ(δ) = 0. It is easy to
see that

lim
δ→0

J(θu) = lim
θ→0

J(θu) = 0

and limδ→0 d(δ) = 0. From lemma 2.4 (iii), we can complete this proof.
(iii) It is enough to prove that for any 0 < δ′ < δ′′ < 1 or 1 < δ′′ < δ′ < q/(pλ)

and for any u ∈ Nδ′′ , there exist a v ∈ Nδ′ and a constant ε(δ′, δ′′) such that
J(v) < J(u)− ε(δ′, δ′′). In fact, for above u we can define θ(δ), then Iδ(θ(δ)u) = 0
and θ(δ′′) = 1. Let g(θ) = J(θu), we obtain

d

dθ
g(θ) =

1
θ

(
(1− δ)‖θu‖pλW0

+ Iδ(θu)
)

= θpλ−1(1− δ)‖u‖pλW0
.

Taking v = θ(δ′)u, then v ∈ Nδ′ . For 0 < δ′ < δ′′ < 1, we have

J(v)− J(u) =g(1)− g(θ(δ′))

=
∫ 1

θ(δ′)

d

dθ
(g(θ))dθ

=
∫ 1

θ(δ′)

(1− δ)θpλ−1‖u‖pλW0
dθ

>(1− δ′′)rpλ(δ′′)θpλ−1(δ′) (1− θ(δ′)) ≡ ε(δ′, δ′′).

For 1 < δ′′ < δ′ < q/(pλ), we have

J(u)− J(v) =g(1)− g(θ(δ′))

>(δ′′ − 1)rpλ(δ′′)θpλ−1(δ′′) (θ(δ′)− 1) ≡ ε(δ′, δ′′).

Therefore, the conclusion of (iii) is proved. �

Lemma 2.6. Assume 0 < J(u) < d for some u ∈W0, and δ1 < δ2 are the two roots
of equation d(δ) = J(u). Then the sign of Iδ(u) doesn’t change for δ1 < δ < δ2.

Proof. J(u) > 0 implies ‖u‖W0 6= 0. If the sign of Iδ(u) is changeable for δ1 < δ <
δ2, then we choose δ ∈ (δ1, δ2) and Iδ(u) = 0. Therefore, we can get J(u) ≥ d(δ),
which contradicts J(u) = d(δ1) = d(δ2) < d(δ). �
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3. Blow up with low initial energy J(u0) < d

Definition 3.1. Let u(t) be a weak solution of problem (1.1). We define the
maximal time existence Tmax of u(t) as follows:

(i) If u(t) exists for 0 ≤ t <∞, then Tmax =∞.
(ii) If there exists a t0 ∈ (0,∞) such that u(t) exists for 0 ≤ t < t0, but does

not exists at t = t0, then Tmax = t0.

Lemma 3.2 (Invariant set for J(u0) < d). Let u0 ∈W0, 0 < e < d, δ1 < δ2 be the
two roots of equation d(δ) = e. Then All weak solutions u of problem (1.1) with
J(u0) = e belong to Vδ for δ1 < δ < δ2, 0 ≤ t < Tmax, provided I(u0) < 0, where
Tmax is the maximal existence time of u(t).

Proof. Let u(t) be any weak solution of problem (1.1) with J(u0) = e, I(u0) < 0.
From J(u0) = e, I(u0) < 0 and Lemma 2.6, it follows Iδ(u0) < 0 and J(u0) < d(δ).
Then u0(x) ∈ Vδ for δ1 < δ < δ2.

We prove u(t) ∈ Vδ for δ1 < δ < δ2 and 0 < t < Tmax. Arguing by contradiction,
by time continuity of I(u), we suppose that there exists a δ0 ∈ (δ1, δ2) and t0 ∈
(0, Tmax) such that u(t0) ∈ ∂Vδ0 , Iδ0(u(t0)) = 0 or J(u(t0)) = d(δ0). From∫ t

0

‖u(τ)‖22dτ + J(u) ≤ J(u0) < d(δ), δ1 < δ < δ2, 0 ≤ t < Tmax, (3.1)

we can see that J(u(t0)) 6= d(δ0). Assume Iδ0(u(t0)) = 0 and t0 is the first time such
that Iδ0(u(t0)) = 0, then Iδ0(u(t)) < 0 for 0 ≤ t < t0. By Lemma 2.4(i) we have
‖u(t0)‖W0 > r(δ0) for 0 ≤ t < t0. Hence ‖u(t0)‖W0 > r(δ0), then ‖u(t0)‖W0 6= 0.
From u(t0) ∈ Nδ0 and J(u(t0)) 6= d(δ0), we have J(u(t0)) > d(δ0), which contradicts
(3.1). �

Remark 3.3. If the assumption J(u0) = e is replaced by 0 < J(u0) ≤ e in Lemma
3.2, then the conclusion of Lemma 3.2 still holds.

3.1. Finite time blow-up at low initial energy. In this section, we establish
the finite time blow-up of solutions of problem (1.1). By Lemma 2.1 we know that
W0 is continuously embedding in L2(Ω), let S be the best embedding constant.
Then the main result of this section is stated as follows.

Theorem 3.4 (Blow-up for J(u0) < d). Suppose that u0 ∈ W0, J(u0) < d and
I(u0) < 0. then any nontrivial solution of problem (1.1) must blowup in finite
time. There exists a T > 0 such that

lim
t→T

∫ t

0

‖u‖22dτ = +∞. (3.2)

Proof. Let u(t) be any weak solution of problem (1.1) with J(u0) < d and I(u0) < 0.
We define

M(t) =
∫ t

0

‖u‖22dτ,

then M ′(t) = ‖u‖22, and

M ′′(t) = 2(u, ut) = 2
∫

Ω

utudx = 2‖u‖qq − 2‖u‖pλW0
= −2I(u). (3.3)

Notice that

J(u) =
1
pλ
‖u‖pλW0

− 1
q
‖u‖qq =

( 1
pλ
− 1
q

)
‖u‖pλW0

+
1
q
I(u);
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thus

I(u) = qJ(u)− q − pλ
pλ

‖u‖pλW0
.

Applying the basic inequality s ≤ sα + 1 for any s ≥ 0 and α ≥ 1, we can get

M ′′(t) =
2(q − pλ)

pλ
‖u‖pλW0

− 2qJ(u)

≥2(q − pλ)
pλ

(‖u‖2W0
− 1) + 2q

∫ t

0

‖uτ‖22dτ − 2qJ(u0)

≥2C(q − pλ)
pλ

‖u‖22 + 2q
∫ t

0

‖uτ‖22 −
(

2qJ(u0) +
2(q − pλ)

pλ

)
=

2C(q − pλ)
pλ

M ′(t) + 2q
∫ t

0

‖uτ‖22dτ −
(

2qJ(u0) +
2(q − pλ)

pλ

)
,

where C = S2. Note that(∫ t

0

(uτ , u)dτ
)2

=
(1

2

∫ t

0

d

dτ
‖u‖22

)2

=
(1

2
‖u‖22 −

1
2
‖u0‖22

)2

=
1
4
(
‖u‖42 − 2‖u‖22‖u0‖22 + ‖u0‖42

)
=

1
4
(
(M ′(t))2 − 2M ′(t)‖u0‖22 + ‖u0‖42

)
.

It follows that

(M ′(t))2 = 4
(∫ t

0

∫
Ω

uτu dx dτ
)2

+ 2M ′(t)‖u0‖22 − ‖u0‖42 . (3.4)

Using the Cauchy-Schwartz inequality, we have

M ′′(t)M(t)− q

2
(M ′(t))2

≥ 2q
∫ t

0

‖uτ‖22dτ
∫ t

0

‖u‖22dτ − 2q
(∫ t

0

∫
Ω

uτu dx dτ
)2

+
q

2
‖u0‖42

−
(

2qJ(u0) +
2(q − pλ)

pλ

)
M(t) +

2C(q − pλ)
pλ

M ′(t)M(t)− q‖u0‖22M ′(t)

≥ 2C(q − pλ)
pλ

M ′(t)M(t)−
(

2qJ(u0) +
2(q − pλ)

pλ

)
M(t)− q‖u0‖22M ′(t).

We discuss the following two cases:
(i) If J(u0) ≤ 0, then

M(t)M ′′(t)− q

2
(M ′(t))2

≥ 2C(q − pλ)
pλ

M(t)M ′(t)− q‖u0‖22M ′(t)−
2(q − pλ)

pλ
M(t).

Now we prove I(u) < 0 for t > 0. If it is false, we must be allowed to choose a t0 > 0
such that I(u(t0)) = 0 and I(u) < 0 for 0 ≤ t < t0. From Lemma 2.4(i), we have
‖u‖W0 > r(1) for 0 ≤ t < t0, ‖u(t0)‖W0 ≥ r(1) and J(u(t0)) ≥ d, which contradicts
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(2.5). From (3.3), we can get M ′′(t) > 0 for t ≥ 0. From M ′(0) = ‖u0‖22 ≥ 0, we
can see that there exists a t0 ≥ 0 such that M ′(t0) > 0. For t ≥ t0 we have

M(t) ≥M ′(t0)(t− t0) +M(t0) > M ′(0)(t− t0).

Therefore, for sufficiently large t, we obtain

C(q − pλ)
pλ

M(t) > q‖u0‖22,

C(q − pλ)
pλ

M ′(t) >
2(q − pλ)

pλ
,

then
M(t)M ′′(t)− q

2
(M ′(t))2 > 0.

(ii) If 0 < J(u0) < d, then by Lemma 3.2 we have u(t) ∈ Vδ for 1 < δ < δ2, t ≥ 0
and Iδ(u) < 0, ‖u‖W0 > r(δ) for 1 < δ < δ2, t ≥ 0, where δ2 is the larger root of
equation d(δ) = J(u0). Hence, Iδ2(u) ≤ 0 and ‖u‖W0 > r(δ2) for t ≥ 0. By (3.3)
we have

M ′′(t) = −2I(u) = 2(δ2 − 1)‖u‖pλW0
− 2Iδ2(u)

≥ 2(δ2 − 1)‖u‖pλW0
≥ 2(δ2 − 1)rpλ(δ2), t ≥ 0,

M ′(t) ≥ 2(δ2 − 1)rpλ(δ2)t+M ′(0) ≥ 2(δ2 − 1)rpλ(δ2)t, t ≥ 0,

M(t) ≥ 2(δ2 − 1)rpλ(δ2)t2, t ≥ 0.

Therefore, for sufficiently large t, we have

C(q − pλ)
pλ

M(t) > q‖u0‖22,

C(q − pλ)
pλ

M ′(t) > 2qJ(u0) +
2(q − pλ)

pλ
.

Consequently,

M(t)M ′′(t)− q

2
(M ′(t))2

≥ 2C(q − pλ)
pλ

M ′(t)M(t)−
(

2qJ(u0) +
2(q − pλ)

pλ

)
M(t)− q‖u0‖22M ′(t)

=
(C(q − pλ)

pλ
M(t)− q‖u0‖22

)
M ′(t)

+
(C(q − pλ)

pλ
M ′(t)− 2qJ(u0)− 2(q − pλ)

pλ

)
M(t) > 0.

The remainder of the proof is the same as that in [32]. �

3.2. Blow up time with low initial energy. We give an upper bound for the
blow up time. By Lemma 2.1, we know that the Sobolev space W0 ↪→ Lq(Ω)
continuously. Let C∗ be the optimal constant of the embedding then

‖u‖q ≤ C∗‖u‖W0 , (3.5)

α1 := C
− q
q−pλ

∗ , (3.6)

J1 =
q − pλ
pλq

C
− pλq
q−pλ

∗ =
q − pλ
pλq

αpλ1 . (3.7)
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By [23, Lemma 3.4], we know that

J1 =
q − pλ
pλq

1

C
pλq
q−pλ
∗

= d.

Then the main result of this article reads as follows.

Theorem 3.5. Suppose q > pλ, q > 2. Then the solution of problem (1.1) will
blow up in finite time if the initial value u0 is chosen to ensure that J(u0) < d and
‖u0‖W0 > α1. Moreover, the blow-up time T can be estimated from above by T ∗,
where

T ∗ =
q
(
−
∫

Ω
u2

0(x)
) 2−q

2

(q − 2)(q − pλ)
(

1−
((

1
pλ − J(u0)α−pλ1

)
q
)− q

q−pλ
) (3.8)

and

−
∫

Ω

f(x)dx =
1
|Ω|

∫
Ω

f(x)dx

where |Ω| is the Lebesgue measure of Ω.

Lemma 3.6. The energy defined in (2.3) is nonincreasing with

J(u(t)) = J(u0)−
∫ t

0

‖uτ‖22dτ. (3.9)

Proof. From (2.3), we have

J ′(u(t)) =
d

dt

( 1
pλ
‖u‖pλW0

− 1
q
‖u‖qq

)
=−

∫
Ω

|u|q−2uutdx+
∫

Ω

[u](λ−1)p
s,p (−∆)spuutdx

=−
∫

Ω

(
|u|q−2u− [u](λ−1)p

s,p (−∆)spu
)
utdx

=−
∫

Ω

u2
tdx,

which yields (3.9). �

We deduce from (2.3) and (3.5) that

J(u(t)) =
1
pλ
‖u‖pλW0

− 1
q
‖u‖qq ≥

1
pλ
αpλ − 1

q
(C∗α)q, (3.10)

where α(t) = ‖u(·, t)‖W0 .

Lemma 3.7. Let g : [0,∞) 7→ R be defined by

g(α) =
1
pλ
αpλ − 1

q
Cq∗α

q.

Then the following properties hold under the assumptions of Theorem 3.5:

(i) g is increasing for 0 < α < α1 and decreasing for α ≥ α1;
(ii) limα→∞ g(α) = −∞ and g(α1) = J1.
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Proof. (i) The first derivative of g(α) is

g′(α) = αpλ−1 − Cq∗αq−1.

Note that g′(α) = 0 implied that α1 = C
− q
q−pλ

∗ , hence (i) follows.
(ii) Since pλ < q, we have that limα→∞ g(α) = −∞. α1 is the extreme point

and a routine computation gives rise to g(α1) = J1. Then (ii) holds. �

Lemma 3.8. Under the assumptions of Theorem 3.5, there exists a positive con-
stant α2 > α1 such that

‖u(·, t)‖W0 ≥ α2, t ≥ 0, (3.11)∫
Ω

|u|qdx ≥ (C∗α2)q, (3.12)

α2

α1
≥
(( 1

pλ
− J(0)α−pλ1

)
q
) 1
q−pλ

> 1. (3.13)

Proof. Since J(u0) < J1, it follows from Lemma 3.7 that there exists a positive
constant α2 > α1 such that J(u0) = g(α2). Let α0 = ‖u0‖W0 , by (3.10), we have
g(α0) ≤ J(u0) = g(α2). Since α0, α2 ≥ α1, it follows from Lemma 3.7(i) that
α0 ≥ α2 so (3.11) holds for t = 0.

Now we prove (3.11) by contradiction. Suppose that ‖u(·, t0)‖W0 < α2 for some
t0 > 0. By the continuity of ‖u(·, t)‖W0 and α1 < α2, we may choose t0 such that
‖u(·, t0)‖W0 > α1. Then it follows from (3.10) that

J(u0) = g(α2) < g(‖u(·, t0)‖W0) ≤ J(u(t0)),

which contradicts Lemma 3.6, and (3.11) follows.
By (2.3) and Lemma 3.6, we obtain∫

Ω

1
q
|u|qdx ≥ 1

pλ
‖u‖pλW0

− J(u0) ≥ 1
pλ
αpλ2 − J(u0) =

1
q

(C∗α2)q,

and (3.12) follows.
Since J(u0) < J1, by a straightforward computation, we can check( 1

pλ
− J(u0)α−pλ1

)
q > 1.

Denote β = α2/α1, then β > 1 by the fact that α2 > α1. So it follows from
J(u0) = g(α2) and (3.6) that

J(u0) =g(βα1)

=
1
pλ

(βα1)pλ − 1
q
Cq∗(βα1)q

≥αpλ1

( 1
pλ
− βq−pλ

q
Cq∗α

q−pλ
1

)
=αpλ1

( 1
pλ
− βq−pλ

q

)
,

(3.14)

which implies that the inequality in (3.13). �

Lemma 3.9. Under the assumptions of Theorem 3.5, we have the estimate

0 < H(0) ≤ H(t) ≤ 1
q

∫
Ω

|u|qdx, (3.15)
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where H(t) = J1 − J(u(t)) for t ≥ 0.

Proof. From Lemma 3.6, we know that H(t) is nondecreasing in t. Thus

H(t) ≥ H(0) = J1 − J(u0) > 0, t ≥ 0. (3.16)

Combining (2.3), (3.7) and (3.11), J(u(t)) > 0 and α2 > α1, we have

H(t) = J1 − J(u(t)) ≤ J1 −
1
pλ
αpλ1 +

1
q

∫
Ω

|u|qdx ≤ 1
q

∫
Ω

|u|qdx.

This completes the proof. �

Proof of Theorem 3.5. Let

M(t) =
1
2

∫
Ω

u2(x, t)dx.

Then by the definition of J(u(t)) and H(t), the derivative of M(t) satisfies

M ′(t) =
∫

Ω

uutdx

=− ‖u‖pλW0
+ ‖u‖qq

=‖u‖qq − pλJ(u(t))− pλ

q
‖u‖qq

=
q − pλ
q
‖u‖qq − pλJ1 + pλH(t).

(3.17)

From (3.6), (3.7) and (3.12), we obtain

pλJ1 =
q − pλ
q

C
− pλq
q−pλ

∗ =
q − pλ
q

(C∗α1)q

=
q − pλ
q

(α1

α2

)q
(C∗α2)q

≤ q − pλ
q

(α1

α2

)q ∫
Ω

|u|qdx.

(3.18)

So, we have
M ′(t) ≥ C̃‖u‖qq, (3.19)

where

C̃ =
(

1−
(α1

α2

)q)q − pλ
q

.

By Hölder’s inequality, we have

Mq/2(t) ≤ C̄
∫

Ω

|u|qdx, (3.20)

where
C̄ = 2−q/2|Ω|

q−2
2 ,

and |Ω| is the Lebesgue measure of Ω. Then it follows from (3.19) and (3.20) that

M ′(t) ≥ C̃

C̄
Mq/2(t),

which means that

M(t) =
((1

2

∫
Ω

|u0|2dx
) 2−q

2 − (q − 2)C̃
2C̄

t
)− 2

q−2
. (3.21)
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Let

T̃ :=
2q/2C̄

(q − 2)C̃

(∫
Ω

|u0|2dx
) 2−q

2 ∈ (0,∞) . (3.22)

Then M(t) blows up at time T̃ . Therefore, u(x, t) ceases to exist at some finite
time T ≤ T̃ , that is to say, u(x, t) blows up at a finite time T .

Next, we estimate T . By (3.13) and the values of C̃, C̄, we have

2q/2C̄
(q − 2)C̃

≤ |Ω|
q−2
2

(q − 2)
(

1−
(
( 1
pλ − J(u0)α−pλ1 )q

) q−pλ
q

)
q−pλ
q

.

The above inequalities combined with (3.22) give T ≤ T̃ ≤ T ∗, where T ∗ is defined
in (3.8). The remainder of the proof is the same as that in [40]. �

4. Blow up with critical initial energy J(u0) = d

In this section, we prove the finite time blow-up of solution for problem (1.1)
with the critical initial condition J(u0) = d.

Theorem 4.1. Suppose that u0 ∈ W0, J(u0) = d and I(u0) < 0. Then any
nontrivial solution of problem (1.1) must blow up in finite time.

Proof. Let u(t) be any weak solution of problem (1.1) with J(u0) = d and I(u0) < 0,
T being the existence time of u(t). We prove that T <∞. Arguing by contradiction,
we assume that T =∞. Now we define

M(t) =
∫ t

0

‖u‖22dτ.

By Theorem 3.4 and J(u0) = d we have

M ′′(t) =
2(q − pλ)

pλ
‖u‖pλW0

− 2qJ(u)

=
2(q − pλ)

pλ
‖u‖pλW0

+ 2q
∫ t

0

‖uτ‖dτ − 2qJ(u0)

≥2(q − pλ)
pλ

(‖u‖2W0
− 1) + 2q

∫ t

0

‖uτ‖22dτ − 2qJ(u0)

≥2C(q − pλ)
pλ

‖u‖22 + 2q
∫ t

0

‖uτ‖22dτ −
(

2qJ(u0) +
2(q − pλ)

pλ

)
=

2C(q − pλ)
pλ

M ′(t) + 2q
∫ t

0

‖uτ‖22dτ −
(

2qJ(u0) +
2(q − pλ)

pλ

)
.

According to the estimate of the (M ′(t))2 in Theorem 3.4 which is (3.4), we obtain

M ′′(t)M(t)− q

2
(M ′(t))2

≥ 2q
∫ t

0

‖uτ‖22dτ
∫ t

0

‖u‖22dτ − 2q
(∫ t

0

∫
Ω

uτu dx dτ
)2

−
(

2qJ(u0) +
2(q − pλ)

pλ

)
M(t) +

2C(q − pλ)
pλ

M ′(t)M(t)

− q‖u0‖22M ′(t) +
q

2
‖u0‖42
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≥ 2C(q − pλ)
pλ

M ′(t)M(t)−
(

2qJ(u0) +
2(q − pλ)

pλ

)
M(t)− q‖u0‖22M ′(t).

By using the Cauchy-Schwartz inequality, we obtain

M(t)M ′′(t)− q

2
(M ′(t))2

≥ 2C(q − pλ)
pλ

M ′(t)M(t)−
(

2qJ(u0) +
2(q − pλ)

pλ

)
M(t)− q‖u0‖22M ′(t)

=
(C(q − pλ)

pλ
M(t)− q‖u0‖22

)
M ′(t)

+
(C(q − pλ)

pλ
M ′(t)− 2qJ(u0)− 2(q − pλ)

pλ

)
M(t).

(4.1)

On the other hand, from J(u0) = d > 0, I(u0) < 0 and the continuity of J(u)
and I(u) with respect to t, it follows that there exists a sufficiently small t1 > 0
such that J(u(t1)) > 0 and I(u) < 0 for 0 ≤ t ≤ t1. Hence (ut, u) = −I(u) > 0,
ut 6= 0, ‖ut‖ > 0 for 0 ≤ t ≤ t1. From this and the continuity of

∫ t
0
‖uτ‖22dτ , we can

choose a t1 such that

0 < J(u(t1)) = d1 = d−
∫ t1

0

‖uτ‖22dτ < d.

Thus we take t = t1 as the initial time, then we know that u(t) ∈ Vδ for δ ∈ (δ1, δ2),
t1 ≤ t < ∞, where (δ1, δ2) is the maximal interval including δ = 1 such that
d(δ) > d1 for δ ∈ (δ1, δ2). Hence we have Iδ(u) < 0 and ‖u‖W0 > r(δ) for δ ∈ (1, δ2),
t1 ≤ t < ∞, and Iδ2(u) ≤ 0, ‖u‖W0 ≥ r(δ2) for t1 ≤ t < ∞. Thus from (3.3) we
obtain

M ′′(t) = −2I(u) = 2(δ2 − 1)‖u‖pλW0
− 2Iδ2(u)

≥ 2(δ2 − 1)‖u‖pλW0

≥ 2(δ2 − 1)rpλ(δ2) ≡ C(δ2), t1 ≤ t <∞,

(4.2)

M ′(t) ≥ C(δ2)(t− t1) +M ′(t1) ≥ C(δ2)(t− t1), t1 ≤ t <∞, (4.3)

M(t) ≥ 1
2
C(δ2)(t− t1)2 +M(t1) >

1
2
C(δ2)(t− t1)2, t1 ≤ t <∞. (4.4)

From (4.3) and (4.4) it follows that for sufficiently large t we have

C(q − pλ)
pλ

M(t) > q‖u0‖22,

and
C(q − pλ)

pλ
M ′(t) > 2qd+

2(q − pλ)
pλ

, t1 ≤ t <∞.

Thus (4.1) yields

M(t)M ′(t)− q

2
(M ′(t))2 > 0,

which gives

(M−α(t))′′ =
−α
Mα+2

(t)
(
M(t)M ′(t)− (α+ 1)(M ′(t))2

)
≤ 0, α =

q − 2
2

.

From this it follows that there exists a T1 > 0 such that

lim
t→T1

M−α(t) = 0, and lim
t→T1

M(t) = +∞,
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which contradicts that T = +∞. �

5. Blow up time with high initial energy J(u0) > 0

In this section, we establish a finite time blowup theorem for the solution of
problem (1.1) with arbitrary high initial energy. At the same time, we estimate the
upper bound of the blowup time.

Theorem 5.1. Let u(x, t) be a weak solution to problem (1.1), u0 ∈ W0. Suppose
that J(u0) > 0 and

pλq

q − pλ
J(u0) < B‖u0‖pλ2 (5.1)

hold. Then the solution u(x, t) blows up in finite time, where B is best constant of
inequality ‖u‖pλW0

≥ B‖u‖pλ2 with B = Spλ. In addition there exists a t1 as

0 < t1 ≤
2ϕ(0)

(α− 1)ϕ′(0)
,

such that

lim
t→t1

∫ t

0

‖u‖22dτ = +∞, (5.2)

where

ϕ(t) =
(∫ t

0

‖u‖22dτ
)

+ ε−1‖u0‖22
∫ t

0

‖u‖22dτ + c, (5.3)

1 < α <
B(q − pλ)‖u0‖pλ2

pλqJ(u0)
, (5.4)

0 < ε <
1

pλα‖u0‖22

(2B(q − pλ)
q

‖u0‖22 − 2pλαJ(u0)− 2(q − pλ)
q

)
, (5.5)

c >
1
4
ε−2‖u‖42. (5.6)

Lemma 5.2 ([15]). Suppose that a positive, twice-differentiable function ψ(t) sat-
isfy the inequality

ψ′′(t)ψ(t)− (1 + θ)(ψ′(t))2 ≥ 0, t > 0,

where θ > 0 is a constant. If ψ(0) > 0 and ψ′(0) > 0, then there exists 0 < t1 ≤
ψ(0)
θψ′(0) such that ψ(t) tends to ∞ as t→ t1.

To prove the high energy blowup, we first establish the following lemma.

Lemma 5.3. Assume that u0 ∈ W0 satisfies (5.1). Then u ∈ N− = {u ∈
W0|I(u) < 0}.

Proof. Let u(t) be any weak solution of problem (1.1). Multiplying (1.1) by ut(t)
and integrating on Ω, then we have

‖ut(t)‖22 = − 1
pλ

d

dt
‖u‖pλW0

+
1
q

d

dt
‖u‖qq;

that is,

−‖ut(t)‖22 =
d

dt

( 1
pλ
‖u‖pλW0

− 1
q
‖u‖qq

)
.
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Then, we could obtain
d

dt
J(u) = −‖ut(t)‖22 ≤ 0. (5.7)

Multiplying (1.1) by u and integrate on Ω× (0, t), we have

1
2
‖u‖22 −

1
2
‖u0‖22 +

∫ t

0

(‖u‖pλW0
− ‖u‖qq)dτ = 0 ;

that is,
1
2
d

dt
‖u‖22 = −I(u). (5.8)

Note that

J(u0) =
q − pλ
pλq

‖u0‖pλW0
+

1
q
I(u0)

≥B(q − pλ)
pλq

‖u0‖pλ2 +
1
q
I(u0) .

Then (5.1) indicates that I(u0) < 0.
Next, we prove u(t) ∈ N− for all t ∈ [0, T ). Arguing by contradiction, by the

continuity of I(t) in t, we assume that there exists an s ∈ (0, T ) such that u(t) ∈ N−
for 0 ≤ t < s and u(s) ∈ N , then by (5.8) we have

d

dt
‖u(t)‖22 = −2I(u) > 0, for all t ∈ [0, s), (5.9)

which implies that ‖u0‖22 < ‖u(s)‖22. Then, we have

‖u0‖pλ2 < ‖u(s)‖pλ2 . (5.10)

From (5.7) it follows that

J(u(s)) ≤ J(u0) for all t ∈ [0, s). (5.11)

By the definition of J(u) and u(s) ∈ N , we arrive to

J(u(s)) =
q − pλ
pλq

‖u‖pλW0
+

1
q
I(u(s)) ≥ B(q − pλ)

pλq
‖u‖pλ2 .

Combining (5.1) and (5.11), we obtain

B(q − pλ)
pλq

‖u‖pλ2 ≤ J(u0) <
B(q − pλ)

pλq
‖u0‖pλ2 ;

that is
‖u(s)‖pλ2 < ‖u0‖pλ2 .

This contradicts (5.10). �

Now we show high energy blowup and estimate the upper bound of the blowup
time of solutions for problem(1.1).

Proof. Arguing by contradiction, we assume the existence time of solutions T =
+∞. Integrating of (5.7) with from 0 to t,

J(u) +
∫ t

0

‖uτ‖22dτ = J(u0). (5.12)
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From (5.8) we have

d

dt
‖u‖22 = −2I(u)

= −2(‖u‖pλW0
− ‖u‖qq)

= −2pλ
( 1
pλ
‖u‖pλW0

− 1
q
‖u‖qq

)
+
(

2− 2pλ
q

)
‖u‖qq

= −2pλJ(u) +
2q − 2pλ

q
‖u‖qq.

(5.13)

In the rest of the proof, we consider the following two cases.
(i) J(u) ≥ 0, for all t > 0. From (5.1), we choose α satisfying (5.4). Substituting

(5.12) into (5.13), as J(u) ≥ 0 in this case we obtain

d

dt
‖u‖22 = 2pλ(α− 1)J(u)− 2pλαJ(u) +

2(q − pλ)
q

‖u‖qq

≥ −2pλαJ(u0) + 2pλα
∫ t

0

‖uτ‖22dτ +
2(q − pλ)

q
‖u‖qq.

(5.14)

From Lemma 5.3, we know that ‖u‖pλW0
< ‖u‖qq. Therefore, applying the basic

inequality s ≤ sα + 1 for any s ≥ 0 and α ≥ 1, we obtain

d

dt
‖u‖22

≥ −2pλαJ(u0) + 2pλα
∫ t

0

‖uτ‖22dτ +
2(q − pλ)

q
‖u‖qq

> −2pλαJ(u0) + 2pλα
∫ t

0

‖uτ‖22dτ +
2(q − pλ)

q
‖u‖pλW0

> −2pλαJ(u0) + 2pλα
∫ t

0

‖uτ‖22dτ +
2(q − pλ)

q
(‖u‖2W0

− 1)

> −2pλαJ(u0) + 2pλα
∫ t

0

‖uτ‖22dτ +
2B(q − pλ)

q
‖u‖22 −

2(q − pλ)
q

.

(5.15)

Then
d

dt
‖u‖22 −

2B(q − pλ)
q

‖u‖22 > −2pλαJ(u0)− 2(q − pλ)
q

, (5.16)

which yields

‖u‖22 > ‖u0‖22e
2B(q−pλ)

q t

+
q

B(q − pλ)

(
pλαJ(u0) +

q − pλ
q

)(
1− e

2B(q−pλ)
q t

)
.

(5.17)

Next, we define y(t) =
∫ t

0
‖u(τ)‖22dτ . Since the solution u(x, t) is global, thus the

function y(t) is bounded for all t ≥ 0. Then we have

y′(t) = ‖u(t)‖22, y′′(t) =
d

dt
‖u‖22.
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Substituting (5.17) into (5.15), we obtain

y′′(t) >
(2B(q − pλ)

q
‖u0‖22 − 2pλαJ(u0)− 2(q − pλ)

q

)
e

2B(q−pλ)
q t

+ 2pλα
∫ t

0

‖uτ‖22dτ

> pλαε‖u0‖22 + 2pλα
∫ t

0

‖uτ‖22dτ

= A(t).

(5.18)

By (5.4), we can take ε > 0 small enough such that

ε <
1

pλα‖u0‖22

(2B(q − pλ)
q

‖u0‖22 − 2pλαJ(u0)− 2(q − pλ)
q

)
, (5.19)

then we pick c > 0 large enough such that

c >
1
4
ε−2‖u‖42. (5.20)

We now define the auxiliary function ϕ(t) = y2(t) + ε−1‖u0‖22y(t) + c. Hence

ϕ′(t) =
(
2y(t) + ε−1‖u0‖22

)
y′(t), (5.21)

ϕ′′(t) =
(
2y(t) + ε−1‖u0‖22

)
y′′(t) + 2(y′(t))2. (5.22)

Set δ = 4c− ε−2‖u0‖42, because of (5.6), δ > 0. Now, from (5.21) we can write

(ϕ′(t))2 =
(
2y(t) + ε−1‖u0‖22

)2
(y′(t))2

=
(
4y2(t) + 4ε−1‖u0‖22y(t) + ε−2‖u0‖42

)
(y′(t))2

=
(
4y2(t) + 4ε−1‖u0‖22y(t) + 4c− δ

)
(y′(t))2

= (4ϕ(t)− δ)(y′(t))2.

(5.23)

The above equality yields

4ϕ(t)(y′(t))2 = (ϕ′(t))2 + δ(y′(t))2. (5.24)

By integrating

1
2
d

dt
‖u(t)‖22 = (u, ut) (5.25)

from 0 to t, we obtain

1
2
(
‖u(t)‖22 − ‖u0‖22

)
=
∫ t

0

(u, uτ )dτ.

Hence

‖u(t)‖22 = ‖u0‖22 + 2
∫ t

0

(u, uτ )dτ.
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This equality along with the Hölder and Young’s inequality give

(y′(t))2

= ‖u(t)‖42

=
(
‖u0‖22 + 2

∫ t

0

(u, uτ )dτ
)2

≤
(
‖u0‖22 + 2

(∫ t

0

‖u‖22dτ
)1/2(∫ t

0

‖uτ‖22dτ
)1/2)2

≤ ‖u0‖42 + 4y(t)
∫ t

0

‖uτ‖22dτ + 2ε‖u0‖22y(t) + 2ε−1‖u0‖22
∫ t

0

‖uτ‖dτ

= B(t).

(5.26)

From (5.22) and (5.24), we obtain

2ϕ(t)ϕ′′(t) =2
((

2y(t) + ε−1‖u0‖22
)
y′′(t) + 2(y′(t))2

)
ϕ(t)

=2
(
2y(t) + ε−1‖u0‖22

)
y′′(t)ϕ(t) + 4(y′(t))2ϕ(t)

=2
(
2y(t) + ε−1‖u0‖22

)
y′′(t)ϕ(t) + (ϕ′(t))2 + δ(y′(t))2.

(5.27)

By (5.19) and the fact that e
2C(q−pλ)

q > 1 and ϕ > 0, we obtain

2ϕ(t)ϕ′′(t)− (1 + α)(ϕ′(t))2

> 2ϕ(t)
(
2y(t) + ε−1‖u0‖22

) (
2pλα

∫ t

0

‖uτ‖22dτ + pλαε‖u0‖22
)
− 4αϕ(t)B(t)

> 2pλαϕ(t)
(
2y(t) + ε−1‖u0‖22

)(
2
∫ t

0

‖uτ‖22dτ + ε‖u0‖22
)
− 4αϕ(t)B(t)

= 2pλαB(t)ϕ(t)− 4αB(t)ϕ(t) > 0;

that is,

ϕ(t)ϕ′′(t)− 1 + α

2
(ϕ′(t))2 > 0, t ∈ [0, T ],

which implies that

(ϕ−β(t))′′ = − β

ϕβ+2
(ϕ′′(t)ϕ(t)− (β + 1)(ϕ′(t))2) < 0, β =

α− 1
2

> 0.

Since ϕ(0) > 0 and ϕ′(0) > 0, by Lemma 5.2, there exists t∗ such that

0 < t∗ ≤
2ϕ(0)

(α− 1)ϕ′(0)
,

such that
lim
t→t∗

ϕ−β(t) = 0, and lim
t→t∗

ϕ(t) = +∞,

which contradicts T = +∞. Now, by considering the continuity of ϕ with respect to
y, we can conclude that y(t) tends to∞ at some finite time which is a contradiction.

(ii) There exist some t̃ such that J(u(t̃)) < 0. Since J(u0) > 0, by the continuity
of J(u) in t, we can assume that there exists a first time t0 > 0 such that J(u(t0)) =
0 and J(u(t̂)) < 0 for some t̂ > t0. We take u(t̂) as a new initial datum, then from
Lemma 5.3, we have u(t) ∈ N− for t > t̂. Then similar to the proof of Theorem
3.4, we can prove the finite time blowup of the solution.

Combining the above two cases, we conclude that u(x, t) blows up in finite time.
�
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