Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 143, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

HARNACK INEQUALITY FOR (p,q)-LAPLACIAN EQUATIONS UNIFORMLY DEGENERATED IN A PART OF DOMAIN

SARVAN T. HUSEYNOV

Communicated by Ludmila S. Pulkina

ABSTRACT. We consider a (p,q)-Laplace equation with the exponent values p,q depending on the boundary which is divided into two parts by a hyperplane. Assuming that the equation is uniformly degenerate with respect to a small parameter in the part of domain where q < p, a special Harnack inequality is proved for non-negative solutions.

1. Statement of main result

We consider the elliptic equation

$$L_{\varepsilon}u = \operatorname{div}(\omega_{\varepsilon}(x)|\nabla u|^{p(x)-2}\nabla u) = 0$$
(1.1)

in a domain $D \subset \mathbb{R}^n$, $n \geq 2$, with a positive weight $\omega_{\varepsilon}(x)$, and an exponent to be defined below. Assume that the domain is divided by the hyperplane $\Sigma = \{x : x_n = 0\}$ into two parts $D^{(1)} = D \cap \{x : x_n > 0\}$, $D^{(2)} = D \cap \{x : x_n < 0\}$, and that

$$\omega_{\varepsilon}(x) = \begin{cases} \varepsilon, & \text{if } x \in D^{(1)} \\ 1, & \text{if } x \in D^{(2)}, \end{cases} \quad \varepsilon \in (0, 1], \tag{1.2}$$

$$p(x) = \begin{cases} q, & \text{if } x \in D^{(1)} \\ p, & \text{if } x \in D^{(2)}, \end{cases} \quad 1 < q < p.$$
(1.3)

To define the solution of (1.1), we introduce a class of functions related to the exponent p(x):

$$W_{\text{loc}}(D) = \{ u : u \in W^{1,1}_{\text{loc}}(D), |\nabla u|^{p(x)} \in L^1_{\text{loc}}(D) \}.$$

This set is a Sobolev space of functions locally summable in D together with their first order generalized derivatives.

By a solution of to (1.1), we mean a function $u \in W_{loc}(D)$, which satisfies the integral identity

$$\int_{D} \omega_{\varepsilon}(x) |\nabla u|^{p(x)-2} \nabla u \cdot \nabla \varphi \, dx = 0 \tag{1.4}$$

for the test functions $\varphi \in C_0^{\infty}(D)$.

²⁰¹⁰ Mathematics Subject Classification. 35J62, 35J65, 35J70, 35J92.

Key words and phrases. p(x)-Laplacian; elliptic equation; Harnack inequality. ©2018 Texas State University.

Submitted January 5, 2018. Published July 17, 2018.

For the exponent $p(\cdot)$, given by (1.3), the smooth functions are dense in $W_{\text{loc}}(D)$ (see [13]). Therefore, finite functions from $W_{\text{loc}}(D)$ can be considered as test functions in (1.4).

p-Laplace type equations with a variable nonlinearity exponent, p(x), and variational problems with integrants satisfying non-standard coerciveness and growth conditions occur in the modeling of composite materials and electrorheological fluids whose characteristics depend on the considered electromagnetic field. In this work, we consider a model for the case of plane boundary between two different phases. Note that the problem is complicated by the degeneration, uniform in ε , in the domain $D^{(1)}$.

In each of the domains $D^{(i)}$, i = 1, 2, the regularity of the solution has been well studied before (see [10]). It was proved in [1] that for p defined by (1.3) and for every fixed $\varepsilon \in (0, 1]$, every solution of the equation (1.1) in the arbitrary subdomain $D' \Subset D$ belongs to the space $C^{\alpha}(D')$ of Hölder functions in D'. The independence of the Hlder exponent α on ε in case p = q has been established in [2, 9], and for our equation it was proved in [8].

Harnack inequality plays an important role in the qualitative theory of differential equations (see [12]): if $p(x) \equiv p$, then the following inequality holds for the solution u of the equation (1.1) which is non-negative in the ball $B_{4R} \subset D$:

$$\inf_{B_R} u \ge \gamma(n, p) \sup_{B_R} u. \tag{1.5}$$

In [5], it was shown that the classical inequality (1.5) does not hold for the solutions of the equation (1.1) if $\varepsilon = 1$ and q < p. This inequality is not satisfied in the balls B_R centered on the hyperplane Σ . To state the result obtained in [5], denote by $B_R^$ the set $\{x \in B_R : x_n < -R/2\}$. It was established in [5] that if u is a non-negative solution of the equation (1.1) in the ball $B_{8R} \subset D$ centered on the hyperplane Σ , then the following inequality holds in the concentric ball B_R of radius R:

$$\inf_{B_R} u + R \ge C(n, p, q) \sup_{B_R^-} u. \tag{1.6}$$

Along with the invalidity of classical Harnack inequality (1.5); it was proved in [5] that for large values of R the term R in (1.6) cannot be replaced by R^{ν} when $\nu < (p-q)/(p-1)$. Note that in case p = q = 2 the Harnack inequality of the form (1.6) with no R has been first obtained in [3], and in [7] in case $q = p \neq 2$.

In this work, we establish the Harnack inequality of the form (1.6) with a constant C independent of ε . Our main result is the following theorem.

Theorem 1.1. If (1.2) and (1.3) hold, and u is a non-negative solution of (1.1) in the ball $B_{8R} \subset D$ centered on the hyperplane Σ , then the inequality (1.6) holds in the concentric ball B_R of radius R with the constant C depending only on n, p q.

The proof is based on the modified technique of Mozer [11], developed in [4, 6], where the domains $D^{(1)}$ and $D^{(2)}$ play different roles.

The assertion of Theorem 1.1 Also holds for the equation

$$\operatorname{div}\left(\omega_{\varepsilon}(x)|\nabla u|^{p(x)-2}a\nabla u\right) = 0,$$

where α is a measurable uniformly positive definite matrix. Besides, the constant in (1.6), it will additionally depend on ellipticity constants of this matrix.

EJDE-2018/143

2. Proof of main result

Below B_R will denote an open ball centered on $\Sigma \cap D$, so that $B_{4R} \subset D$, $B_R^{(i)} = D^{(i)} \cap B_R$, i = 1, 2, u is a non-negative solution of the equation (1.1) and w = u + R. Here |E| is *n*-dimensional Lebesgue measure of the measurable set $E \subset \mathbb{R}^n$, and

$$\int_E f \, dx = \frac{1}{|E|} \int_E f \, dx.$$

Let us first establish auxiliary estimates for the solutions. Taking $\varphi = w^{\beta}\eta^{p}$, as a test function in the integral identity (1.4) with $\beta < 1 - p$, $\eta \in C_{0}^{\infty}(B_{3R})$ and $0 \leq \eta \leq 1$ by (1.2) we have

$$\int_{B_{3R}^{(2)}} |\nabla w|^p w^{\beta-1} \eta^p \, dx \le C \Big(\int_{B_{3R}^{(2)}} w^{\beta+p-1} |\nabla \eta|^p \, dx + \int_{B_{3R}^{(1)}} w^{\beta+q-1} |\nabla \eta|^q \, dx \Big).$$
(2.1)

Below \tilde{f} will denote a continuation of a function from $D^{(2)}$ to $D^{(1)}$ even with respect to the hyperplane Σ . Let

$$G_R = B_{3R}^{(1)} \cap \{x : w(x) < \tilde{w}(x)\}$$
(2.2)

and, assuming $G_R \neq \emptyset$,

$$\varphi(x) = \begin{cases} (w^{\gamma}(x) - \tilde{w}^{\gamma}(x))\eta^{q}(x) & \text{in } G_{R} \\ 0 & \text{in } B_{3R} \setminus G_{R}, \end{cases}$$

as a test function in (1.4), with the constant $\gamma < 1 - q$ to be defined later. Then we obtain (see (1.2))

$$\begin{aligned} |\gamma| \int_{G_R} |\nabla w|^q u^{\gamma-1} \eta^q \, dx \\ &\leq |\gamma| \int_{G_R} |\nabla w|^{q-1} |\nabla \tilde{w}| \tilde{w}^{\gamma-1} \eta^q \, dx + q \int_{G_R} |\nabla w|^{q-1} |\nabla \eta| \tilde{w}^{\gamma} \eta^{q-1} \, dx \\ &+ q \int_{G_R} |\nabla w|^{q-1} |\nabla \eta| w^{\gamma} \eta^{q-1} \, dx. \end{aligned}$$
(2.3)

Let us estimate the integrands on the right-hand side of (2.3) by using Young's inequality, definition of G_R and relation $\gamma < 0$. We have

$$\begin{aligned} |\nabla w|^{q-1} |\nabla \tilde{w}| \tilde{u}^{\gamma-1} \eta^q &\leq \varepsilon_1 |\nabla w|^q \tilde{w}^{\gamma-1} \eta^q + C(\varepsilon_1, q) |\nabla \tilde{w}|^q \tilde{w}^{\gamma-1} \eta^q \\ &\leq \varepsilon_1 |\nabla w|^q u^{\gamma-1} \eta^q + C(\varepsilon_1, q) |\nabla \tilde{w}|^q \tilde{w}^{\gamma-1} \eta^q, \end{aligned}$$
(2.4)

$$\begin{aligned} |\nabla w|^{q-1} |\nabla \eta| \tilde{w}^{\gamma} \eta^{q-1} &\leq |\nabla w|^{q-1} |\nabla \eta| w^{\gamma} \eta^{q-1} \\ &\leq \varepsilon_2 |\nabla w|^q w^{\gamma-1} \eta^q + C(\varepsilon_2, q) w^{\gamma+q-1} |\nabla \eta|^q, \end{aligned} \tag{2.5}$$

$$|\nabla w|^{q-1} |\nabla \eta| w^{\gamma} \eta^{q-1} \le \varepsilon_3 |\nabla w|^q w^{\gamma-1} \eta^q + C(\varepsilon_3, q) w^{\gamma+q-1} |\nabla \eta|^q.$$
(2.6)

Considering the relations (2.4)–(2.6) in (2.3), by a proper choice of ε_1 , ε_2 and ε_3 , we have

$$\int_{G_R} |\nabla w|^q w^{\gamma-1} \eta^q \, dx \le C(q) \Big(\int_{G_R} |\nabla \tilde{w}|^q \tilde{w}^{\gamma-1} \eta^q \, dx + \int_{G_R} w^{\gamma+q-1} |\nabla \eta|^q \, dx \Big). \tag{2.7}$$

Introduce the constant γ as

$$\gamma = \beta + p - q. \tag{2.8}$$

Then

$$|\nabla \tilde{w}|^q \tilde{w}^{\gamma-1} \eta^q = |\nabla \tilde{w}|^q \tilde{w}^{(\beta-1)q/p} \tilde{w}^{(\beta-1)(p-q)/p+p-q} \eta^q,$$

and, by Young's inequality,

$$|\nabla \tilde{w}|^q \tilde{w}^{\gamma-1} \eta^q \le R^{p-q} |\nabla \tilde{w}|^p \tilde{w}^{\beta-1} \eta^p + R^{-q} \tilde{w}^{\beta+p-1}.$$
(2.9)

Now we can rewrite the inequality (2.7) as

$$\int_{G_R} |\nabla w|^q u^{\gamma-1} \eta^q \, dx \le C(q) \Big(R^{p-q} \int_{G_R} |\nabla \tilde{w}|^p \tilde{w}^{\beta-1} \eta^p \, dx + R^{-q} \int_{G_R} \tilde{w}^{\beta+p-1} \, dx + \int_{G_R} w^{\beta+p-1} |\nabla \eta|^q \, dx \Big).$$

$$(2.10)$$

Let

$$v(x) = \begin{cases} w(x), & \text{if } x \in D^{(2)} \\ \min(w(x), \tilde{w}(x)), & \text{if } x \in D^{(1)}. \end{cases}$$

Note that (2.10) implies

$$\int_{B_{3R}^{(1)}} |\nabla v|^q v^{\gamma-1} \eta^q \, dx
\leq C(q) \Big(R^{p-q} \int_{B_{3R}^{(1)}} |\nabla \tilde{w}|^p \tilde{w}^{\beta-1} \eta^p \, dx + R^{-q} \int_{B_{3R}^{(1)}} \tilde{w}^{\beta+p-1} \, dx
+ \int_{B_{3R}^{(1)}} v^{\beta+p-1} |\nabla \eta|^q \, dx \Big).$$
(2.11)

To prove the theorem, it suffices to add the integral

$$\int_{B_{3R}^{(1)}\backslash G_R} |\nabla \tilde{w}|^q \tilde{w}^{\gamma-1} \eta^q \, dx$$

to both sides of the inequality (2.10) and then use (2.9) on the right-hand side.

Using the definition of the function v, we rewrite (2.1) as follows:

$$\int_{B_{3R}^{(2)}} |\nabla w|^p w^{\beta-1} \eta^p \, dx \le C \Big(\int_{B_{3R}^{(2)}} w^{\beta+p-1} |\nabla \eta|^p \, dx + \int_{B_{3R}^{(1)}} v^{\beta+q-1} |\nabla \eta|^q \, dx \Big).$$
(2.12)

Hence, from (2.11) and the properties of even continuation of a function we obtain

$$\begin{split} \int_{B_{3R}^{(1)}} |\nabla v|^q v^{\gamma-1} \eta^q \, dx &\leq C(q) \Big(\int_{B_{3R}^{(2)}} w^{\beta+p-1} (R^{-q} + R^{p-q} |\nabla \eta|^p) \, dx \\ &+ \int_{B_{3R}^{(1)}} (v^{\beta+p-1} + v^{\beta+q-1} R^{p-q}) |\nabla \eta|^q \, dx \Big). \end{split}$$
(2.13)

Let us estimate from below the integrand on the left-hand side of (2.13) using the inequality (2.9) with \tilde{w} replaced by w. Also, note that $v^q \leq R^{q-p}v^p$ as $w \geq R$. Taking into account this relation, we can rewrite (2.12) and (2.13) as

$$\int_{B_{3R}^{(2)}} |\nabla w|^q w^{\gamma-1} \eta^q dx
\leq C \Big(R^{p-q} \int_{B_{3R}^{(2)}} w^{\beta+p-1} |\nabla \eta|^p dx + \int_{B_{3R}^{(1)}} v^{\beta+p-1} |\nabla \eta|^q dx \Big)$$
(2.14)

EJDE-2018/143

and

$$\int_{B_{3R}^{(1)}} |\nabla v|^q v^{\gamma-1} \eta^q \, dx
\leq C(q) \Big(\int_{B_{3R}^{(2)}} w^{\beta+p-1} (R^{-q} + R^{p-q} |\nabla \eta|^p) \, dx + \int_{B_{3R}^{(1)}} v^{\beta+p-1} |\nabla \eta|^q \, dx \Big)$$
(2.15)

respectively. Summing both sides of the inequalities (2.14) and (2.15), and using again the definition of the function v, we obtain

$$\int_{B_{3R}} |\nabla v|^q v^{\gamma-1} \eta^q \, dx$$

$$\leq C(q) \Big(\int_{B_{3R}} v^{\beta+p-1} (R^{-q} + R^{p-q} |\nabla \eta|^p) \, dx + \int_{B_{3R}} v^{\beta+p-1} |\nabla \eta|^q \, dx \Big)$$

Hence, from the choice of γ (see (2.8) and by the Sobolev embedding theorem, we conclude that

$$\left(\oint_{B_{3R}} v^{k(\beta+p-1)} \eta^k \, dx \right)^{1/k}$$

$$\leq C(n,p,q) |\beta|^q \left(\oint_{B_{3R}} v^{\beta+p-1} (1+R^p |\nabla\eta|^p + R^q |\nabla\eta|^q) \, dx \right),$$
(2.16)

where k = n/(n-1). Iterating the relation (2.16)) by Mozer method, we arrive at the following conclusion.

Lemma 2.1. For every $q_0 > 0$, we have

$$\inf_{B_R} v(x) \ge C(n, p, q, q_0) \left(\oint_{B_{2R}} v^{-q_0}(x) \, dx \right)^{-1/q_0}.$$
(2.17)

As $w \ge v$, (2.17) implies

$$\inf_{B_R} w(x) \ge C(n, p, q, q_0) \left(\oint_{B_{2R}} v^{-q_0}(x) \, dx \right)^{-1/q_0}.$$
(2.18)

Lemma 2.2. For every ball $B_{2r} \subset B_{3R}$ centered in B_{3R} , it holds

$$\int_{B_r} |\nabla \ln v|^q \, dx \le C r^{n-q},\tag{2.19}$$

where the constant C does not depend on u, R and r.

Proof. As before, it is assumed below that $B_r^{(i)} = D^{(i)} \cap B_r$ i = 1, 2. Consider a cutting function $\eta \in C_0^{\infty}(B_{3R})$, such that $\eta \equiv 1$ in B_r , $|\nabla \eta| \leq Cr^{-1}$. Assuming $\varphi = w^{1-p}\eta^p$ in the integral identity (1.4), by simple calculation with the consideration of (1.2) we obtain

$$\begin{split} \int_{B_{2r}^{(2)}} |\nabla \ln w|^p \eta^p \, dx &\leq C \Big(\int_{B_{2r}^{(2)}} |\nabla \eta|^p \, dx + \int_{B_{2r}^{(1)}} w^{q-p} |\nabla \eta|^q \, dx \Big). \\ \text{Or, from } w^{q-p} &\leq R^{q-p}, \\ \int_{B_{2r}^{(2)}} |\nabla \ln w|^p \eta^p \, dx &\leq C \Big(r^{n-p} + R^{q-p} r^{n-q} \Big) \leq C r^{n-p}. \end{split}$$
nus,

Thus

$$\int_{B_{2r}^{(2)}} |\nabla \ln w|^q \eta^q \, dx \le Cr^{n-q} \tag{2.20}$$

which proves (2.19) in the case $B_r \subset D^{(2)}$.

Now let $B_r \cap D^{(1)} \neq \emptyset$. To prove the similar estimate in $B_r^{(1)}$ we first assume that the set G_R defined by (2.2) is not empty and consider

$$\varphi(x) = \begin{cases} (w^{1-q}(x) - \tilde{w}^{1-q}(x))\eta^q(x) & \text{in } G_R \\ 0 & \text{in } B_{3R} \setminus G_R. \end{cases}$$

as a test function in (1.4). Then it is not difficult to see that

$$\begin{split} &\int_{G_R} |\nabla \ln w|^q \eta^q \, dx \\ &\leq \int_{G_R} |\nabla w|^{q-1} |\nabla \ln \tilde{w}| \tilde{w}^{1-q} \eta^q \, dx \\ &\quad + q \int_{G_R} |\nabla w|^{q-1} |\nabla \eta| \tilde{w}^{1-q} \eta^{q-1} \, dx + q \int_{G_R} |\nabla w|^{q-1} |\nabla \eta| w^{1-q} \eta^{q-1} \, dx \end{split}$$

As $w(x) \leq \tilde{w}(x)$ in G_R , then, by Young's inequality, we obtain

$$\int_{G_R} |\nabla \ln w|^q \eta^q \, dx \le C \Big(\int_{G_R} |\nabla \ln \tilde{w}|^q \eta^q \, dx + \int_{G_R} |\nabla \eta|^q \, dx \Big). \tag{2.21}$$

First consider the case where the center of the ball B_r is located in $\overline{D}^{(2)}$. Then, by (2.20),

$$\int_{B_{2r}^{(1)}} |\nabla \ln \tilde{w}|^q \eta^q \, dx \le Cr^{n-q}.$$
(2.22)

Summing (2.21) and (2.22), we have

$$\int_{B_{2r}^{(1)}} |\nabla \ln v|^q \eta^q \, dx \le C \Big(\int_{B_{2r}^{(1)}} |\nabla \ln \tilde{w}|^q \eta^q \, dx + r^{n-q} \Big) \le Cr^{n-q}. \tag{2.23}$$

Hence, by (2.20), we obtain the inequality

$$\int_{B_{2r}} |\nabla \ln v|^q \eta^q \, dx \le Cr^{n-q},\tag{2.24}$$

which implies (2.19).

If the set G_R is empty, then $v(x) = \tilde{w}(x)$ in $B_{3R}^{(1)}$, and (2.19) follows from (2.20). Now consider the case where $G_R \neq \emptyset$ and the center of the ball B_r is located in $D^{(1)}$. Denote by \hat{B}_r the image of the ball B_r under mirror reflection with respect to the hyperplane Σ . By inequality (2.20), for the ball \hat{B}_{2r} we have

$$\int_{\hat{B}_{2r}^{(2)}} |\nabla \ln w|^q \eta^q \, dx = \int_{B_{2r}^{(1)}} |\nabla \ln \tilde{w}|^q \eta^q \, dx \le Cr^{n-q}. \tag{2.25}$$

As above, summing (2.21) and (2.25), we obtain again (2.23), which, combined with (2.20), leads to the inequality (2.24), which in turn implies (2.19). If the set G_R is empty, then (2.19) follows from (2.20) and (2.25). The proof is complete. \Box

John-Nirenberg lemma is a corollary of (2.19): there exist the positive constants q_0 and C, independent of u and R such that

$$\left(\oint_{B_{2R}} v^{-q_0}(x) \, dx\right)^{-1/q_0} \ge C \left(\oint_{B_{2R}} v^{q_0}(x) \, dx\right)^{1/q_0}.$$
(2.26)

EJDE-2018/143

Proof of Theorem 1.1. As before, let w = u + R. Using (2.18) and (2.26), we obtain

$$\inf_{B_R} u(x) \ge C \left(\oint_{B_{2R}} v^q(x) \, dx \right)^{1/q} \ge C \inf_{B_R^-} w(x).$$

Then (1.6) follows from the classical Harnack inequality for the solutions of the equation (1.1) in the domain $D^{(2)}$, which states $\inf_{B_R^-} w(x) \ge c \sup_{B_R^-} w(x)$. Theorem 1 is proved.

References

- Acerbi, E.; Fusco, N.; A transmission problem in the calculus of variations, *Calc. Var. Partial Differ. Equ.*, v.2, (1994) p. 1-16.
- [2] Alkhutov, Y. A.; Huseynov, S. T.; Hölder continuity for solutions of elliptic equation uniformly degenerate in a part of domain. *Dif. Uravneniya*, 45(1) (2009), pp. 54-59 (in Russian)
- [3] Alkhutov, Y. A.; Khrenova, E. A.; Harnack inequality for a class of degenerate elliptic equations. Trudi Matematicheskogo Instituta im. V.A.Steklova RAN, V. 278, (2012), pp.7-15. (in Russian)
- [4] Alkhutov, Y. A.; On Hölder continuity of p(x)-harmonic functions. Matem. Sbornik, 196(2), (2005), pp. 3-28 (in Russian)
- [5] Alkhutov ,Y. A.; Surnachev, M. D.; On Harnack inequality for elliptic (p,q)-Laplacian. Dokladi RAN, 470(6), (2016), pp. 623-627 (in Russian)
- [6] Alkhutov, Y. A.; Zhikov, V. V.; On Hölder property of solutions of degenerate elliptic equations. Dokladi RAN, 378(5), (2001), pp. 583-588 (in Russian)
- [7] Huseynov, S. T.; Harnack inequality for the solutions of the *p*-Laplacian with a partially Muckenhoupt weight. *Dif. uravneniya*, **53**(5), (2017), pp. 653-664 (in Russian)
- [8] Huseynov, S. T.; Hölder continuity for (p,q)-Laplace equations that degenerate uniformly on part of the domain, *Electronic Journal of Differential equations*, 2017(308), (2017), pp.1-12.
- Huseynov, S. T.; On Hölder property of solutions of degenerate quasilinear elliptic equations, Applied Mathematical Sciences, Hikari Ltd, 9(100), (2015), p. 4979-4986.
- [10] Ladyzhenskaya, O. A.; Uraltseva, N. N.; Linear and quasilinear equations of elliptic type. M: Nauka (1973). (in Russian)
- [11] Mozer, J.; A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure and Appl. Math., 13 (3) (1960), p. 457-468.
- [12] Serrin, J.; Local behavior of solutions of quasilinear elliptic equations, Acta Mathematica, v.111 (1964), p. 247–302.
- [13] Zhikov, V. V.; Averaging of functionals of the calculus of variations and elasticity theory. *Izvestiya AN SSSR, Ser. Matem.*, **50**(4) (1986), pp. 675-711 (in Russian)

SARVAN T. HUSEYNOV

BAKU STATE UNIVERSITY, BAKU AZ1148, AZERBAIJAN *E-mail address*: sarvanhuseynov@rambler.ru