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HARNACK INEQUALITY FOR (p, q)-LAPLACIAN EQUATIONS
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Communicated by Ludmila S. Pulkina

Abstract. We consider a (p, q)-Laplace equation with the exponent values
p, q depending on the boundary which is divided into two parts by a hyper-

plane. Assuming that the equation is uniformly degenerate with respect to
a small parameter in the part of domain where q < p, a special Harnack

inequality is proved for non-negative solutions.

1. Statement of main result

We consider the elliptic equation

Lεu = div(ωε(x)|∇u|p(x)−2∇u) = 0 (1.1)

in a domain D ⊂ Rn, n ≥ 2, with a positive weight ωε(x), and an exponent to
be defined below. Assume that the domain is divided by the hyperplane Σ = {x :
xn = 0} into two parts D(1) = D∩{x : xn > 0}, D(2) = D∩{x : xn < 0}, and that

ωε(x) =

{
ε, if x ∈ D(1)

1, if x ∈ D(2),
ε ∈ (0, 1], (1.2)

p(x) =

{
q, if x ∈ D(1)

p, if x ∈ D(2),
1 < q < p. (1.3)

To define the solution of (1.1), we introduce a class of functions related to the
exponent p(x):

Wloc(D) = {u : u ∈W 1,1
loc (D), |∇u|p(x) ∈ L1

loc(D)} .

This set is a Sobolev space of functions locally summable in D together with their
first order generalized derivatives.

By a solution of to (1.1), we mean a function u ∈ Wloc(D), which satisfies the
integral identity ∫

D

ωε(x)|∇u|p(x)−2∇u · ∇ϕdx = 0 (1.4)

for the test functions ϕ ∈ C∞0 (D).
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For the exponent p(·), given by (1.3), the smooth functions are dense in Wloc(D)
(see [13]). Therefore, finite functions from Wloc(D) can be considered as test func-
tions in (1.4).
p-Laplace type equations with a variable nonlinearity exponent, p(x), and vari-

ational problems with integrants satisfying non-standard coerciveness and growth
conditions occur in the modeling of composite materials and electrorheological flu-
ids whose characteristics depend on the considered electromagnetic field. In this
work, we consider a model for the case of plane boundary between two different
phases. Note that the problem is complicated by the degeneration, uniform in ε, in
the domain D(1).

In each of the domains D(i), i = 1, 2, the regularity of the solution has been well
studied before (see [10]). It was proved in [1] that for p defined by (1.3) and for
every fixed ε ∈ (0, 1], every solution of the equation (1.1) in the arbitrary subdomain
D′ b D belongs to the space Cα(D′) of Hölder functions in D′. The independence
of the Hlder exponent α on ε in case p = q has been established in [2, 9], and for
our equation it was proved in [8].

Harnack inequality plays an important role in the qualitative theory of differ-
ential equations (see [12]): if p(x) ≡ p, then the following inequality holds for the
solution u of the equation (1.1) which is non-negative in the ball B4R ⊂ D:

inf
BR

u ≥ γ(n, p) sup
BR

u. (1.5)

In [5], it was shown that the classical inequality (1.5) does not hold for the solutions
of the equation (1.1) if ε = 1 and q < p. This inequality is not satisfied in the balls
BR centered on the hyperplane Σ. To state the result obtained in [5], denote by B−R
the set {x ∈ BR : xn < −R/2}. It was established in [5] that if u is a non-negative
solution of the equation (1.1) in the ball B8R ⊂ D centered on the hyperplane Σ,
then the following inequality holds in the concentric ball BR of radius R:

inf
BR

u+R ≥ C(n, p, q) sup
B−R

u. (1.6)

Along with the invalidity of classical Harnack inequality (1.5); it was proved in
[5] that for large values of R the term R in (1.6) cannot be replaced by Rν when
ν < (p− q)/(p−1). Note that in case p = q = 2 the Harnack inequality of the form
(1.6) with no R has been first obtained in [3], and in [7] in case q = p 6= 2.

In this work, we establish the Harnack inequality of the form (1.6) with a constant
C independent of ε. Our main result is the following theorem.

Theorem 1.1. If (1.2) and (1.3) hold, and u is a non-negative solution of (1.1)
in the ball B8R ⊂ D centered on the hyperplane Σ, then the inequality (1.6) holds
in the concentric ball BR of radius R with the constant C depending only on n, p
q.

The proof is based on the modified technique of Mozer [11], developed in [4, 6],
where the domains D(1) and D(2) play different roles.

The assertion of Theorem 1.1 Also holds for the equation

div
(
ωε(x)|∇u|p(x)−2a∇u

)
= 0,

where α is a measurable uniformly positive definite matrix. Besides, the constant
in (1.6), it will additionally depend on ellipticity constants of this matrix.
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2. Proof of main result

Below BR will denote an open ball centered on Σ∩D, so that B4R ⊂ D, B(i)
R =

D(i)∩BR, i = 1, 2, u is a non-negative solution of the equation (1.1) and w = u+R.
Here |E| is n-dimensional Lebesgue measure of the measurable set E ⊂ Rn , and

−
∫
E

f dx =
1
|E|

∫
E

f dx.

Let us first establish auxiliary estimates for the solutions. Taking ϕ = wβηp,
as a test function in the integral identity (1.4) with β < 1 − p, η ∈ C∞0 (B3R) and
0 ≤ η ≤ 1 by (1.2) we have∫

B
(2)
3R

|∇w|pwβ−1ηp dx ≤ C
(∫

B
(2)
3R

wβ+p−1|∇η|p dx+
∫
B

(1)
3R

wβ+q−1|∇η|q dx
)
. (2.1)

Below f̃ will denote a continuation of a function from D(2) to D(1) even with respect
to the hyperplane Σ. Let

GR = B
(1)
3R ∩ {x : w(x) < w̃(x)} (2.2)

and, assuming GR 6= ∅,

ϕ(x) =

{
(wγ(x)− w̃γ(x))ηq(x) in GR

0 in B3R \GR,

as a test function in (1.4), with the constant γ < 1 − q to be defined later. Then
we obtain (see (1.2))

|γ|
∫
GR

|∇w|quγ−1ηq dx

≤ |γ|
∫
GR

|∇w|q−1|∇w̃|w̃γ−1ηq dx+ q

∫
GR

|∇w|q−1|∇η|w̃γηq−1 dx

+ q

∫
GR

|∇w|q−1|∇η|wγηq−1 dx.

(2.3)

Let us estimate the integrands on the right-hand side of (2.3) by using Young’s
inequality, definition of GR and relation γ < 0. We have

|∇w|q−1|∇w̃|ũγ−1ηq ≤ ε1|∇w|qw̃γ−1ηq + C(ε1, q)|∇w̃|qw̃γ−1ηq

≤ ε1|∇w|quγ−1ηq + C(ε1, q)|∇w̃|qw̃γ−1ηq,
(2.4)

|∇w|q−1|∇η|w̃γηq−1 ≤ |∇w|q−1|∇η|wγηq−1

≤ ε2|∇w|qwγ−1ηq + C(ε2, q)wγ+q−1|∇η|q,
(2.5)

|∇w|q−1|∇η|wγηq−1 ≤ ε3|∇w|qwγ−1ηq + C(ε3, q)wγ+q−1|∇η|q. (2.6)

Considering the relations (2.4)–(2.6) in (2.3), by a proper choice of ε1, ε2 and ε3,
we have∫

GR

|∇w|qwγ−1ηq dx ≤ C(q)
(∫

GR

|∇w̃|qw̃γ−1ηq dx+
∫
GR

wγ+q−1|∇η|q dx
)
. (2.7)

Introduce the constant γ as

γ = β + p− q. (2.8)
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Then
|∇w̃|qw̃γ−1ηq = |∇w̃|qw̃(β−1)q/pw̃(β−1)(p−q)/p+p−qηq,

and, by Young’s inequality,

|∇w̃|qw̃γ−1ηq ≤ Rp−q|∇w̃|pw̃β−1ηp +R−qw̃β+p−1. (2.9)

Now we can rewrite the inequality (2.7) as∫
GR

|∇w|quγ−1ηq dx ≤ C(q)
(
Rp−q

∫
GR

|∇w̃|pw̃β−1ηp dx

+R−q
∫
GR

w̃β+p−1 dx+
∫
GR

wβ+p−1|∇η|q dx
)
.

(2.10)

Let

v(x) =

{
w(x), if x ∈ D(2)

min (w(x), w̃(x)), if x ∈ D(1) .

Note that (2.10) implies∫
B

(1)
3R

|∇v|qvγ−1ηq dx

≤ C(q)
(
Rp−q

∫
B

(1)
3R

|∇w̃|pw̃β−1ηp dx+R−q
∫
B

(1)
3R

w̃β+p−1 dx

+
∫
B

(1)
3R

vβ+p−1|∇η|q dx
)
.

(2.11)

To prove the theorem, it suffices to add the integral∫
B

(1)
3R\GR

|∇w̃|qw̃γ−1ηq dx

to both sides of the inequality (2.10) and then use (2.9) on the right-hand side.
Using the definition of the function v, we rewrite (2.1) as follows:∫
B

(2)
3R

|∇w|pwβ−1ηp dx ≤ C
(∫

B
(2)
3R

wβ+p−1|∇η|p dx+
∫
B

(1)
3R

vβ+q−1|∇η|q dx
)
. (2.12)

Hence, from (2.11) and the properties of even continuation of a function we obtain∫
B

(1)
3R

|∇v|qvγ−1ηq dx ≤ C(q)
(∫

B
(2)
3R

wβ+p−1(R−q +Rp−q|∇η|p) dx

+
∫
B

(1)
3R

(vβ+p−1 + vβ+q−1Rp−q)|∇η|q dx
)
.

(2.13)

Let us estimate from below the integrand on the left-hand side of (2.13) using
the inequality (2.9) with w̃ replaced by w. Also, note that vq ≤ Rq−pvp as w ≥ R.
Taking into account this relation, we can rewrite (2.12) and (2.13) as∫

B
(2)
3R

|∇w|qwγ−1ηq dx

≤ C
(
Rp−q

∫
B

(2)
3R

wβ+p−1|∇η|p dx+
∫
B

(1)
3R

vβ+p−1|∇η|q dx
) (2.14)
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and ∫
B

(1)
3R

|∇v|qvγ−1ηq dx

≤ C(q)
(∫

B
(2)
3R

wβ+p−1(R−q +Rp−q|∇η|p) dx+
∫
B

(1)
3R

vβ+p−1|∇η|q dx
) (2.15)

respectively. Summing both sides of the inequalities (2.14) and (2.15), and using
again the definition of the function v, we obtain∫

B3R

|∇v|qvγ−1ηq dx

≤ C(q)
(∫

B3R

vβ+p−1(R−q +Rp−q|∇η|p) dx+
∫
B3R

vβ+p−1|∇η|q dx
)

Hence, from the choice of γ (see (2.8) and by the Sobolev embedding theorem, we
conclude that(

−
∫
B3R

vk(β+p−1)ηk dx
)1/k

≤ C(n, p, q)|β|q
(
−
∫
B3R

vβ+p−1(1 +Rp|∇η|p +Rq|∇η|q) dx
)
,

(2.16)

where k = n/(n− 1). Iterating the relation (2.16) ) by Mozer method, we arrive at
the following conclusion.

Lemma 2.1. For every q0 > 0, we have

inf
BR

v(x) ≥ C(n, p, q, q0)
(
−
∫
B2R

v−q0(x) dx
)−1/q0

. (2.17)

As w ≥ v, (2.17) implies

inf
BR

w(x) ≥ C(n, p, q, q0)
(
−
∫
B2R

v−q0(x) dx
)−1/q0

. (2.18)

Lemma 2.2. For every ball B2r ⊂ B3R centered in B3R, it holds∫
Br

|∇ ln v|q dx ≤ Crn−q, (2.19)

where the constant C does not depend on u, R and r.

Proof. As before, it is assumed below that B(i)
r = D(i) ∩ Br i = 1, 2. Consider a

cutting function η ∈ C∞0 (B3R), such that η ≡ 1 in Br, |∇η| ≤ Cr−1. Assuming ϕ =
w1−pηp in the integral identity (1.4), by simple calculation with the consideration
of (1.2) we obtain∫

B
(2)
2r

|∇ lnw|pηp dx ≤ C
(∫

B
(2)
2r

|∇η|p dx+
∫
B

(1)
2r

wq−p|∇η|q dx
)
.

Or, from wq−p ≤ Rq−p,∫
B

(2)
2r

|∇ lnw|pηp dx ≤ C
(
rn−p +Rq−prn−q

)
≤ Crn−p.

Thus, ∫
B

(2)
2r

|∇ lnw|qηq dx ≤ Crn−q (2.20)



6 S. T. HUSEYNOV EJDE-2018/143

which proves (2.19) in the case Br ⊂ D(2).
Now let Br ∩ D(1) 6= ∅. To prove the similar estimate in B

(1)
r we first assume

that the set GR defined by (2.2) is not empty and consider

ϕ(x) =

{
(w1−q(x)− w̃1−q(x))ηq(x) in GR

0 in B3R \GR.

as a test function in (1.4). Then it is not difficult to see that∫
GR

|∇ lnw|qηq dx

≤
∫
GR

|∇w|q−1|∇ ln w̃|w̃1−qηq dx

+ q

∫
GR

|∇w|q−1|∇η|w̃1−qηq−1 dx+ q

∫
GR

|∇w|q−1|∇η|w1−qηq−1 dx.

As w(x) ≤ w̃(x) in GR, then, by Young’s inequality, we obtain∫
GR

|∇ lnw|qηq dx ≤ C
(∫

GR

|∇ ln w̃|qηq dx+
∫
GR

|∇η|q dx
)
. (2.21)

First consider the case where the center of the ball Br is located in D
(2)

. Then,
by (2.20), ∫

B
(1)
2r

|∇ ln w̃|qηq dx ≤ Crn−q. (2.22)

Summing (2.21) and (2.22), we have∫
B

(1)
2r

|∇ ln v|qηq dx ≤ C
(∫

B
(1)
2r

|∇ ln w̃|qηq dx+ rn−q
)
≤ Crn−q. (2.23)

Hence, by (2.20), we obtain the inequality∫
B2r

|∇ ln v|qηq dx ≤ Crn−q, (2.24)

which implies (2.19).
If the set GR is empty, then v(x) = w̃(x) in B

(1)
3R , and (2.19)follows from (2.20).

Now consider the case where GR 6= ∅ and the center of the ball Br is located in
D(1). Denote by B̂r the image of the ball Br under mirror reflection with respect
to the hyperplane Σ. By inequality (2.20), for the ball B̂2r we have∫

B̂
(2)
2r

|∇ lnw|qηq dx =
∫
B

(1)
2r

|∇ ln w̃|qηq dx ≤ Crn−q. (2.25)

As above, summing (2.21) and (2.25), we obtain again (2.23), which, combined
with (2.20), leads to the inequality (2.24), which in turn implies (2.19). If the set
GR is empty, then (2.19) follows from (2.20) and (2.25). The proof is complete. �

John-Nirenberg lemma is a corollary of (2.19): there exist the positive constants
q0 and C, independent of u and R such that(

−
∫
B2R

v−q0(x) dx
)−1/q0

≥ C
(
−
∫
B2R

vq0(x) dx
)1/q0

. (2.26)
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Proof of Theorem 1.1. As before, let w = u+R. Using (2.18) and (2.26), we obtain

inf
BR

u(x) ≥ C
(
−
∫
B2R

vq(x) dx
)1/q

≥ C inf
B−R

w(x).

Then (1.6) follows from the classical Harnack inequality for the solutions of the
equation (1.1) in the domain D(2), which states infB−R w(x) ≥ c supB−R w(x). The-
orem 1 is proved. �

References

[1] Acerbi, E.; Fusco, N.; A transmission problem in the calculus of variations, Calc. Var. Partial

Differ. Equ., v.2, (1994) p. 1-16.
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