Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 143, pp. 1-7.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

HARNACK INEQUALITY FOR (p, q)-LAPLACIAN EQUATIONS UNIFORMLY DEGENERATED IN A PART OF DOMAIN

SARVAN T. HUSEYNOV

Communicated by Ludmila S. Pulkina

Abstract

We consider a (p, q)-Laplace equation with the exponent values p, q depending on the boundary which is divided into two parts by a hyperplane. Assuming that the equation is uniformly degenerate with respect to a small parameter in the part of domain where $q<p$, a special Harnack inequality is proved for non-negative solutions.

1. Statement of main result

We consider the elliptic equation

$$
\begin{equation*}
L_{\varepsilon} u=\operatorname{div}\left(\omega_{\varepsilon}(x)|\nabla u|^{p(x)-2} \nabla u\right)=0 \tag{1.1}
\end{equation*}
$$

in a domain $D \subset \mathbb{R}^{n}, n \geq 2$, with a positive weight $\omega_{\varepsilon}(x)$, and an exponent to be defined below. Assume that the domain is divided by the hyperplane $\Sigma=\{x$: $\left.x_{n}=0\right\}$ into two parts $D^{(1)}=D \cap\left\{x: x_{n}>0\right\}, D^{(2)}=D \cap\left\{x: x_{n}<0\right\}$, and that

$$
\begin{align*}
& \omega_{\varepsilon}(x)=\left\{\begin{array}{ll}
\varepsilon, & \text { if } x \in D^{(1)} \\
1, & \text { if } x \in D^{(2)}
\end{array}, \quad \varepsilon \in(0,1],\right. \tag{1.2}\\
& p(x)=\left\{\begin{array}{ll}
q, & \text { if } x \in D^{(1)} \\
p, & \text { if } x \in D^{(2)},
\end{array} \quad 1<q<p\right. \tag{1.3}
\end{align*}
$$

To define the solution of $\sqrt{1.1}$, we introduce a class of functions related to the exponent $p(x)$:

$$
W_{\mathrm{loc}}(D)=\left\{u: u \in W_{\mathrm{loc}}^{1,1}(D),|\nabla u|^{p(x)} \in L_{\mathrm{loc}}^{1}(D)\right\}
$$

This set is a Sobolev space of functions locally summable in D together with their first order generalized derivatives.

By a solution of to (1.1), we mean a function $u \in W_{\text {loc }}(D)$, which satisfies the integral identity

$$
\begin{equation*}
\int_{D} \omega_{\varepsilon}(x)|\nabla u|^{p(x)-2} \nabla u \cdot \nabla \varphi d x=0 \tag{1.4}
\end{equation*}
$$

for the test functions $\varphi \in C_{0}^{\infty}(D)$.

[^0]For the exponent $p(\cdot)$, given by 1.3 , the smooth functions are dense in $W_{\text {loc }}(D)$ (see [13]). Therefore, finite functions from $W_{\text {loc }}(D)$ can be considered as test functions in 1.4 .
p-Laplace type equations with a variable nonlinearity exponent, $p(x)$, and variational problems with integrants satisfying non-standard coerciveness and growth conditions occur in the modeling of composite materials and electrorheological fluids whose characteristics depend on the considered electromagnetic field. In this work, we consider a model for the case of plane boundary between two different phases. Note that the problem is complicated by the degeneration, uniform in ε, in the domain $D^{(1)}$.

In each of the domains $D^{(i)}, i=1,2$, the regularity of the solution has been well studied before (see [10]). It was proved in [1] that for p defined by 1.3) and for every fixed $\varepsilon \in(0,1]$, every solution of the equation 1.1$)$ in the arbitrary subdomain $D^{\prime} \Subset D$ belongs to the space $C^{\alpha}\left(D^{\prime}\right)$ of Hölder functions in D^{\prime}. The independence of the Hlder exponent α on ε in case $p=q$ has been established in [2, 9, and for our equation it was proved in [8].

Harnack inequality plays an important role in the qualitative theory of differential equations (see 12): if $p(x) \equiv p$, then the following inequality holds for the solution u of the equation 1.1 which is non-negative in the ball $B_{4 R} \subset D$:

$$
\begin{equation*}
\inf _{B_{R}} u \geq \gamma(n, p) \sup _{B_{R}} u \tag{1.5}
\end{equation*}
$$

In [5], it was shown that the classical inequality (1.5) does not hold for the solutions of the equation (1.1) if $\varepsilon=1$ and $q<p$. This inequality is not satisfied in the balls B_{R} centered on the hyperplane Σ. To state the result obtained in [5], denote by B_{R}^{-} the set $\left\{x \in B_{R}: x_{n}<-R / 2\right\}$. It was established in [5] that if u is a non-negative solution of the equation 1.1 in the ball $B_{8 R} \subset D$ centered on the hyperplane Σ, then the following inequality holds in the concentric ball B_{R} of radius R :

$$
\begin{equation*}
\inf _{B_{R}} u+R \geq C(n, p, q) \sup _{B_{R}^{-}} u \tag{1.6}
\end{equation*}
$$

Along with the invalidity of classical Harnack inequality 1.5 ; it was proved in [5] that for large values of R the term R in cannot be replaced by R^{ν} when $\nu<(p-q) /(p-1)$. Note that in case $p=q=2$ the Harnack inequality of the form (1.6) with no R has been first obtained in [3], and in [7] in case $q=p \neq 2$.

In this work, we establish the Harnack inequality of the form (1.6) with a constant C independent of ε. Our main result is the following theorem.

Theorem 1.1. If (1.2) and (1.3) hold, and u is a non-negative solution of 1.1 in the ball $B_{8 R} \subset D$ centered on the hyperplane Σ, then the inequality (1.6) holds in the concentric ball B_{R} of radius R with the constant C depending only on n, p q.

The proof is based on the modified technique of Mozer [11], developed in [4, 6], where the domains $D^{(1)}$ and $D^{(2)}$ play different roles.

The assertion of Theorem 1.1 Also holds for the equation

$$
\operatorname{div}\left(\omega_{\varepsilon}(x)|\nabla u|^{p(x)-2} a \nabla u\right)=0
$$

where α is a measurable uniformly positive definite matrix. Besides, the constant in (1.6), it will additionally depend on ellipticity constants of this matrix.

2. Proof of main Result

Below B_{R} will denote an open ball centered on $\Sigma \cap D$, so that $B_{4 R} \subset D, B_{R}^{(i)}=$ $D^{(i)} \cap B_{R}, i=1,2, u$ is a non-negative solution of the equation 1.1) and $w=u+R$. Here $|E|$ is n-dimensional Lebesgue measure of the measurable set $E \subset \mathbb{R}^{n}$, and

$$
f_{E} f d x=\frac{1}{|E|} \int_{E} f d x
$$

Let us first establish auxiliary estimates for the solutions. Taking $\varphi=w^{\beta} \eta^{p}$, as a test function in the integral identity (1.4) with $\beta<1-p, \eta \in C_{0}^{\infty}\left(B_{3 R}\right)$ and $0 \leq \eta \leq 1$ by 1.2 we have

$$
\begin{equation*}
\int_{B_{3 R}^{(2)}}|\nabla w|^{p} w^{\beta-1} \eta^{p} d x \leq C\left(\int_{B_{3 R}^{(2)}} w^{\beta+p-1}|\nabla \eta|^{p} d x+\int_{B_{3 R}^{(1)}} w^{\beta+q-1}|\nabla \eta|^{q} d x\right) . \tag{2.1}
\end{equation*}
$$

Below \tilde{f} will denote a continuation of a function from $D^{(2)}$ to $D^{(1)}$ even with respect to the hyperplane Σ. Let

$$
\begin{equation*}
G_{R}=B_{3 R}^{(1)} \cap\{x: w(x)<\tilde{w}(x)\} \tag{2.2}
\end{equation*}
$$

and, assuming $G_{R} \neq \emptyset$,

$$
\varphi(x)= \begin{cases}\left(w^{\gamma}(x)-\tilde{w}^{\gamma}(x)\right) \eta^{q}(x) & \text { in } G_{R} \\ 0 & \text { in } B_{3 R} \backslash G_{R}\end{cases}
$$

as a test function in (1.4), with the constant $\gamma<1-q$ to be defined later. Then we obtain (see 1.2)

$$
\begin{align*}
& |\gamma| \int_{G_{R}}|\nabla w|^{q} u^{\gamma-1} \eta^{q} d x \\
& \leq|\gamma| \int_{G_{R}}|\nabla w|^{q-1}|\nabla \tilde{w}| \tilde{w}^{\gamma-1} \eta^{q} d x+q \int_{G_{R}}|\nabla w|^{q-1}|\nabla \eta| \tilde{w}^{\gamma} \eta^{q-1} d x \tag{2.3}\\
& \quad+q \int_{G_{R}}|\nabla w|^{q-1}|\nabla \eta| w^{\gamma} \eta^{q-1} d x
\end{align*}
$$

Let us estimate the integrands on the right-hand side of 2.3 by using Young's inequality, definition of G_{R} and relation $\gamma<0$. We have

$$
\begin{align*}
|\nabla w|^{q-1}|\nabla \tilde{w}| \tilde{u}^{\gamma-1} \eta^{q} & \leq \varepsilon_{1}|\nabla w|^{q} \tilde{w}^{\gamma-1} \eta^{q}+C\left(\varepsilon_{1}, q\right)|\nabla \tilde{w}|^{q} \tilde{w}^{\gamma-1} \eta^{q} \\
& \leq \varepsilon_{1}|\nabla w|^{q} u^{\gamma-1} \eta^{q}+C\left(\varepsilon_{1}, q\right)|\nabla \tilde{w}|^{q} \tilde{w}^{\gamma-1} \eta^{q}, \tag{2.4}\\
|\nabla w|^{q-1}|\nabla \eta| \tilde{w}^{\gamma} \eta^{q-1} & \leq|\nabla w|^{q-1}|\nabla \eta| w^{\gamma} \eta^{q-1} \\
& \leq \varepsilon_{2}|\nabla w|^{q} w^{\gamma-1} \eta^{q}+C\left(\varepsilon_{2}, q\right) w^{\gamma+q-1}|\nabla \eta|^{q}, \tag{2.5}\\
|\nabla w|^{q-1}|\nabla \eta| w^{\gamma} \eta^{q-1} & \leq \varepsilon_{3}|\nabla w|^{q} w^{\gamma-1} \eta^{q}+C\left(\varepsilon_{3}, q\right) w^{\gamma+q-1}|\nabla \eta|^{q} . \tag{2.6}
\end{align*}
$$

Considering the relations $2.4-2.6$ in 2.3 , by a proper choice of $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3}, we have

$$
\begin{equation*}
\int_{G_{R}}|\nabla w|^{q} w^{\gamma-1} \eta^{q} d x \leq C(q)\left(\int_{G_{R}}|\nabla \tilde{w}|^{q} \tilde{w}^{\gamma-1} \eta^{q} d x+\int_{G_{R}} w^{\gamma+q-1}|\nabla \eta|^{q} d x\right) . \tag{2.7}
\end{equation*}
$$

Introduce the constant γ as

$$
\begin{equation*}
\gamma=\beta+p-q \tag{2.8}
\end{equation*}
$$

Then

$$
|\nabla \tilde{w}|^{q} \tilde{w}^{\gamma-1} \eta^{q}=|\nabla \tilde{w}|^{q} \tilde{w}^{(\beta-1) q / p} \tilde{w}^{(\beta-1)(p-q) / p+p-q} \eta^{q}
$$

and, by Young's inequality,

$$
\begin{equation*}
|\nabla \tilde{w}|^{q} \tilde{w}^{\gamma-1} \eta^{q} \leq R^{p-q}|\nabla \tilde{w}|^{p} \tilde{w}^{\beta-1} \eta^{p}+R^{-q} \tilde{w}^{\beta+p-1} \tag{2.9}
\end{equation*}
$$

Now we can rewrite the inequality (2.7) as

$$
\begin{align*}
\int_{G_{R}}|\nabla w|^{q} u^{\gamma-1} \eta^{q} d x \leq & C(q)\left(R^{p-q} \int_{G_{R}}|\nabla \tilde{w}|^{p} \tilde{w}^{\beta-1} \eta^{p} d x\right. \tag{2.10}\\
& \left.+R^{-q} \int_{G_{R}} \tilde{w}^{\beta+p-1} d x+\int_{G_{R}} w^{\beta+p-1}|\nabla \eta|^{q} d x\right)
\end{align*}
$$

Let

$$
v(x)= \begin{cases}w(x), & \text { if } x \in D^{(2)} \\ \min (w(x), \tilde{w}(x)), & \text { if } x \in D^{(1)}\end{cases}
$$

Note that 2.10 implies

$$
\begin{align*}
& \int_{B_{3 R}^{(1)}}|\nabla v|^{q} v^{\gamma-1} \eta^{q} d x \\
& \leq C(q)\left(R^{p-q} \int_{B_{3 R}^{(1)}}|\nabla \tilde{w}|^{p} \tilde{w}^{\beta-1} \eta^{p} d x+R^{-q} \int_{B_{3 R}^{(1)}} \tilde{w}^{\beta+p-1} d x\right. \tag{2.11}\\
& \left.\quad+\int_{B_{3 R}^{(1)}} v^{\beta+p-1}|\nabla \eta|^{q} d x\right)
\end{align*}
$$

To prove the theorem, it suffices to add the integral

$$
\int_{B_{3 R}^{(1)} \backslash G_{R}}|\nabla \tilde{w}|^{q} \tilde{w}^{\gamma-1} \eta^{q} d x
$$

to both sides of the inequality 2.10 and then use 2.9 on the right-hand side.
Using the definition of the function v, we rewrite (2.1) as follows:

$$
\begin{equation*}
\int_{B_{3 R}^{(2)}}|\nabla w|^{p} w^{\beta-1} \eta^{p} d x \leq C\left(\int_{B_{3 R}^{(2)}} w^{\beta+p-1}|\nabla \eta|^{p} d x+\int_{B_{3 R}^{(1)}} v^{\beta+q-1}|\nabla \eta|^{q} d x\right) . \tag{2.12}
\end{equation*}
$$

Hence, from 2.11 and the properties of even continuation of a function we obtain

$$
\begin{align*}
\int_{B_{3 R}^{(1)}}|\nabla v|^{q} v^{\gamma-1} \eta^{q} d x \leq & C(q)\left(\int_{B_{3 R}^{(2)}} w^{\beta+p-1}\left(R^{-q}+R^{p-q}|\nabla \eta|^{p}\right) d x\right. \tag{2.13}\\
& \left.+\int_{B_{3 R}^{(1)}}\left(v^{\beta+p-1}+v^{\beta+q-1} R^{p-q}\right)|\nabla \eta|^{q} d x\right) .
\end{align*}
$$

Let us estimate from below the integrand on the left-hand side of 2.13 using the inequality 2.9 with \tilde{w} replaced by w. Also, note that $v^{q} \leq R^{q-p} v^{p}$ as $w \geq R$. Taking into account this relation, we can rewrite 2.12 and 2.13 as

$$
\begin{align*}
& \int_{B_{3 R}^{(2)}}|\nabla w|^{q} w^{\gamma-1} \eta^{q} d x \\
& \leq C\left(R^{p-q} \int_{B_{3 R}^{(2)}} w^{\beta+p-1}|\nabla \eta|^{p} d x+\int_{B_{3 R}^{(1)}} v^{\beta+p-1}|\nabla \eta|^{q} d x\right) \tag{2.14}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{B_{3 R}^{(1)}}|\nabla v|^{q} v^{\gamma-1} \eta^{q} d x \\
& \leq C(q)\left(\int_{B_{3 R}^{(2)}} w^{\beta+p-1}\left(R^{-q}+R^{p-q}|\nabla \eta|^{p}\right) d x+\int_{B_{3 R}^{(1)}} v^{\beta+p-1}|\nabla \eta|^{q} d x\right) \tag{2.15}
\end{align*}
$$

respectively. Summing both sides of the inequalities 2.14 and 2.15), and using again the definition of the function v, we obtain

$$
\begin{aligned}
& \int_{B_{3 R}}|\nabla v|^{q} v^{\gamma-1} \eta^{q} d x \\
& \leq C(q)\left(\int_{B_{3 R}} v^{\beta+p-1}\left(R^{-q}+R^{p-q}|\nabla \eta|^{p}\right) d x+\int_{B_{3 R}} v^{\beta+p-1}|\nabla \eta|^{q} d x\right)
\end{aligned}
$$

Hence, from the choice of γ (see 2.8) and by the Sobolev embedding theorem, we conclude that

$$
\begin{align*}
& \left(f_{B_{3 R}} v^{k(\beta+p-1)} \eta^{k} d x\right)^{1 / k} \tag{2.16}\\
& \leq C(n, p, q)|\beta|^{q}\left(f_{B_{3 R}} v^{\beta+p-1}\left(1+R^{p}|\nabla \eta|^{p}+R^{q}|\nabla \eta|^{q}\right) d x\right)
\end{align*}
$$

where $k=n /(n-1)$. Iterating the relation 2.16)) by Mozer method, we arrive at the following conclusion.
Lemma 2.1. For every $q_{0}>0$, we have

$$
\begin{equation*}
\inf _{B_{R}} v(x) \geq C\left(n, p, q, q_{0}\right)\left(f_{B_{2 R}} v^{-q_{0}}(x) d x\right)^{-1 / q_{0}} \tag{2.17}
\end{equation*}
$$

As $w \geq v$, 2.17 implies

$$
\begin{equation*}
\inf _{B_{R}} w(x) \geq C\left(n, p, q, q_{0}\right)\left(f_{B_{2 R}} v^{-q_{0}}(x) d x\right)^{-1 / q_{0}} \tag{2.18}
\end{equation*}
$$

Lemma 2.2. For every ball $B_{2 r} \subset B_{3 R}$ centered in $B_{3 R}$, it holds

$$
\begin{equation*}
\int_{B_{r}}|\nabla \ln v|^{q} d x \leq C r^{n-q} \tag{2.19}
\end{equation*}
$$

where the constant C does not depend on u, R and r.
Proof. As before, it is assumed below that $B_{r}^{(i)}=D^{(i)} \cap B_{r} i=1,2$. Consider a cutting function $\eta \in C_{0}^{\infty}\left(B_{3 R}\right)$, such that $\eta \equiv 1$ in $B_{r},|\nabla \eta| \leq C r^{-1}$. Assuming $\varphi=$ $w^{1-p} \eta^{p}$ in the integral identity $\sqrt{1.4}$, by simple calculation with the consideration of 1.2 we obtain

$$
\int_{B_{2 r}^{(2)}}|\nabla \ln w|^{p} \eta^{p} d x \leq C\left(\int_{B_{2 r}^{(2)}}|\nabla \eta|^{p} d x+\int_{B_{2 r}^{(1)}} w^{q-p}|\nabla \eta|^{q} d x\right)
$$

Or, from $w^{q-p} \leq R^{q-p}$,

$$
\int_{B_{2 r}^{(2)}}|\nabla \ln w|^{p} \eta^{p} d x \leq C\left(r^{n-p}+R^{q-p} r^{n-q}\right) \leq C r^{n-p}
$$

Thus,

$$
\begin{equation*}
\int_{B_{2 r}^{(2)}}|\nabla \ln w|^{q} \eta^{q} d x \leq C r^{n-q} \tag{2.20}
\end{equation*}
$$

which proves 2.19 in the case $B_{r} \subset D^{(2)}$.
Now let $B_{r} \cap D^{(1)} \neq \emptyset$. To prove the similar estimate in $B_{r}^{(1)}$ we first assume that the set G_{R} defined by 2.2 is not empty and consider

$$
\varphi(x)= \begin{cases}\left(w^{1-q}(x)-\tilde{w}^{1-q}(x)\right) \eta^{q}(x) & \text { in } G_{R} \\ 0 & \text { in } B_{3 R} \backslash G_{R}\end{cases}
$$

as a test function in (1.4). Then it is not difficult to see that

$$
\begin{aligned}
& \int_{G_{R}}|\nabla \ln w|^{q} \eta^{q} d x \\
& \leq \int_{G_{R}}|\nabla w|^{q-1}|\nabla \ln \tilde{w}| \tilde{w}^{1-q} \eta^{q} d x \\
& \quad+q \int_{G_{R}}|\nabla w|^{q-1}|\nabla \eta| \tilde{w}^{1-q} \eta^{q-1} d x+q \int_{G_{R}}|\nabla w|^{q-1}|\nabla \eta| w^{1-q} \eta^{q-1} d x
\end{aligned}
$$

As $w(x) \leq \tilde{w}(x)$ in G_{R}, then, by Young's inequality, we obtain

$$
\begin{equation*}
\int_{G_{R}}|\nabla \ln w|^{q} \eta^{q} d x \leq C\left(\int_{G_{R}}|\nabla \ln \tilde{w}|^{q} \eta^{q} d x+\int_{G_{R}}|\nabla \eta|^{q} d x\right) \tag{2.21}
\end{equation*}
$$

First consider the case where the center of the ball B_{r} is located in $\bar{D}^{(2)}$. Then, by 2.20 ,

$$
\begin{equation*}
\int_{B_{2 r}^{(1)}}|\nabla \ln \tilde{w}|^{q} \eta^{q} d x \leq C r^{n-q} \tag{2.22}
\end{equation*}
$$

Summing 2.21 and 2.22, we have

$$
\begin{equation*}
\int_{B_{2 r}^{(1)}}|\nabla \ln v|^{q} \eta^{q} d x \leq C\left(\int_{B_{2 r}^{(1)}}|\nabla \ln \tilde{w}|^{q} \eta^{q} d x+r^{n-q}\right) \leq C r^{n-q} \tag{2.23}
\end{equation*}
$$

Hence, by 2.20, we obtain the inequality

$$
\begin{equation*}
\int_{B_{2 r}}|\nabla \ln v|^{q} \eta^{q} d x \leq C r^{n-q} \tag{2.24}
\end{equation*}
$$

which implies 2.19.
If the set G_{R} is empty, then $v(x)=\tilde{w}(x)$ in $B_{3 R}^{(1)}$, and 2.19 follows from 2.20). Now consider the case where $G_{R} \neq \emptyset$ and the center of the ball B_{r} is located in $D^{(1)}$. Denote by \hat{B}_{r} the image of the ball B_{r} under mirror reflection with respect to the hyperplane Σ. By inequality 2.20 , for the ball $\hat{B}_{2 r}$ we have

$$
\begin{equation*}
\int_{\hat{B}_{2 r}^{(2)}}|\nabla \ln w|^{q} \eta^{q} d x=\int_{B_{2 r}^{(1)}}|\nabla \ln \tilde{w}|^{q} \eta^{q} d x \leq C r^{n-q} \tag{2.25}
\end{equation*}
$$

As above, summing (2.21) and (2.25), we obtain again (2.23), which, combined with 2.20 , leads to the inequality (2.24), which in turn implies 2.19$)$. If the set G_{R} is empty, then 2.19 follows from 2.20 and 2.25 . The proof is complete.

John-Nirenberg lemma is a corollary of (2.19): there exist the positive constants q_{0} and C, independent of u and R such that

$$
\begin{equation*}
\left(f_{B_{2 R}} v^{-q_{0}}(x) d x\right)^{-1 / q_{0}} \geq C\left(f_{B_{2 R}} v^{q_{0}}(x) d x\right)^{1 / q_{0}} \tag{2.26}
\end{equation*}
$$

Proof of Theorem 1.1. As before, let $w=u+R$. Using (2.18) and 2.26), we obtain

$$
\inf _{B_{R}} u(x) \geq C\left(f_{B_{2 R}} v^{q}(x) d x\right)^{1 / q} \geq C \inf _{B_{R}^{-}} w(x)
$$

Then (1.6) follows from the classical Harnack inequality for the solutions of the equation (1.1) in the domain $D^{(2)}$, which states $\inf _{B_{R}^{-}} w(x) \geq c \sup _{B_{R}^{-}} w(x)$. Theorem 1 is proved.

References

[1] Acerbi, E.; Fusco, N.; A transmission problem in the calculus of variations, Calc. Var. Partial Differ. Equ., v.2, (1994) p. 1-16.
[2] Alkhutov, Y. A.; Huseynov, S. T.; Hölder continuity for solutions of elliptic equation uniformly degenerate in a part of domain. Dif. Uravneniya, 45(1) (2009), pp. 54-59 (in Russian)
[3] Alkhutov, Y. A.; Khrenova, E. A.; Harnack inequality for a class of degenerate elliptic equations. Trudi Matematicheskogo Instituta im. V.A.Steklova RAN, V. 278, (2012), pp.7-15. (in Russian)
[4] Alkhutov, Y. A.; On Hölder continuity of $p(x)$-harmonic functions. Matem. Sbornik, 196(2), (2005), pp. 3-28 (in Russian)
[5] Alkhutov ,Y. A.; Surnachev, M. D.; On Harnack inequality for elliptic (p, q)-Laplacian. Dokladi RAN, 470(6), (2016), pp. 623-627 (in Russian)
[6] Alkhutov, Y. A.; Zhikov, V. V.; On Hölder property of solutions of degenerate elliptic equations. Dokladi RAN, 378(5), (2001), pp. 583-588 (in Russian)
[7] Huseynov, S. T.; Harnack inequality for the solutions of the p-Laplacian with a partially Muckenhoupt weight. Dif. uravneniya, 53(5), (2017), pp. 653-664 (in Russian)
[8] Huseynov, S. T.; Hölder continuity for (p, q)-Laplace equations that degenerate uniformly on part of the domain, Electronic Journal of Differential equations, 2017 (308), (2017), pp.1-12.
[9] Huseynov, S. T.; On Hölder property of solutions of degenerate quasilinear elliptic equations, Applied Mathematical Sciences, Hikari Ltd, 9(100), (2015), p. 4979-4986.
[10] Ladyzhenskaya, O. A.; Uraltseva, N. N.; Linear and quasilinear equations of elliptic type. M: Nauka (1973). (in Russian)
[11] Mozer, J.; A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure and Appl. Math., 13 (3) (1960), p. 457-468.
[12] Serrin, J.; Local behavior of solutions of quasilinear elliptic equations, Acta Mathematica, v. 111 (1964), p. 247-302.
[13] Zhikov, V. V.; Averaging of functionals of the calculus of variations and elasticity theory. Izvestiya AN SSSR, Ser. Matem., 50(4) (1986), pp. 675-711 (in Russian)

Sarvan T. Huseynov
Baku State University, Baku AZ1148, Azerbaijan
E-mail address: sarvanhuseynov@rambler.ru

[^0]: 2010 Mathematics Subject Classification. 35J62, 35J65, 35J70, 35J92.
 Key words and phrases. $p(x)$-Laplacian; elliptic equation; Harnack inequality.
 (C) 2018 Texas State University.

 Submitted January 5, 2018. Published July 17, 2018.

