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Abstract. In this article, we extend solution of inverse nodal problem for

one-dimensional p-Laplacian equation to the case when the boundary condition

is polynomially eigenparameter. To find the spectral data as eigenvalues and
nodal parameters, a Prüfer substitution is used. Then, we give a reconstruction

formula of the potential function by using nodal lengths. This method is similar
to used in [24], and our results are more general.

1. Introduction

Consider p-Laplacian Sturm-Liouville eigenvalue problem

−
(
y
′(p−1)

)′ = (p− 1)
(
λ− qm(x)

)
y(p−1), 0 ≤ x ≤ 1, (1.1)

with the boundary conditions

y(0) = 0, y′(0) = 1,

y′(1, λ) + f(λ)y(1, λ) = 0,
(1.2)

where p > 1,

f(λ) = a1

√
λ+ a2(

√
λ)2 + · · ·+ am(

√
λ)m, ai ∈ R, am 6= 0, m ∈ Z+, (1.3)

λ is a spectral parameter and y(p−1) = |y|(p−2)y. Throughout this study, we suppose
that qm(x) is a real-valued C[0, 1]-function defined on the interval 0 ≤ x ≤ 1 for each
m ∈ Z+ and y(x, λ) denotes the solution of the problem (1.1)-(1.2). When p = 2,
Equation (1.1) becomes the well-known Sturm-Liouville equation. The idea of in-
verse eigenvalue problems with an eigenparameter together with the boundary con-
ditions is of great interest to many problems of mathematical physics and mechan-
ics. These type problems have many physical applications. For instance, Sturm-
Liouville equation including spectral parameter with the boundary conditions arises
in heat and one-dimensional wave equation by seperation of variables. There are
many literatures on these type of problems (see [2, 3, 6, 7, 8, 9, 18, 19, 22, 25]).

2010 Mathematics Subject Classification. 34A55, 34L05, 34L20.

Key words and phrases. Inverse nodal problem; Prüfer substitution; Sturm-Liouville equation.
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Inverse spectral problem involves recovering differential equation from its spec-
tral parameters like eigenvalues, norming constants and nodal points (zeros of eigen-
functions). These type of problems have been divided into two parts; inverse eigen-
value problem and inverse nodal problem. They play an important role and also
have many applications in applied mathematics. Inverse nodal problem was firstly
studied by McLaughlin in 1988. She showed that the knowledge of a dense subset
of nodal points is sufficient to determine the potential function of Sturm-Liouville
problem up to a constant [16]. Also, some numerical results about this problem were
given in [10]. Nowadays, many authors have given some interesting results about
inverse nodal problems for different type of operators (see [4, 12, 13, 15, 17, 21, 26]).

In this study, we devote our effort with the inverse nodal problem for p-Laplacian
Sturm-Liouville equation with boundary condition polynomially dependent on spec-
tral parameter. Essentially, we give asymptotics of eigenparameters and recon-
struction formula for potential function. Note that inverse eigenvalue problems for
different p-Laplacian operators have been studied by several authors (see [1, 5, 11,
14, 20, 21]).

The zero set Xn = {xnj,m}
n−1
j=1 of the eigenfunction yn,m(x) corresponding to λn,m

is called the set of nodal points. And, lnj,m = xnj+1,m− xnj,m is referred as the nodal
length of yn,m. The eigenfunction yn,m(x) has exactly n− 1 nodal points in (0, 1),
say 0 = x

(n)
0,m < x

(n)
1,m < · · · < x

(n)
n−1,m < x

(n)
n,m = 1.

Let us now recall some important results. Firstly, we need to introduce the
generalized sine function Sp which is the solution of the initial value problem

−
(
S
′(p−1)
p

)′ = (p− 1)S(p−1)
p ,

Sp(0) = 0, S′p(0) = 1.
(1.4)

Sp and S′p are periodic functions which satisfy the identity

|Sp(x)|p + |S′p(x)|p = 1,

for any x ∈ R. These functions are p-analogues of classical sine and cosine functions.
It is well known that

π̂ =
∫ 1

0

2

(1− tp)
1
p

dt =
2π

p sin(πp )
,

is the first zero of Sp in positive axis [5].

Lemma 1.1 ([5]). (a) For S′p 6= 0,

(S′p)
′ = −|Sp

S′p
|p−2Sp.

(b)
(SpS

′(p−1)
p )′ = |S′p|p − (p− 1)Spp = 1− p|Sp|p = (1− p) + p|S′p|p.

Using Sp(x) and S′p(x), the generalized tangent function Tp(x) can be defined as
follows [5]

Tp(x) =
Sp(x)
S′p(x)

, for x 6=
(
k +

1
2
)
π̂.

The remaining part of this study is organized as follows; In section 2, we give
some asymptotic formulas for eigenvalues and nodal parameters for p-Laplacian
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Sturm-Liouville eigenvalue problem (1.1)-(1.2) with boundary condition polynomi-
ally dependent on spectral parameter by using modified Prüfer substitution. In
section 3, we give a reconstruction for the potential function of the problem (1.1)-
(1.2).

2. Asymptotic behavior of some eigenparameters

In this section, we present some results on (1.1)-(1.2). One of them is the Prüfer’s
transformation which is one of the most powerful method for solving inverse prob-
lem. Recall that the Prüfer’s transformation for a nonzero solution y of (1.1) takes
the form

y(x) = R(x)Sp(λ1/pθ(x, λ)),

y′(x) = λ1/pR(x)S′p(λ
1/pθ(x, λ)),

(2.1)

or
y′(x)
y(x)

= λ1/p
S′p(λ

1/pθ(x, λ))
Sp(λ1/pθ(x, λ))

, (2.2)

where R(x) is amplitude and θ(x) is the Prüfer variable [23]. Standard manipula-
tions [21] yield

θ′(x, λ) = 1− qm(x)
λ

Spp
(
λ1/pθ(x, λ)

)
. (2.3)

Lemma 2.1 ([21]). Define θ(x, λn) as in (2.1) and φn(x) = Spp(λ1/p
n θ(x, λn))− 1

p .
Then, for any g ∈ L1(0, 1), ∫ 1

0

φn(x)g(x)dx = 0.

Theorem 2.2. The eigenvalues λn,m of the p-Laplacian Sturm-Liouville eigenvalue
problem given in problem (1.1)-(1.2) have the form

λ
1/p
n,1 = nπ̂ − 1

a1(nπ̂)
p−2
2

+
1

p(nπ̂)p−1

∫ 1

0

q1(x)dx+O(
1

np−2
), for m = 1, (2.4)

λ
1/p
n,2 = nπ̂ − 1

a1(nπ̂)
p−2
2 + a2(nπ̂)p−1

+
1

p(nπ̂)p−1

∫ 1

0

q2(x)dx

+O
( 1
n2p−1

)
, for m = 2,

(2.5)

λ1/p
n,m = nπ̂ − 1

a1(nπ̂)
p−2
2 + · · ·+ am(nπ̂)

mp−2
2

+
1

p(nπ̂)p−1

∫ 1

0

qm(x)dx+O
( 1
n2p−1

)
, for m ≥ 3,

(2.6)

as n→∞.

Proof. Let θ(0, λ) = 0 for (1.1)-(1.2). Integrating both sides of (2.3) with respect
to x from 0 to 1, we obtain

θ(1, λ) = 1− 1
λ

∫ 1

0

qm(x)Spp(λ1/pθ(x, λ))dx.

By Lemma 2.1,∫ 1

0

qm(x){Spp(λ1/pθ(x, λ))− 1
p
}dx = o(1), as n→∞.
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Hence, we obtain

θ(1, λ) = 1− 1
pλ

∫ 1

0

qm(x)dx+O
( 1
λ2

)
. (2.7)

Let λn,m be an eigenvalue of the problem (1.1)-(1.2). For m = 1, by (1.2), we have

λ
1/p
n,1R(1)S′p(λ

1/p
n,1 θ(1, λn,1)) + a1

√
λn,1R(1)Sp

(
λ

1/p
n,1θ(1, λn,1)

)
= 0,

or

−
λ

1
p−

1
2

n,1

a1
=
Sp(λ

1/p
n,1θ(1, λn,1))

S′p(λ
1/p
n,1θ(1, λn,1))

= Tp
(
λ

1/p
n,1θ(1, λn,1)

)
.

As n is sufficiently large, it follows that

λ
1/p
n,1θ(1, λn,1) = T−1

p

(
−
λ

1
p−

1
2

n,1

a1

)
= nπ̂ −

λ
1
p−

1
2

n,1

a1
+ o(λ

2
p−1

n,1 ). (2.8)

By considering (2.7) and (2.8) together, we obtain

λ
1/p
n,1 = nπ̂ − 1

a1(nπ̂)
p−2
2

+
1

p(nπ̂)p−1

∫ 1

0

q1(x)dx+O
( 1
np−2

)
.

For m = 2, by (1.2), using the same process as in m = 1, we can easily obtain

λ
1/p
n,2R(1)S′p(λ

1/p
n,2 θ(1, λn,2)) + (a1

√
λn,2 + a2(

√
λn,2)2)R(1)Sp(λ

1/p
n,2θ(1, λn,2)) = 0,

or

−
λ

1
p

n,2

a1

√
λn,2 + a2(

√
λn,2)2

=
Sp(λ

1/p
n,2θ(1, λn,2))

S′p(λ
1/p
n,2θ(1, λn,2))

= Tp(λ
1/p
n,2θ(1, λn,2)). (2.9)

Therefore,

λ
1/p
n,2 = nπ̂ − 1

a1(nπ̂)
p−2
2 + a2(nπ̂)p−1

+
1

p(nπ̂)p−1

∫ 1

0

q2(x)dx+O
( 1
n2p−1

)
.

Finally, by (1.2), we have

λ1/p
n,mR(1)S′p(λ

1/p
n,mθ(1, λn,m)) + (a1

√
λn,m + . . .

+ am(
√
λn,m)m)R(1)Sp(λ1/p

n,mθ(1, λn,m)) = 0,

or

− λ
1
p
n,m

a1

√
λn,m + · · ·+ am(

√
λn,m)m

=
Sp(λ

1/p
n,mθ(1, λn,m))

S′p(λ
1/p
n,mθ(1, λn,m))

= Tp
(
λ1/p
n θ(1, λn,m)

)
,

(2.10)

for m ≥ 3, by considering (2.7) and (2.10) together, we deduce that

λ1/p
n,m = nπ̂ − 1

a1(nπ̂)
p−2
2 + · · ·+ am(nπ̂)

mp−2
2

+
1

p(nπ̂)p−1

∫ 1

0

qm(x)dx+O(
1

n2p−1
).

�
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Theorem 2.3. The nodal points for problem (1.1)-(1.2) satisfy the following as-
ymptotic estimates:

xnj,1 =
j

n
− j

a1n
p+2
2 π̂p

+
j

pnp+1π̂p

∫ 1

0

q1(t)dt+
∫ xn

j,1

0

q1(t)
(nπ̂)p

Sppdt+O
( j
np
)
,

for m = 1,
(2.11)

xnj,2 =
j

n
− j

a1n
p+2
2 π̂

p
2 + a2np+1π̂p

+
j

pnp+1π̂p

∫ 1

0

q2(t)dt

+
∫ xn

j,2

0

q2(t)
(nπ̂)p

Sppdt+O
( j

n2p+1

)
, for m = 2,

(2.12)

xnj,m =
j

n
− j

a1n
p+2
2 π̂

p
2 + · · ·+ amn

mp+2
2 π̂

mp
2

+
j

pnp+1π̂p

∫ 1

0

qm(t)dt

+
∫ xn

j,m

0

qm(t)
(nπ̂)p

Sppdt+O
( j

n2p+1

)
, for m ≥ 3,

(2.13)

as n→∞.

Proof. Integrating (2.3) from 0 to xnj,m and letting θ(xnj,m, λ) = jπ̂

λ
1/p
n,m

, we have

xnj,m =
jπ̂

λ
1/p
n,m

+
∫ xn

j,m

0

qm(t)
λn,m

Sppdt. (2.14)

For m = 1, from (2.4), we deduce that

1

λ
1/p
n,1

=
1
nπ̂
− 1

a1(nπ̂)
p+2
2

+
1

p(nπ̂)p+1

∫ 1

0

q1(x)dx+O
( 1
np
)
, (2.15)

and therefore, we obtain formula (2.11) by using (2.14) and (2.15).
For m = 2, from formula (2.5), the asymptotic estimate of eigenvalues 1/λ1/p

n,2 is
considered as

1

λ
1/p
n,2

=
1
nπ̂
− 1

a1(nπ̂)
p+2
2 + a2(nπ̂)p+1

+
1

p(nπ̂)p+1

∫ 1

0

q2(x)dx+O
( 1
n2p+1

)
, (2.16)

and, we conclude formula (2.12) by using (2.14) and (2.16).
For m ≥ 3, from the formula (2.6), it can easily be shown that

1

λ
1/p
n,m

=
1
nπ̂
− 1

a1(nπ̂)
p+2
2 + · · ·+ am(nπ̂)

mp+2
2

+
1

p(nπ̂)p+1

∫ 1

0

qm(x)dx

+O
( 1
n2p+1

)
,

(2.17)

and, we obtain formula (2.13) by using (2.14) and (2.17). �

Theorem 2.4. Asymptotic estimate of the nodal lengths for the problem (1.1)-(1.2)
satisfies

lnj,1 =
1
n
− 1

a1n
p+2
2 π̂

p
2

+
1

pnp+1π̂p

∫ 1

0

q1(t)dt

+
1

(nπ̂)p

∫ xn
j+1,1

xn
j,1

q1(t)Sppdt+O
( 1
np
)
, for m = 1,

(2.18)
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lnj,2 =
1
n
− 1

a1n
p+2
2 π̂

p
2 + a2np+1π̂p

+
1

pnp+1π̂p

∫ 1

0

q2(t)dt

+
1

(nπ̂)p

∫ xn
j+1,2

xn
j,2

q2(t)Sppdt+O
( 1
n2p+1

)
, for m = 2,

(2.19)

lnj,m =
1
n
− 1

a1n
p+2
2 π̂

p
2 + · · ·+ amn

mp+2
2 π̂

mp
2

+
1

pnp+1π̂p

∫ 1

0

qm(t)dt

+
1

(nπ̂)p

∫ xn
j+1,m

xn
j,m

qm(t)Sppdt+O
( 1
n2p+1

)
, for m ≥ 3.

(2.20)

Proof. For a large n ∈ N, integrating (2.3) on [xnj,m, x
n
j+1,m] and using the definition

of nodal lengths, we have

π̂

λ
1/p
n,m

= xnj+1,m − xnj,m −
1

pλn,m

∫ xn
j+1,m

xn
j,m

qm(t)Sppdt

− 1
λn,m

∫ xn
j+1,m

xn
j,m

qm(t)
(
Spp −

1
p

)
dt,

(2.21)

or

lnj,m =
π̂

λ
1/p
n,m

+
1

pλn,m

∫ xn
j+1,m

xn
j,m

qm(t)Sppdt+O
( 1
λn,m

)
.

�

For m = 1, m = 2 and m ≥ 3, we can easily obtain (2.18), (2.19) and (2.20) by
using the formulas (2.15), (2.16), (2.17) and (2.21), respectively.

3. Reconstruction of the potential function

In this section, we give an explicit formula for the potential function by using the
nodal lengths. The method used in the proof of the theorem is similar to classical
problems; p-Laplacian Sturm-Liouville eigenvalue problem and p-Laplacian energy-
dependent Sturm-Liouville eigenvalue problem (see [11, 14, 20, 21]).

Theorem 3.1. Let qm(x) be a real-valued C[0, 1]-function on the interval 0 ≤ x ≤
1. Then

qm(x) = lim
n→∞

pλn,m

(λ1/p
n,mlnj,m
π̂

− 1
)
, (3.1)

for j = jn(x) = max{j : xnj,m < x} and m ∈ Z+.

Proof. We need to consider Theorem 2.3 for the proof. From (2.21), we have

pλ
1/p+1
n,m

π̂
lnj,m = pλn,m +

λ
1/p
n,m

π̂

∫ xn
j+1,m

xn
j,m

qm(t)dt+
pλ

1/p
n,m

π̂

∫ xn
j+1,m

xn
j,m

qm(t)(Spp −
1
p

)dt.

Then, we can use similar procedure as those in [14] for j = jn(x) = max{j : xnj,m <
x} to show

λ
1/p
n,m

π̂

∫ xn
j+1,m

xn
j,m

qm(t)dt→ qm(x),

and
pλ

1/p
n,m

π̂

∫ xn
j+1,m

xn
j,m

qm(t)
(
Spp −

1
p

)
dt→ 0,
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pointwise almost everywhere. Hence, we obtain

qm(x) = lim
n→∞

pλn,m

(λ1/p
n,mlnj,m
π̂

− 1
)
.

�

Theorem 3.2. Let {l(n)
j,m : j = 1, 2, . . . , n − 1}∞n=2 be a set of the nodal lengths of

problem (1.1)-(1.2), where qm is a real-valued C[0, 1]-function. Let us define

Fn,1(x) = p(nπ̂)p(nl(n)
j,1 − 1)− p

a1

(
nπ̂
)p/2 +

∫ 1

0

q1(t)dt, for m = 1. (3.2)

Fn,2(x) = p(nπ̂)p
(
nl

(n)
j,2 − 1

)
− p(nπ̂)p/2

a1 + a2(nπ̂)p/2
+
∫ 1

0

q2(t)dt, for m = 2. (3.3)

Fn,m(x) = p(nπ̂)p
(
nl

(n)
j,m − 1

)
− p(nπ̂)p/2

a1 + · · ·+ am(nπ̂)
mp−p

2

+
∫ 1

0

qm(t)dt,

for m ≥ 3.
(3.4)

Then {Fn,m(x)} converges to qm pointwise almost everywhere in L1(0, 1), for all
cases.

Proof. We prove this theorem only for m = 1. Other cases can be shown similarly.
For m = 1, by the asymptotic formulas of eigenvalues (2.4) and nodal lengths
(2.18), we obtain

pλn,1

(λ1/p
n,1 l

n
j,1

π̂
−1
)

= pλn,1
(
nl

(n)
j,1 −1

)
− p

a1π
(nπ̂)p/2+1l

(n)
j,1 +nl

(n)
j,1

∫ 1

0

q1(t)dt+o(1).

Considering nl(n)
j,1 = 1 + o(1), as n→∞, we have

p(nπ̂)p(nl(n)
j,1 − 1)− p

a1
(nπ̂)p/2 → q1(x)−

∫ 1

0

q1(t)dt,

pointwise almost everywhere in L1(0, 1). �

Conclusion. In this study, we give some asymptotic estimates for eigenvalues,
nodal parameters and potential function of the p-Laplacian Sturm-Liouville eigen-
value problem (1.1)-(1.2). We show that the obtained results are the generalizations
of the classical problem.

Acknowledgements. The authors is deeply indebted to the reviewer, who made
remarks which contributed to the improvements in the text and in the transparency
of the results.
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