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INDIRECT BOUNDARY OBSERVABILITY OF SEMI-DISCRETE
COUPLED WAVE EQUATIONS

ABDELADIM EL AKRI, LAHCEN MANIAR

Communicated by Jerome A. Goldstein

ABSTRACT. This work concerns the indirect observability properties for the
finite-difference space semi-discretization of the 1-d coupled wave equations
with homogeneous Dirichlet boundary conditions. We assume that only one of
the two components of the unknown is observed. As for a single wave equation,
as well as for the direct (complete) observability of the coupled wave equations,
we prove the lack of the numerical observability. However, we show that a
uniform observability holds in the subspace of solutions in which the initial
conditions of the observed component is generated by the low frequencies.
Our main proofs use a two-level energy method at the discrete level and a
Fourier decomposition of the solutions.

1. INTRODUCTION

This article deals with the boundary observability properties for the finite-
difference approximation of the 1-d coupled wave equations and where we assume
that only one of the two components of the unknown is observed. To clarify our
aim, we will introduce first the problem of boundary observability in the continuous
setting.

Thus, let us fix 7' > 0 and let us consider the linear system

Ut — Uz +av =0 for (z,t) € (0,L) x (0,7)
Vg — Vg +au =0 for (z,t) € (0,L) x (0,T)
u(0,t) =u(L,t) =0 forte (0,T)
w(0,1) = v(L,t) =0 for ¢ € (0,T) (1.1)
uw(0) =u®, «/(0)=u' forz € (0,L)
v(0) =0, W'(0) =o' forx € (0,L),
where a € R is the coupling constant and (u®,u!,v° v') € H}(0,L) x L*(0,L) x
H}(0,L) x L?(0,L) are the initial conditions. Here the subscript ¢ stands for the

partial derivative with respect to time variable while subscript x stands for the
space variable.
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It can be shown that for T sufficiently large, more precisely for T > 2L, that
these solutions satisfy the following (complete) observability inequality (see [8 [7],
where in the latter this inequality has been established for a set of parameters larger
than a single parameter «)

E(u;0) + E(v;0) + alluvlZ2(0 1y 0.0))

T (1.2)
<o) / (s (L) + loa (L, 1) ),

where F is the energy of the solution of a single wave equation, defined, for a generic
u, by the formula

L
B(u;t) = %/O (g (2, )] + [ua (2, 1)) da (1.3)

We remark that in one observes the L?-norm of the derivatives of v and
v on the extreme point of the boundary x = L, and get back information on the
initial state of solution. Then, an interesting and difficult problem is to get back
the energy of both components by using just the observation of a single component,
say u, of the solution on x = L. More precisely, for system this is equivalent
to the estimate

E(u;0) 4+ E(v;0) < C(T) /T lug(1,)|?dt, (1.4)
0

where F is the partial weakened energy defined by

L

Blost) =5 / (1=02)" 20w, ) + lo(z, ) de (1.5)
0

Here (—02)~1/2 stands for the square root of the inverse of the Laplace operator

with Dirichlet boundary conditions. The above estimate is known as indirect

observability inequality.

To our knowledge, this notion of indirect observability was introduced for the
first time in the context of coupled wave equations in [I], to obtain an ezact indirect
controllability result, in which one wants to derive back the full coupled system to
equilibrium by controlling only one component of the system. The author in this
paper used a two level energy method and proved estimate for small parameter
|a| and a sufficiently large time T > 0.

In this work we analyze the analogue of the observability inequality for
space semi-discretization applied to the coupled wave equations in a uniform
meshes. For this purpose, let us introduce the space finite-difference scheme of
equation (T.I). Let N € N* and we set h = NLH We discretize [0, L] by a uniform
computational grid defined by z; = jh, j = 0,..., N 4+ 1. Then the semi-discrete

approximation of reads
wf + (=0jih); +av; =0 forj=1,...,N, t € (0,T)
v + (=05Uh)j + oau; =0 for j=1,...,N, t€(0,T)
up(t) =0, uny+1(t) =0 for0<t<T
vo(t) =0, vy11(t) =0 forO<t<T
u;(0) = u?, u;(()) = u]1 forj=1,...,N

v;(0) =), vj(0) =v; forj=1,...,N,
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where @h(t) = (u1(t),...,un(t)), Oh(t) = (v1(¢),...,on(t)) and

Uj1 — 2uj + Ui
_ - 7
Here the superscript ’ denotes partial differentiation with respect to time. The
functions u;(t) and v;(¢) are approximations of the solutions u(x,t) and v(x,t) of
(1.1) in the grid point (x;,t), provided that (u?, u]l, v?, v})lngN approximates the
initial datum (u®, u!, %, v!).

For each solution (@h,@h) of system (1.6, we associate the following discrete
natural and weakened energies, respectively,

(—07ih); = j=1 N.

yeeey

Byt t) = SR () g+ 51 (~00) 20Ol 1, (17)
Bn(@ti1) = 3 (~08)" /200 (1) B 1+ 19 (6) B 1 (1)
where we have used the notation
N
@l p = (@ Dry gy with (@ D)pw = hZqu]
j=1
for every vectors @@ = (u1,...,uy) and 7 = (vq,...,vyn) of RV,

Of course the discrete energies (|1.7)) and (|1.8)) are a discretization of the contin-
uous ones defined by (1.3) and (1.5). However, they define the total, (natural and
weakened), energies of system (|1.6)):

Ern(t) = En(th; t) + En(Uh;t) + a{dh(t), Th(t))ry p, (1.9)
Eru(t) = En(@h;t) + Ep(Gh; t) + a((—07) " a@h(t), Th(t))an 4, (1.10)

which are conserved along time, see Lemma that is
Epp(t) = Erp(0), and Epp(t) = Ep,(0), Vte[0,T]. (1.11)

Our aim is to study the indirect observability property of the discrete equation
(1.6). More precisely, we are concern with the following discrete version of (|1.4)),

By, (h; 0) 4 E(Th; 0) < C(T, ) /T \“NT(t)fdt (1.12)
0

for large time T and a sufficiently small |«|.

It is well known by now that in general estimates like equation are not
uniform for standard numerical discretization in uniform meshes, and that the
observability constant C' = C(h) may diverge as h — 0. Indeed, as it is explained
in [5] (see also 3, [9, [10]), in general the semi-discrete dynamics generates high-
frequency modes that do not exist at the continuous level. This high-frequency
oscillations propagate with arbitrary small velocity and that cannot be observed
uniformly with respect to the mesh size h.

By now, as witnessed in the bibliography of the review paper [11], there is a
large number of publications on the uniform observability of discrete systems. For
instance, in paper [5] the authors consider the problem of the boundary observability
for a finite-difference and finite elements space semi-discretization of a single wave
equation, and they proved that the observability inequality is not uniform with
respect to the mesh size. However, they have shown that filtering the high frequency
modes leads to a uniform bound for the observability constant.
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The same approach was used in [3] dealing with coupled wave equations like
(1.1) and analogously to [5], a uniform discrete version of inequality in filtered
space, namely the space generated by the low frequency eigenvalues of the discrete
operator (—037), has been obtained.

Our contribution in this paper is the analysis of the discrete inequality
in uniform meshes. The proof of our results are based on the Fourier decomposi-
tion of solutions and take advantages of the proof of observability estimate (|1.4))
proposed by Alabau-Boussouira [I] at the continuous level. However, our paper is
also inspired on that of Infante and Zuazua [5]. To our knowledge, this problem
of uniform indirect observability for a coupled wave equations was not considered
before.

Now a description of the content of the paper can be given: In Section 2] we give
the main results of this paper which are the lack of uniform discrete observability
and a uniform observability result for solutions with filtered initial datums. At this
stage, however, it is worth mentioning that the filtered mechanism is applied only
to one of the two component of the solution, namely to the observed one. In Section
[l we establish the proof of the lack of uniform observability while the observability
in filtered space is shown in Section

2. MAIN RESULTS

In this section we present the main results of this paper. The first result asserts
the lack of uniform observability of the semi-discrete system 7 while the second
one shows that a uniform bound holds in the subspace of solutions in which the
initial conditions of the observed component is generated by the low frequencies.

Our result on the absence of uniform observability is given by the following
theorem.

Theorem 2.1. For each T > 0, we have

sup — 00, ash—0. (2.1)

[Eh(ﬁh; 0) + E,(0h; o)}
(h,Th) solution of

Jo 125024y

As mentioned in the introduction, this lack of uniform observability is because of
the high frequency modes generated by the discrete dynamic (1.6)). Then, in order
to get a uniform bound for the observability constant one has to filter out these
spurious frequency modes. However, as we shall see, we need to rule just the high
oscillations of the observed component of the solution.

Moreover, before giving a precise definition of this filtered space, we need to recall
that the eigenvalues and eigenvectors of the matrix (—97) can be given explicitly
by

4 . 5 rkmh
Bk (f

/2 kmx;
Pr,j = Zsin( 7;%) 5, k=1,...,N,

and that the set formed by this eigenvectors gk := (¢ ;)1<j<n is an orthonormal
basis in the discrete space (RN, || - [|g~ ), we refer to [6, pp. 458] (see also []) for

A (h) ) k=1,....N
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the proof of these facts. Therefore, any vector @ € RY may be expressed as
N

=Y angk, with g = (i Gk)py -
k=

1
Let 0 < v < 4. Then, as in [3, 5], we introduce the following filtered space
Gn={ii= > anpk; ax €R}. (2.2)
)\)Ch2<’Y
We are ready to state our result on the uniform indirect observability of (1.6).

Theorem 2.2. Assume that 0 < v < 4. Then for |a| sufficiently small, there
exists T'(av,7y) > 0 such that for all T > T'(«,7y), there exist C(T, v,7y) such that the
following estimate holds as h — 0,

~ T uN(t) 2
Ey(ih; 0) + Ep(0h; 0) < C’(T,a,'y)/ |Ty dt (2.3)
0

for every solution of (1.6) with initial datum (@h°,iht, Th°, Ghl) in the class Sy, =
Gn x G, x RV x RN

3. PROOF OF THEOREM [2.1]

The main tool is a spectral decomposition of the solution of the observed system

(1.6) given in Lemma bellow. To begin with, we exapnad the initial data

(u®, ut,v% v') in Fourier sequences with respect to the eigenfunctions (Gk)1<kr<n,

N N

ah = " udgk, ih' = uigk, (3.1)
k=1 k=1
N N

7h0 = " w)@k, Th' =) vigk. (3.2)
k=1 k=1

Then, we claim the following result.

Lemma 3.1. Assume that |a] < (%)2 Given @h°, @h', ThY, Uh! arbitrary scalars,
the problem (L1.6]) has a unique analytic solution (iih,vh) : Ry — R2N given by the
spectral decomposition

-~

N _
ih(r) = 3 [ ;”2 cos (\/ui (w)t) + S . (ot (ht)
k=1 2 H-}: (h)
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where @,ZLE,Z;E,UE are the Fourier coefficients given in (3.1)-(3.2]), and the eigen-
values uki (h) are defined by
4 kmh
uf(h) =X(h)ta= ﬁsin2 (%) +a, k=1,...,N.
Proof. The proof is straightforward. Indeed, taking @wh* = @h + vh and wWh™ =
ith — vh, it follows that

(w)" + (=05wh™); + awl =0 forj=1,...,N, t€(0,7)
wg (1) =0, w1 (t) =0 for0<t<T

3.5
wj'(O):u?+v§-) forj=1,...,N (3:5)
(w;r)’(O):u}—i—v]l- forj=1,...,N,
and
(w; )" + (—=0Fwh™); — aw; =0 forj=1,...,N, t€(0,T)
wy () =0, wy, (t) =0 for0<t<T
o () N1t (3.6)

wy (0) =uf—v} forj=1,...,N
(w;)'(0) =uj—wv; forj=1,...,N.

However, it is easy to see that the solutions of decoupled systems (3.5)-(3.6|) are
given by Fourier sequences development

a0 = 32 [+ ) cos (i 00t) + 2 i (0
k=1 M (h)

()= 3 [ (7 - 1) cos (g (01) + L=k i (i ()
k=1 My (h)

and we recover equations (3.3)-(3.4) by remarking that @h = M and Th =
wht —h ™~

5 . This completes the proof. ([

Remark 3.2. Throughout this paper, whenever the eigenvalues uf(h) are men-

s

tioned, condition |a| < o := (F)? is directly taken into consideration since other-

wise /5 () is not well defined.

Remark 3.3. Having in mind the relation e’ = cos(x) +isin(x), we can write the
solution (@h,Th) given by (3.3)-(3.4) in the following equivalent form

. akeu/uk (h)t + bkez\/uk (h)t ~
ant) = Y 5 ok,

1<|kI<N
i/t (R)t _ b in/ 1 (h)t
— age k k€ k -
Gh(t)= > 5 ok,

1<[k|<N

where y/ui (h) = —/p®, () for k < 0, and ay, by are suitable coefficients that can

be computed explicitly in terms of the Fourier coefficients uf, u}, v, vi.
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Proof of Theorem[2.1]. Let (@h,vh) be the solution of equation (1.6 associated to
the N-th eigenvector given by

en/#;(h)t + etV iy (h)t ei\/,u;(h)t R AVITNIDL:
uh = 5 ¢N and vh= 5 PN

In view of Remark [3.3] and according to Lemma [3.1] the couple (@h, h) is indeed a
solution of the discrete coupled wave equations (1.6)). For this solution, we compute

separately each of the three terms Ej, (@h; 0), Ej,(h;0) and fOT ’uNT(t) ‘2dt appearing
in equation (2

Computatlon of Ey,(ih;0). We have

h h uj4+1(0) —u;(0) 2
= §;|u}(0)|2+ §;|%|

(3.7)
ik () + i () 1= o
_ 2 ©N,j+1 — PN,j (2
- DN S
7=0
Moreover, the eigenvector GN satisfy the following identity (see [5])
N o on o N
N,j+1 — PN,j
hy y%y =Av(Wh Y len I (3.8)
j=0 j=1
Inserting this last equation into , we obtain
N
o (ith: 0) {|\/MN Jr\/NN l}hz‘SON,jJrl_‘pN,j 2
8An(h h ’
and in view of the identity, see for instance [3, [5],
N
ON,j+1 — PN, |2 2L ON,N 2
h ‘ - : 3.9
jz::(] h 47)\N(h)h2| h | (3:9)
we can write
W (@h; 0) [|\/MN i \/MN +1] L == ’2 (3.10)
4N (h 4 — Ay (h)h? ' '
Computation of Ej,(7h;0). We have
2 h &
Butits0) = 2 -o) 20, + 4 0

-+ h _ — h 2 )
. WN( ) Wm ) ot

Remarking that (—9?)~Y/2@N = ( 9%)'/2@N and using the identity

. _ .2
(00 26N By = 1S [Pt =g
j=0

b
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together with equation (3.9)), we can write

|\/'MN \/’MN L ©N,N |?
(h: ‘ : ’ 11
(vh;0) 2 ( 14—y (h)h? (3:.11)

2
“NT“)’ dt. We have

Computation of fOT

/T ’uN(t) ‘th _ /T lem/u}(h)t 4 eiVinn (Mt ‘th ‘@N,N 2

and

eV ik (Wt 4 ein/uy (bt ‘th T sm \/,uN \/,uj\,(h) T

)
2 \/:U'N \/Nﬁ(h))

Therefore, we obtain
s1n \/,uN \/u]_v T ON N |2
{2 } |22 (3.12)

b NETRYE

Next, combining (3.10)), (3.11) and (3.12)) we deduce that
Ey(ih; 0) + Eh(ah 0 C(T,h)

/

- , 3.13
Te0Pa I W 1)
with )
N EOIRND) i |k () /i ()|
O(T.h) = D (h) + 1+ 32, (h)
7 T L S‘n[(V”N —Vun(h ) ]
2 (V NN(h —Vun(h )
After straightforward calculations, we obtain
C(T,h) — % and An(h)h? —4, as h— 0. (3.14)
Indeed, we have
[\ () + WN ) + () + 2y k(W ()
4y (h N 4y (h)
22w (h) + 2203 (h) — a2 (3.15)
B 4w (h)
T2 3 () " ’
T _ 2
iy (h) = 1/ (h) 402
|\/N4A2(\}{)N [ a =0, ash—0, (3.16)
N 4A%v<hwuw +\Ju (h)]
. + _ 2aT ]
sin [(1/ it (h) — \/ i (h) i [ =
[(\/ il \/ )] Wiy W) % ash—0, (3.17)

2(\ ik () =y (1) —Nfzifmh
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and

N7h h h
Ay (h)h? = 4sin® (%) = 4sin? (I - l) = 4 cos? (%) —4, ash—0.

2 2L
(3.18)

In view of (3.15)), (3.16)), (3.17) and (3.18) we immediately get (3.14)). Hence, from
(3.14)) and (3.13)), it follows that

Ep(i@h; 0) + Ey,(h; 0)

Jo 2227 a

— o0, ash—0,

and the proof is complete. O

4. PROOF OF THEOREM

We prove the theorem using a discrete two-level energy method. However, the
presentation of the proof is in four subsections. Subsection [£.1] devoted to pre-
senting and proving a discrete version of the Poincaré inequality, uniform Poincaré
inequality, which will be useful for what follows. In Subsection [4.2] we establish
some technical estimates. Subsection deals with the observability of a finite-
difference space semi-discretization of the non homogeneous single wave equation,
and shows how filtering the high frequency modes of the discrete initial data can be
used to get a uniform bound for the observability constant. Results of aforemen-
tioned Subsections [4.1}4.3] are used in Subsection [4.4] to finish the proof of Theorem

4.1. Uniform Poincaré inequality. In this subsection, we shall show the follow-
ing inequality.

Theorem 4.1. For any @ = (uy,...,ux) € RY, we have

N L U

1 —

e B
= an:O h

where uy := un41 := 0, and ag has already been introduced in Remark .

2
)

Proof. We expand the vector @ on the basis gk of eigenfunctions of —97 as

N
=S agk,
k=1

with Uy, = (@, 6k>RN. Therefore

:

N N S
:hzzai <Pk,J+1h Pk,j

N N o~
Uk Uk
+h)o D T (Pran — eri)(Pwen — ewg):
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Moreover, the eigenvectors gk satisfy the following identity (see [5] [])
N

D (kg1 — ers) (P 1 — orrg) =0 (4.2)
7=0

for all k # k’. Hence, it follows that
N — g 2 N ki — Pri |2
g I — 02 Ryl 7R
hZ’ h ‘ _Z“’“(hZ’ h ‘) (43)
7=0 k=1 =0
and according to (3.8)), we can write

N 2 N N
Ry =S @nmn S fony
§=0 k=1 j=1

Using the fact that A\g(h) > ag for all Kk = 1,..., N, we estimate the right-hand
side of identity (4.4) as

N N N N N

SN MR lor? = aoh > @Rler i = aoh Y |uP. (4.5)
k=1 j=1 j=1k=1 Jj=1

Using (4.4) and (4.5), we immediately obtain the desired inequality (4.1]). O

Remark 4.2. Inequality (4.1]) is the discrete analogue of the well-known Poincaré’s
inequality in H{ (0, L), that reads

2, (4.4)

Uj+1 — Uy
h

lullzz(0,) < Cllullzio,z)
for every function u € H}(0, L).

4.2. Some elementary technical estimates. Some basic but important esti-
mates and properties of solutions (#h, vh) are summarized in the next lemmas.

Lemma 4.3. For all 0 < |a] < Vo

2
T i
T
Ep(@h;t)dt > ——1———
|| s 55

where the constant Cy will be explicitly given in the course of the proof.

(En(@h; 0) — Ey,(7h;0)), (4.6)

Proof. We will split the proof into four steps.
Step 1. First estimates of the terms:

T T
/ |Th(1) |2 pt, / [(=02)~Y/25H ()| 2ty B (5hs T) + B (73 0).
0 0

We take the sum of the inner product of (1.6])-1 and (1.6)-2 with vh(t) and —uh(t),
respectively, in (R, || - [[g~ ;) to obtain

(@h" (t) — Opih(t) + avh(t), 5h(t))gy 4

— (TR (t) — 97 VNh(t) + aiih(t), Th(t))gy 5 = 0.

Hence, integrating this last equation over ¢t € (0,7") and using the symmetry of the
matrix —87, yield

/O (@ (£), Th(E)) v — (B (), G () [T B, — TR 2 )t = O,
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and in view of the two identities

T T

), e e = G 0, O alf — [0 0
T T

/0 (TR (8), () ot = [(TH (2), Th())gv 4T — / (T (£), T (£)) v il

it follows that

T T
o / [T 2 plt = [Xn ()T +a / @ (0) |2 pt, (4.7)
0 0

with
Xp(t) == (Oh'(t), dh(t)) g~ p — (Gh'(t), Th(t))rn p-
On the other hand,
(@R (£), @h(t))g~ p| = [((=07)V/25H/ (1), (=07) " 2iTh(t))an 1l
e[ (=) (W)|Ew (=) 2ah(t) |y,
< —+ ,
- 2 2¢e1
[ah' () zn ,  ellTh(O)]Fw
+
251 2

for all 1 > 0. In view of these two last inequalities, we can estimate the term
[Xn(t)]g as

X ()] < é(Eh(ah; T) + En(ith: 0)) + e1(Bn(@h: T) + Bn(h:0)). (4.8
Using and (4.8)), we obtain
T T
/0 ||17h(t)||n2w,hdt§/0 [@h(t) |1 pdt + | |( w(@h; T) + Ep(iih; 0))

T %'(Eh(ﬁh; T) + Ep(5h; 0))

|(@h' (), Th(t))rw 1| <

(4.9)

for each €1 > 0.
Concernlng the term fo |(=02)~1/261/ (t)||2x , dt, we take the inner product of

)-2 with (—07)*oh(t) in (RY,] - [|g~x 4) to obtain
T
/ (GH"(t) — B2T(E) + aiih(t), (—02) " Fh(t))mx ndt = O.
0
This gives
T
| topy 1w @), (<0R) (D) s
0

T T
+/ ||17h(t)|\fw’hdt+a/ (@h(t), (—02) " 5h(t))px pdt = 0.
0 0

Integrating by parts, we obtain

T
/ 1(=02)~ 200! (1) 2 pdt
0 (4.10)

— WIF + / |Th(1) [2x pdt + o / (h(t), (—02) " Th(t))gx nlt
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with Yy (t) = ((—=02)~Y25R (t), (—02)~Y/20h(t))g~ 5. However, for this term we

have
Va1 | < [((=87) V200! (T), (=07) =/ *5h(T))aw 4

+ [((=07) /251 (0), (=85) /2 Th(0)) |

-0 @+ (-0 P O) ) (1D

ﬁ

+Q[H<—aﬁ>-ww M+ 10T )

Moreover, according to Theorem we have
_ 1. .
(=07~ 2Fh(T) I+ | (=03) 23R (0) fix , < Ojo(ll’vh(T)||§N,h+||vh(0)||§zv,h)~
Inserting this last inequality into (4.11)), we obtain
1~ . =
DAGIE \/—OTO(Eh(vh; T) + E;,(Th; 0)). (4.12)

On the other hand,
T
o / (@h(t), (~02) Th(t))gn adt
0

« N « 15
<L [ oz pa+ 51 [ 1o R

In view of inequality (4.1 , we can write

T
o / <ﬂh<t>,<fa,%>*16h<t>>m,hdt|

| | ol | (4.13)
«
/ TH o it + 5y || h(t) |2 .
Using (4.10)), (.12), (4.13) and (4.9), we obtaln
T
|0ty 2w 0l
0
Cg T — 2
< e |(Eh(uh :T) + Ep(ih; 0)) 4 Cy Huh(t)||RN,hdt (4.14)
1|
1 Caey N
— E ™+ E
(et o) B + h<vho>>
with ) )
ap(l+ af) 205 + ap
=1 —_— U’ -9 v
Cl + 20[3 ) 02 2@(2)

Next, we estimate Ej(Th; T) + Ej,(h;0). For this purpose, we take the inner
product of (L.6)-2 with (—97)~'5h/(t) in space (R, | - g~ 1) to obtain

%Ehwmt) = —a((=07) " /7an(t), (=03) " V2TR (1))r -

It follows that
Ey(6h; T) + Ey,(Th; 0)
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. T
:zmwwm—a/‘ww%*”mm»e%r”%wmeMt
0

We estimate now the second member of the right-hand side of this equation in the
following way

T
|a/<<a%*”vmx@@$*”wmﬂmmmﬂ

o (6]
"/ ”2()hwwt%2|oﬂ(3wlﬁ (OEwde (415)
« . « _1/94

< 2L [ paniezo g+ 50 [ pepy e

where in the last step we have used inequality (4.1)). Moreover, by (4.14)) and having
in mind equation (4.15) we can write

[1 _ |a| 5102
2./ 2

(oC1 + 1)
20

](Eh( oh; T) + Eh(ﬁh;o))

Cs

< 2B, (5h: 0) + / ITh0) B e+ 5 (B3 T) + En(hi0).

Taking ¢, = C% in the above inequality, we have

(1—-\tzo>péh<ah;zv-+.Eh<ﬁh;o»

< (aoCh1 + 1)|¢f

T
- / [G@h(t)|Bx dt + AE)(Th; 0)  +C3(Ey(th; T) + Ey(iih; 0)).
0 0

when |a| < \/ag, this implies,

E(0h; T) + En(0h;0)
C'3|04| / Aae
|@h(t)||2n ,dt + h(vh;O)
Vao — af FERT VAo \ |
C
+ 7(Eh(uh T) 4+ Ey(ih;0)),

Vao — |af
with C3 = (a001 + 1)/«/040 and Cy = w/OéoCQQ.
Step 2. Improvement of estimates (4.9) and (4.14). Taking €1 = 1 in equation

(4.9) yields

(4.16)

[ 1O e < [ b0 |2+ (En(@hs T) + Enihio)
. : ol

1 ~ -
+ m(Eh(’Uh; T) + E,(vh;0)).
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Inserting (4.16)) in this last inequality, we obtain

T
/O G
Cy

= m@h(ﬁh; T) + En(ith; 0)) (4.17)
L~ Th: i T i 9
+ Lot Taly 2! h,0)+\/070_|a|/0 1G(1) |2 pt,

with C5 = 4\/ag, Cs = /ag+ C5 and C7 = /ag+C4. On the other hand, equation
(4.14), with e; = 1, implies

T
/ 1(=02) /200! (6) 2t
0

< (\/270 + Ej)(ﬁh({;’h; T) + Ey,(3h;0))

C. _ _ T

+ T2 T) + B (i) + Cr [ ah(e) g
0

and in view of (4.16]), we can write

T
| 1=ty v2an @) e
0

Cho " .
< ————— —(En(th;T) + E(th;0 4.18
ol(y/an — Ja) )+ En (0D (1.18)
Cy = Cy /T i 9
2 B0+ —2 [ an®)|Py . dt,
ol(van o MOt e —a Jy IOl

with Cg = 4./0(()(1 + CQ), Cg = 01 + (./ao + 02)03 and ClO = (Oé() + ng/ao)cg +
02\/010.

Step 3. Estimate for By (@h; T) + Ep(th; 0) and improvement of (4.16]), (4.17) and
(4.18]). Using the characteristics of system (1.6)), we obtain

d

%Eh(ﬁh; t) = —a(Th(t), b’ (t))g~ p- (4.19)
This gives

T
Ep(@h; T) — Ep(iih; 0) = —a / (Th(t), iTh (t)) g pdt.
0

It follows that

En(tih; T) + Ep(th;0)
T

< 2B, (ith; 0) + ;4 [@h ()5 pdt +
0

€2

|larlea

T
—» 2
| IOl
for each g5 > 0, and in view of (4.17) we can write

6207
= 5 a JaD

T
< 9, (ih: 0) 4 121 / ! ()2t +
2e2 Jo ’

|(En(@h; T) + Ep(ih; 0))

Cseg =

2o —fap )
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|ale2C / a2
4+ ——— lEh(t)|| dt.
2(v/ao — lal) Jo EEh
Next, taking eo = (1 /o — \a|) /C'7 in the above inequality, we have
By (h; T) + Ep(w@h; 0) < C11 (B (@h; 0) + Ey(0h; 0))
Cilal [T/ o a2 (4.20)
el @h(t + |lan' (¢ dt,
oo —al Jo (lah®) g 5 + lla@h ()l 5)
with Cq; = maX(C’7, «/ 0es ) and C12 = max(4, g—i) Inserting this last inequality

in equations (4.16| , we obtain

C\113 — = -
[vh(t )HRN,hdt < ﬁ(Eh(uh; 0) + Ex(Uh;0))
/0 | |(\/E«14 o T ) o (4.21)
e O s+ 1 ) )
T
| Ia )
Cis L Ay
< m@h(uh,o) + Eu(0h;0)) (4.22)
T
+ s [ (IO + 1 O ),
By, (7h; T) + Ey,(h; 0)
< fi |a| (Eh(uh 0) + Eh(vh 0)) (4-23)
LM g i 2 i / 2
t (Vao — |af)? /0 (” h(t)HRNﬁ + ||@h (t)HRN,h)dt7

with the notation
Ci3 = max(C7C11,C5), Crq = max(C7Ch2, /aoCs),
C15 = max(Cs, C10C11), Cie = max(C1oCh2, /oCo),
Cy7 = max(CyCh1,4/ag), Cis = max(CyCia, /oCs).

Step 4. Proof of estimate (4.31)). From (4.19)), we deduce

¢
Ey(@h;t) = Ep(dh; 0) — a/ (Uh(s),@h'(s))r~ pds.
0

Tt follows that

|04| lales

Ey(th;t) > Ey(th;0) —

T
| 1@t (120
0
for all €3 > 0. Integrating the latter inequality between 0 and 7', we obtain
T
[ mutaoas rmanso - S [ i
3

 |alesT

[ o

L )t~
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and having in mind equation (4.21)), we can improve the last estimate as follows

T
- e3C13 - e3C13T
By (ih:t)dt > T[1— — 3913 T g, (ah:0) — — 235182
|| Btz - g R B - 5 T
~ a|CuesT [T
x Ep(0h; 0) — M/O [@h(t) & pdt

T 1 Cuaes T2
5t ] [ A Ol

Vao — |af

Moreover, in view of Theorem [£.1] we deduce

T
e3C13 - e3C13T
By(ih:tydt > T — — 3918\ g (an:o) — 38181
vt T - g o) - 52
~ |a|Cr4e3T 125
X Eh(vh70) Oto(\/OTof ‘O‘DQ H( ah) ( )H]RN h

|a|T 1 01463 /T oy 2
T [g + ﬁ] o Huh (t)”RN’hdt.

Vao = |af
Choosing €3 = (y/ag — |a|)/C13 in the above inequality, yields

T T ~ T
/ Ep(itht) dt > o (Ey(ih; 0) — Ep(5h;0)) alCrsT / Ep(ith;t)d
0

0—|04|

Cia  Ci3+Cua
agCiz?  2C13

where C19 = max( ). In other words

T T ~
[1 4 G / Ep(ith;t) dt > = (Ep(ith; 0) — Ey,(h; 0)).
0 - |a| 2
Since |a| < y/ap/2, it follows that
Cl =
. S
/ Eh Uh t = 2(1 T |O(|T) (Eh(uh,O) Eh(’U ,0)),

with C] = max(\/ag, C19)/+/ag. This completes the proof.

7

O

The next lemma indicates that the natural and weakened total energies of system

(1.6) are conserved in time.

Lemma 4.4 (Conservation of energies). For all solutions (@h,Th) of system (1.6)),

we have
Er(t) = Erp(0), Vte|0,T],
Brp(t) = Brp(0), Vte[0,T).
Proof. (1) Multiplying the first equation in by @h’, we obtain
(@h" (t) — Opiih(t) + ah(t), @h' (t))r~ 5, = 0.
It follows that
(@h"" (t), @' (1)) 1 + ((—05) " 2ih(t), (=0R) "/ 2ah (1))ew
+ a(Th(t), k' (t))gn p, = 0.
Therefore,
& By s 1)+ aTh(t), T (1) = 0.

(4.25)
(4.26)

(4.27)
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Analogously, multiplying (|1.6)-2 by ¢k’ leads to
d

%Eh(ﬁh; t) + a(@h(t), oh' (t))gn p, = 0. (4.28)
Adding (4.27) and (4.28]), we can write
d
—F 0,
ar Tt =

which is equivalent to (4.25)).
(2) Analogously to multiplying equations —1 and —2, respectively,
y (=07)~'uh’ and (—97) " '0h/ and taking the sum of the resulting two identities
we obtain
d= - d= - - 2\ =127/
%Eh(uh;t) + £Eh(vh; t) + a(Th(t), (=0;) " ah'(t))r~ p
+ aih(t), (=05) " R (1))~ 1 = 0,

and using the symmetry of the matrix (—97)~! we obtain

d ~
—FEr,(t) =0.
Bt
O
From Lemma [£.4] we deduce the following result.
Lemma 4.5. For all 0 < |a| < %
T - c'T o~ .
/ (En(iih; t) + Bn(0h; 0))dt > 2L (Bp(ih; 0) + Bn(h;0)), (4.29)
0
where C5 = min(1, ap).
Proof. We recall that
_, 1, . 1
Ep(iih; t) = | ah' ()|l 5, + 51 (=00)"2Th(B) [x s
and according to Theorem @ we can write
Qg =
By (ithit) > ([ (=07) 7 2ah ()| , + () B, = a0 Bn(iihs ).
It follows that
T B T B
/ (En(iths t) + B (#hs ))dt > C, / (Bn(ithst) + Bn(@h;0))dt,  (4.30)
0 0
with C4 = min(1, o). On the other hand,
|Ern(t) = (En(@h; t) + Ep (s 1)| = |a((=07) " @h(t), 5h(6))rw 4,
and thanks to Theorem [4.1] one has
|Er 1 (t) — (Bp(@hst) + By (0h; t))] < g(ﬁh(ﬁh; t) + By, (h; t)). (4.31)
0

Hence,
~ . ~ o7} ~
By (iih:t) + By (5hit) > —20  Ep(b).
n(@h;t) + Ey(Th;t) oot ol 7,h(t)
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Integrating this last inequality over ¢ € [0, 7] and using the fact that the energy
Er i (t) is conservative, we deduce that

OéoT ~

m 7,,(0). (4.32)

/ T<Eh<ﬁh; t) + By, (0h; t))dt >
0

Moreover, thanks to inequality (4.31] -, we have

Brn(0) > 221U (E, (in:0) 1+ (s 0)),

Qo
and inserting this last equation into (4.32)) yields

T
/ (Ba(@h:t) + Bn(5h: )t > S 1By (an: 0) + Bu(am:0)).  (4.33)
0 oo + ‘OL|
However, since
ap —la _ 1
ag+ o] T2

for all |a| < %2, we deduce from (4.33)) that

T(Eh(uh 0) + Ex(7h;0)).

T
/ (Eh(uh t) + Eh(vh t))dt >
0
Inserting this inequality into (4.30]), the desired estimate is obtained. (I
We complete this subsection with the following lemma.

Lemma 4.6. For all 0 < |a| < min(ag, /ag), we have

/OT Ep(Ghst) dt < IOé(\/a%’{"_|Oé|)(Eh(ﬁh; 0) + En (3 0)) (434
N M /0 " B (he ) de
/OT HO o it < II(\ﬁB—ID (En(ih; 0) + E(th; 0)) .
|a‘ / Ey(iih; t)d
En(6h; T) + En(th; 0) < ﬂ(&(m O Pl (4.36)

Oﬁ|a| / Ep(
Vao — |af)?

where the constants C4-C§ will be ezplzcztly given.

Proof. First, we recall estimates (4.21) and (4.22)) from the proof of Lemma

. Cis . =~
IO it < s (B 1:0) + B (71:0) .
014 T - 2 —1/ 2 '
e O+ I Ol )

T
/0 1(=02) V200! (1) |2t < (B (iih; 0) + By (5h; 0))

~ lal(vao = laf)
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Cie /T " 2 217 (12
+ uh(t + ||[@h'(t dt.
(\/%_ |O(|)2 0 (” ( )H]RN,h || ( )HRN,h)
Taking the sum of these two inequalities, we obtain
T _ Cé _
Ep(Th;t) dt < —————(Ep(th;0) + E,(Th;0))
Cao

T , . )
+M/o (TR 2 + 18 ()2 ).

where C% = (C13 + C15)/2 and Coy = (C14 + Ci6)/2. And thanks to Theorem
we improve (4.38) as follows

T /
/ Epn(Th;t)dt Cs
0

= Tal(/ao —Ja)

Ci TE uh;t)d
+W/ n(th;t) dt

w1th C’4 = 2max( -, 1)Cy, which proves the inequality - The other estimates

and -7 are obtained easily from equations (4 , and the relation
T T
1
| Q@+ 1 Ol )at < max() [ Bt
0

with the constants Cf = 2max( ,1)C14 and C§ = 2max( ,1)Ca. O

(En(@h; 0) + Ey,(7h;0))

4.3. Uniform observability for the non homogeneous wave equation. This
section deals with the uniform observability, in a filtered space of initial conditions,
of the finite-difference space semi-discretization of a 1 — d non homogeneous single
wave equation.

Let us consider the first equation in system

"+ (=0iih); = —av; forj=1,...,N, t€ (0,T)

up(t) =0, un41(t) =0 for0<t<T (4.39)
u;(0) = u?, uj(0) = u; forj=1,...,N,

where the initial datums #h°, @h' are considered in the class G, defined by (2.2).
We expand the solution wh on the basis gk as

N
ih(t) = T (t) Gk, (4.40)
k=1

with

Uk (t) = 0y cos(tr/ M (h)) + e sin(ty/Ax(h))

VA (h)

sin( A (h))or(s) ds,

- e fy

where @Y, @}, and D, are the Fourier coefficients. More precisely, we have

N
ah® = Y apgk, ah'= > upgk, Uh(t) =) k(t)Gk
k=1

/\kh2<’y )\kh2<’\/
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However, we set

A~

Bt = 3 [l cos(t/M(h) + —i— sin(ty/Au(h)]

)\kh2<"/ \ Ak(h)
Jh(t) = W / sin N UR)) i (s) ds.

In this way, equation (4.40) becomes
wh(t) = Zh(t) + yh(t). (4.41)
From [5], we have the following result.

Theorem 4.7. For h > 0 sufficiently small and for all T > 0, it holds

C} o, [T t
1B 0) < 1 B, (@i 0) + / ) 24, (4.42)
- d=vJo R

>~

with

3y ~h?
L2+
Cr(v) = \/ * 16y 16

Concerning the other term in decomposition (4.41]), namely #h, we have the
following lemma.

Lemma 4.8. For h > 0 and for all T > 0, it holds

Toyn(®) / o (T4 2
L ; |7, FPdt < Gs(D)lal ; [Gh(t) [~ pdt, (4.43)
with C{(T) = 2+ L(2T% + 4T + 1).

Proof. Proceeding as in the proof of [5, Lemma 2.1], we obtain the discrete identity

T
5/ Wy — a4 xa]] - B (1.44)

with

EZ/‘ [ =0 gy )] ar,

N
Z bt yJ 1(t))yé(t%

Jéhz/ yﬂ“ yﬂ 1())vj(t)dt.

We now estimate separately A, X} and B.
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Estimate for A. We have

1" 2\1/2 ~ 2 1" 1/ 2
A=§ ; 1(=9%) yh(t)\lmw,hdt+§ ; [GR () [~
hon [T )
55 [ g - P
j=0"0
1" 2 1/2 1" . 2
=3 1(=08)2gh () |En pdt + 5 5 1R () [~
0 0 (4.45)
hew (T
- 52/ |1 — yjl7dt
j=0"9
1" 1/2 1T 7/ 2
<3 1(=0)2Gh(t) Izn pdt + 5 5 1R () [~
:/ Eh yh t
Estimate for Xp,. We remark that
N
Xa(t) = by +th L
j=1
A Y Y Y
1 1
= by (h) (L yﬁ—hZ (U + Dh) (5=
j=0 7=0
Therefore,
L, <5y Y L, <5y Y
=y =y
[ Xn(t)] < §h2|%||y;|+§h2|%”y;+l|
j=0 j=0
N N
L Yji+1 —Yj 2 L 112
ST gl
7=0 7=0 (446)

Ly y Lo
1Y
+Zh2|%|2+zh2|y3+1|2

7=0 =0

L . L, .
= SN2 gh(®) [E 1 + S 170 (B)lln -
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Estimate for B. We have
BzahZ/ j(M>Ujdt+ahZ/ j(w)vjdt
j=1""9 2 j=1"9 2
S S
(Yi+1 — Y5 (Yit+1 — Y
:ahZ/o j(%)vjdt—f—ahZ/o J(%)vﬁldt
j=1 7=0
N T 2 N .7
L =Y L
<Enys [ HOD S [ (447)
4= o h 4=

Next, thanks to ( - ) and to -7 we obtain

5/ | ()\dt< 1+L/ Ey (s t) dt + L(Ey(7h: T) + By (7h: 0))

4.48
Llal® 2 ( )
+ H0E [ o
Moreover, we claim that
T
Bn(@hit) < TIof? [ [ah(O)w . (4.49)
0
Indeed, we have
N N &
Yj+1 — Y h Ay
Z| ﬁ S ST o 52\27(%%1 — or)I?
=0 k=1
BN N o oni
kj+l — Pk,j
_ 3 Z ZA\]%} Jj+ - J |
§=0 k=1
N N 5 ~
h Ap A
+3 >y (gt = 0ng) (rjen = ong),
J=0k,k'=1
ktk'
where
~ ~ le% t
A = Ag(t) = O /0 sin((t — s)v/Ax(h))Ux(s) ds
k
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Thanks to identities (3.8) and (4.2, we obtain
N
h Yi+1 — Yj 2 Ae(h)A
3 2| = Z:k \ME]%A
§=0
hla)? ) R 5 N ,
=20 Z‘ “sin((t — $)v/ M ()5k(5) ds‘ S el
— 1 Jo =

2
<Teb [ EJU |wh§jwmﬁ

_ Tlof
2 [ ol

(4.50)
On the other hand,
al Taf?
S @ = 5 }:M;IA’ 23 lonal < 0T [ el
j=1
(4.51)

From (4.50)-(.51]) we deduce (4.49). Next using (4.48) together with (4.49), we
4.43).

obtain the desired estimate (4.43

The following result provides a uniform observability inequality for the non ho-
mogeneous discrete wave equation (4.39)).

Lemma 4.9. For all h > 0, it holds

41 T UN<t) 9 T Cé(’Y)
> (1 — 21 ANV 21
1 7/0 | A |“dt > ( 54)/0 Ep(uh;t)dt 1 th(uh,O)

(4.52)
CMUMP/T 2
- Uh(t dt
e e M COOTEN
for all 4 € (0,1), with C§(1) = 4CE(1) + 2
Proof. First, thanks to (4.19) and Cauchy-Schwartz inequality, we have
- T |a|2T 2
Eh(uhﬁ)s;Eh<fzo>+-§fn/ 8 Ol e + L/ ICTERR
(4.53)
- |04|2T - 2
< En(h;0 Eh (@h;t) dt + —— 5 || h(t) g~ pdt
€4
for all g4 > 0. Integrating equatlon over t € (0, T) provides
g - ~ |af*T? 2
(1- 54)/ B iih; 1) di < T (ih; 0) + 1% / |G| 2n e (4.54)
0 4
for all e, < 1. Remarking that Ej,(ih;0) = Ej,(Zh;0) and using inequality (4.42)
together with -, we estimate the energy Ej,(@h;0) as

TEh(uh; 0)

O ooy 2L [T v
< ——ER(Zh; dt
< Tlmamo0)+ = [ 1252
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) o oy oy AL [T AL (T (),
< En(Zh; dt dt
< Tlm a0y + 7 [ DR 2 [

/ AL (7 ACK (D)o [T
< FO @0y 4 L [ Oy g AADIE Dy,
4—7 Jy h 4—~ 0 '

ST,
Inserting this last inequality into (4.54)), we obtain

AL (T un(t) 2 T L) Lo
> _ . P S .
4_7/0 | 7 |"dt > (1 54)/0 Ey(iih;t) dt 4_7Eh(uh,0)
(4e4C4(T) + 2T2)|ar|? /T e
— Uh t N dt
64(4—’)/) 0 || ( )HR h

Moreover, using that 4 < 1, we write

4L, T t T /
/ @2y 5 1y / En(ah; it — <) B, (ans 0)
4=~ Jo h 0 4—n (4.55)
YD)

T
Th(t)||2~ , dt,
mrl M LT

with C(T) = 4C4(T)+2T?. However, following the ideas of [2], the constant C§(T')
can be chosen independent of time T, indeed from (4.55) we deduce the following
more general inequality

AL ™ un(t T2 4
2 Oy > (0 cy [ By ae - ST o)
4=~ Jr,  h T 4—y (4.56)
CH(Ty —Ty)|e)? [T '
- LB L [ o),

for all To > Ty. Let ko := E(T) be the integer part of T. If ky > 1, we write
ko—1

4L (T ¢ 4L k+1 t 4L (T t
4=7Jo h 4_71@:0 k h 4= i, h

and in view of , this yields (4.57)
44—Lv /OT |UNh(t) [Pt > (1~ e4) /OT Ey(ih; t) dt 37_(77) Ey(i@h; 0)
- Sl kZ [ il (159)
- LN )2t

We remark that the function T +— —Cy(T') is decreasing in (0, 00) and that T — ko <
1. Hence, equation (4.58)) becomes

1L un (t) 2 Cé('Y)
dt > (1 — Ey(th;t)dt — Ey (th;

Cy()|af? /T 2
— ’Uh t N dt
54(4_7) 0 H ( )“R h

(4.59)
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On the other hand, if ky < 1, it follows from (4.55) and —C§(T) > —C4(1), that
(4.59) is still true. This completes the proof. O

4.4. Proof of Theorem Now, the desired result on the uniform observability
of system (|1.6) can be derived in a straightforward manner. Indeed, by estimates

(4.35)), (4.36) and (4.52f), one has
4L (T t
/ |uN( ) |2dt
0

4—x h
. Cr(v)Cglel CH(1)CL|af?
- [1 o (Voo —|af)(4 =) 54(\/070—|a|)2(4—7)]

B (an Ch(7)Chr C4(1)Cislof
<) B [ G )
x (Ep(iih; 0) + Ep,(0h;0)).

We take now €4 = |a| in the above inequality to obtain

L [* t T ~
48_ / \“Nh( )\zdtZ/ Eh(ﬁh;t)dtfélc_” (Ep(@h; 0) + Ey(7h; 0))  (4.60)
Y Jo 0 Y

for sufficiently small |a| and where Cay = (4//a0)(C%(7)Ci7 + C§(1)C13). We
remark that the second term of the right hand side of equation (4.60) has the
wrong sign, to overcome this problem we introduce a small number €5 as follows

T
8L / a0 oy,
4—’}/ 0 h

T T
2(1_55)/ Eh(ﬁh;t)dt+55/ (B im0
0 0

= /= r - CQQ
+ By (h; t)) dt —e5 | Bn(ihst) de - 2
; =

Then, from (4.29) and (4.34]), we deduce
8L [T un(t
/ | uN( ) |2dt
0

(Eh(ﬁh; 0) + By (h; 0)).

4—~ h
T !
. esCLT es+lal 1= .
> (1—e5C / Ep(dh;t)dt + — Coy————— | Ep(Uh; 0
> (1= 5Cz) | EnCihit)de+ | ATt = ) Er 3 0)
g5+ |a] . esCyT ~
— Oy B (h:0) + 2228 B (@h; 0),
al(1— ) 0+ = Bk 0)
where Co3 = 1+% and Coy = max(f/%, VapCs2). Since the term 552”5‘;1(12%; 0)
is positive,
L (7 t
3 / |UN()|2dt
4—’)/ 0 h
T /
R esCLT es+lal 1= .
> (1 —e5C / En(uh;t) dt + — Coyy——— | En(vh;0
(1= =5Cas) | Buliihst)dt + [ = Coarte 55 | By 0)

&5 + |af

Oy 2
“ald-)

Eh(ﬁh; 0) .
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Using (4.6)), we can write

s, (T t _
PR / |“Nh( )|2dt > a(a, T, ) En(0h; 0) + b(c, T, v) Ex(@h; 0). (4.61)
- 0
where
esC4T es + |af C1(1 —e5C23)T
7T7 = — - C - )
alon L) = =5 = O ) T 2t JalT)
C/(l — 65023)T €y + |a|
b(a, T,v) = =L — .
@) = =it lalr) P alla—)

Lemma 4.10. For T large enough, and |a| sufficiently small, we have
a(a, T,y) >0, and bla,T,v)>0.

Proof. Indeed, we have

_ Qany(T)
CL(O&,T7 '7) - m>

where the polynomial @, is given by
Qan~(T) = asla|T? + (az —a1 — 0245165_—;(1'))T - CT;T?Z jJYO;D,

with
C{(l — 65023)
2

For e5 — 0, this polynomial Q, ~(7T') has two real roots T1 (c,7y) > 0 and Ta(a,y) <

0. Therefore
azla|(T — T1(a, V)T — Ta(e, 7))

Cl
and a9 = 852 2

ayp =

T =
which is positive for T > T} («, 7). We now turn to the term b(c, T, 7). We set
C
Ty(a.7) = zalep + Jal)

o (4 = 7)a1 — Caales +al))
In this way, we have
a1 (T — Ts(av, 7))
(14 Ja|T)(1 + el T5(a, 7))
Then remarking that T3(«) > 0, for e5 — 0 and |a| — 0, we obtain b(«, T') > 0 if
T > T5(«). This completes the proof. O

In view of (4.61) and by Lemma we have the desired uniform inequality
(2.3), and this completes the proof of Theorem [2.2

b(a,T,7) =
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