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Abstract. In this article we study the perturbed fractional Schrödinger equa-
tion involving oscillatory terms

(−∆)αu+ u = Q(x)
“
f(u) + εg(u)

”
, x ∈ RN

u ≥ 0,

where α ∈ (0, 1) and N > 2α, (−∆)α stands for the fractional Laplacian,
Q : RN → RN is a radial, positive potential, f ∈ C([0,∞),R) oscillates near

the origin or at infinity and g ∈ C([0,∞),R) with g(0) = 0. By using the

variational method and the principle of symmetric criticality for non-smooth
Szulkin-type functionals, we establish that: (1) the unperturbed problem, i.e.

with ε = 0 has infinitely many solutions; (2) the number of distinct solutions

becomes greater and greater when |ε| is smaller and smaller. Moreover, various
properties of the solutions are also described in terms of the L∞- and Hα(RN )-

norms.

1. Introduction

In this paper we consider the multiplicity of positive solutions for the fractional
Schrödinger equation

(−∆)αu+ u = Q(x)
(
f(u) + εg(u)

)
, x ∈ RN ,

u ≥ 0,
(1.1)

where α ∈ (0, 1), N > 2α, (−∆)α stands for the fractional Laplacian, Q : RN → RN
ia a radial, positive potential, f : [0 +∞)→ RN is a continuous nonlinearity which
oscillates near the origin or at infinity and g : [0,∞)→ R is an continuous function
with g(0) = 0.

In the local case, that is, when α = 1, the arbitrarily many solutions for the
perturbed elliptic problem (1.1) involving oscillatory terms, for the case N ≥ 2, has
been studied in [5]. Kristály [5] first proved the unperturbed problem (1.1) with
ε = 0 in (1.1), has infinitely many distinct solutions. Then, he proved that the
number of distinct solutions for the perturbed problem (1.1) becomes greater and
greater when |ε| is smaller and smaller.
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In the nonlocal case, that is, when α ∈ (0, 1), to the best of our knowledge, there
are no studies for the fractional nonlinear equation (1.1), maybe because technique
developed for local case cannot be adapted immediately, c.f. [14]. Motivated by [5],
we establish the multiplicity of positive solutions for (1.1). Because of the nonlocal
nature of the fractional Laplacian, we would like to point out that some estimates
in [5] cannot be obtained directly when α ∈ (0, 1). In this paper, we will overcome
these difficulties by more careful estimates for the energy functional associated with
the auxiliary problem, see proof of Theorem 2.1. Another novelty is the truncation
function ωs(x) in [5] will be replaced by a more general function.

Throughout this paper, we always assume
(A1) Q : RN → RN is a positive, continuous, radially symmetric potential such

that Q ∈ Lp(RN ) for every p ∈ [1, 2].
We recall that, for any α ∈ (0, 1), the fractional Laplacian (−∆)αu of a function
u : RN → RN , with sufficient decay, is defined by

F((−∆)αu)(ξ) = |ξ|2αF(u)(ξ), ξ ∈ RN ,

where F denotes the Fourier transform,

F(φ)(ξ) =
1

(2π)N/2

∫
RN

e−iξ·xφ(x)dx ≡ φ̂(ξ),

for function φ in the Schwartz class. (−∆)αu can also be computed by the following
singular integral:

(−∆)αu = cN,α P.V.
∫

RN

u(x)− u(y)
|x− y|N+2α

dy,

here P.V. is the principal value and cN,α ia a normalization constant.
The fractional Sobolev space Hα(RN ) is defined by

Hα(RN ) =
{
u ∈ L2(RN ) :

|u(x)− u(y)|
|x− y|N2 +α

∈ L2(RN × RN )
}
,

endowed with the norm

‖u‖ =
(∫

RN
u2dx+

∫∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2α
dx dy

)1/2

,

where the term

[u]Hα(RN ) = ‖(−∆)α/2u‖L2(RN ) :=
(∫∫

RN×RN

|u(x)− u(y)|2

|x− y|N+2α
dx dy

)1/2

is the so-called Gagliardo semi-norm of u.
For N > 2α, from [4] we know that there exists a constant C = C(N,α) > 0

such that
‖u‖L2∗α (RN ) ≤ C‖u‖Hα(RN )

for every u ∈ Hα(RN ), where 2∗α = 2N
N−2α is the fractional critical exponent. More-

over, the embedding Hα(RN ) ⊂ Lq(RN ) is continuous for any q ∈ [2, 2∗α], and is
locally compact whenever q ∈ [2, 2∗α). For the basic properties of the fractional
Sobolev space Hα(RN ), we refer to [4, 8, 11, 14].

Let f ∈ C([0,∞),R) and F (t) =
∫ t
0
f(τ)dτ , t ≥ 0. We assume:

(A2) −∞ < lim inft→0+
F (t)
t2 ≤ lim supt→0+

F (t)
t2 = +∞.
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(A3) There exists a sequence (ti)i ⊂ (0,∞) converging to 0 such that f(ti) < 0
for every i ∈ N .

Remark 1.1. (1) Assumptions (A2) and (A3) imply an oscillatory behavior of f
near the origin.

(2) Let α, β, γ ∈ RN such that 0 < α < 1 < α + β, and γ ∈ (0, 1). Then, the
function f ∈ C([0,∞),R) defined by f(0) = 0 and f(s) = sα(γ + sin s−β) satisfies
(A2) and (A3), respectively.

For the unperturbed problem (1.1) with ε = 0, we have the following result.

Theorem 1.2. Assume (A1) holds and f ∈ C([0,∞),R) satisfying (A2) and (A3).
Then there exists a sequence {u0

i }i ⊂ Hα(RN ) of distinct, radially symmetric weak
solutions of (1.1) with ε = 0 such that

lim
i→∞

‖u0
i ‖L∞ = lim

i→∞
‖u0

i ‖ = 0. (1.2)

For the perturbed problem (1.1), one has the weaker result.

Theorem 1.3. Assume (A1) holds, f ∈ C([0,∞),R) satisfying (A2) and (A3) and
g ∈ C([0,∞),R) with g(0) = 0. Then, for every k ∈ N , there exists ε0k > 0 such
that (1.1) has at least k distinct, radially symmetric weak solutions in Hα(RN )
whenever ε ∈ [−ε0k, ε0k]. Moreover, if this k solutions are denoted by u0

i,ε ∈ Hα(RN ),
i = 1, . . . , k, then

‖u0
i,ε‖L∞ <

1
i

and ‖u0
i,ε‖ <

1
i

for any i = 1, . . . , k. (1.3)

Remark 1.4. Note (1.2) and (1.3) are in a perfect concordance. Moreover, the
perturbed and unperturbed ones are equivalent in the sense that they are deducible
from each other. Clearly, the perturbed problem contains the unperturbed one by
choosing g = 0. Conversely, exploiting the behavior of certain sequences which
appear in the proof of Theorem 1.2, we can show that for every k ∈ N , there exists
ε0k > 0 such that the perturbed problem has at least k distinct solutions in Hα(RN )
whenever ε ∈ [−ε0k, ε0k].

Next, we will state the counterparts of Theorems 1.2 and 1.3 when f oscillates
at infinity. We assume:

(A4) −∞ < lim inft→∞
F (t)
t2 ≤ lim supt→∞

F (t)
t2 = +∞.

(A5) There exists a sequence (ti)i ⊂ (0,∞) converging to +∞ such that f(ti) < 0
for every i ∈ N .

Remark 1.5. (1) The assumptions (A4) and (A5) imply an oscillatory behavior
of f at infinity.

(2) Let α, β, γ ∈ RN such that α > 1, |α − β| < 1, and γ ∈ (0, 1). Then, the
function f ∈ C([0,∞),R) defined by f(s) = sα(γ+sin s−β) satisfies (A4) and (A5),
respectively.

For problem (1.1) with ε = 0, we have the counterpart of Theorem 1.2.

Theorem 1.6. Assume (A1) holds and f ∈ C([0,∞),R) satisfying (A4), (A5) and
f(0) = 0. Then there exists a sequence {u∞i }i ⊂ Hα(RN ) of radially symmetric
weak solutions of (1.1) with ε = 0 such that

lim
i→∞

‖u∞i ‖L∞ =∞. (1.4)
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Remark 1.7. Beside of (A4) and (A5), no further growth condition is assumed on
the nonlinear tern at infinity. Actually, this is why we cannot give Hα(RN )-norm
estimates for the solutions in Theorem 1.6. If we further assume that f satisfies
the following growth condition at infinity, i.e., there exists q ∈ (1, 2∗α

2 ) and C > 0
such that

|f(t)| ≤ C(1 + tq−1) for all t ∈ [0,∞). (1.5)
Then, we have

lim
i→∞

‖u∞i ‖ =∞. (1.6)

It is easy to see that (1.5) and the right side of (A4) imply q > 2. Thus, (1.6)
is possible for the lower dimensions N = 1, 2, 3 and adding some restriction for α,
that is, when 4α > N > 2α, since 2 <

2∗α
2 . In fact, for (1.6) holds, we need to

further assume that α ∈ ( 1
4 ,

1
2 ), if N = 1; α ∈ ( 1

2 , 1), if N = 2; α ∈ ( 3
4 , 1), if N = 3.

Another way to guarantee (1.6) is to complete assumption (A1) by allowing for
instance Q ∈ L∞(RN ) and (1.5) with q ∈ (2, 2∗α).

For problem (1.1), we also have the counterpart of Theorem 1.3.

Theorem 1.8. Assume (A1) holds, f ∈ C([0,∞),R) satisfying (A4), (A5) with
f(0) = 0, and g ∈ C([0,∞),R) with g(0) = 0. Then, for every k ∈ N , there exists
ε∞k > 0 such that (1.1) has at least k distinct, radially symmetric weak solutions
in Hα(RN ) whenever ε ∈ [−ε∞k , ε∞k ]. Moreover, for this k solutions are denoted by
u∞i,ε ∈ Hα(RN ), i = 1, . . . , k, we have

‖u∞i,ε‖L∞ > i− 1 for i = 1, . . . , k. (1.7)

Remark 1.9. Equations (1.4) and (1.7) are also in concordance. Moreover, if both
functions f and g verify (1.5) with q ∈ (2, 2∗α

2 ) and if N = 1, α ∈ ( 1
4 ,

1
2 ), if N = 2,

α ∈ ( 1
2 , 1), if N = 3, α ∈ ( 3

4 , 1), then besides of (1.7), whenever ε ∈ [−ε∞k , ε∞k ], we
also have

‖u∞i,ε‖ > i− 1 for i = 1, . . . , k. (1.8)

In recent years, the study of the various nonlinear equations or systems involving
fractional Laplacian has received considerable attention. These problems mainly
arise in fractional quantum mechanics [6, 7], physics and chemistry [9], obstacle
problems [16], optimization and finance [3] and so on. The literature on non-local
fractional Laplacian operators and their application to differential equations is quite
large, we refer the interested reader to [1, 2, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20]
and the references therein.

The rest of this article is organized as follows. In Section 2, we present an
auxiliary result which is important for our problem. In Section 3 we prove Theorems
1.2 and 1.3. In Section 4 we prove Theorems 1.6 and 1.8, Remarks 1.7 and 1.9.

2. An auxiliary result

In this section we consider the generic problem

(−∆)αu+ u = Q(x)h(u), x ∈ RN

u ≥ 0,
(2.1)

Beside of the assumption (A1), we further assume that
(A6) h : [0,+∞)→ RN is a continuous, bounded function such that h(0) = 0;
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(A7) There are 0 < a < b such that h(s) ≤ 0 for all s ∈ [a, b].
By assumption (A6), we may put h(s) = 0 for s ≤ 0. The energy functional Jh on
Hα(RN ) associated with problem (2.1) is

Jh(u) :=
1
2

∫
RN

(
|(−∆)α/2u|2 + u2

)
dx−

∫
RN

Q(x)H(u) dx, (2.2)

where H(u) =
∫ u
0
h(s)ds. By the mean value theorem and Hölder inequality, for

any u ∈ Hα(RN ), we have∫
RN

Q(x)H(u) dx ≤
∫

RN
Q(x)|H(u)| dx ≤Mh‖Q‖L2‖u‖L2 <∞,

where Mh = sups∈R |h(s)|, so the functional Jh is well defined. Moreover, by
the assumptions (A1), (A6) and Lebesgue dominated convergence theorem, J ∈
C1(Hα(RN ),R) and its critical points are the solutions of problem (2.1).

Now, we denote by Hα
rad(RN ) radial functions in Hα(RN ), and let

Rh = Jh
∣∣
Hαrad(RN )

,

i.e., the restriction of Jh to Hα
rad(RN ). Moreover, for b ∈ R+, we denote

W b = {u ∈ Hα(RN ) : ‖u‖L∞ ≤ b} and W b
rad = W b ∩Hα

rad(RN ).

Now we state the main result of this section.

Theorem 2.1. Assume that (A1), (A6), (A7) hold. Then
(i) The functional Rh is bounded from below on W b

rad and attains its infimum
at uh ∈W b

rad.
(ii) uh ∈ [0, a] for a.e. x ∈ RN .

(iii) uh is a radial weak solution of problem (2.1).

Proof. (i) For any u ∈ Hα
rad(RN ), by (A1) and (A6), we have

Rh(u) =
1
2
‖u‖2 −

∫
RN

Q(x)H(u)dx

≥ 1
2
‖u‖2 −Mh‖Q‖L2‖u‖L2

≥ 1
2
‖u‖2 −Mh‖Q‖L2‖u‖

≥ −1
2
M2
h‖Q‖2L2 ,

so the functional Rh is bounded from below on W b
rad. Now we prove that it attains

infimum at uh ∈ W b
rad. Noting that W b

rad is convex and closed, so it is weakly
closed. By the above inequality, the functional Rh is coercive, so we only need to
show that the functional Rh is sequentially weakly lower semicontinuous. Since
u 7→ ‖u‖ is sequentially weakly lower semicontinuous, it is enough to show that
u 7→

∫
RN Q(x)H(u) is sequentially weakly continuous. Arguing by contraction,

suppose that for a sequence {un}n ⊂ Hα
rad(RN ) such that un ⇀ u ∈ Hα

rad(RN ),
there exists a number ε0 > 0 such that

0 < ε0 ≤
∣∣∣ ∫

RN
Q(x)H(un)−

∫
RN

Q(x)H(u)
∣∣∣ for all n ∈ N.



6 C. JI, F. FANG EJDE-2018/126

By [8], we can see that Hα
rad(RN ) is compactly embedded into Lq(RN ) for all q ∈

(2, 2∗α), so un → u in Lq(RN ). By the mean value theorem and Hölder inequality,
we have

0 < ε0 ≤
∣∣∣ ∫

RN
Q(x)H(un)−

∫
RN

Q(x)H(u)
∣∣∣ ≤Mh

∫
RN

Q(x)|un − u|dx

≤Mh‖Q‖
L

q
q−1
‖un − u‖Lq ,

this is a contradiction and the proof part (i) is complete.
(ii) Let A = {x ∈ RN : uh(x) 6∈ [0, a]} and suppose that |A| > 0, where |A|

denotes the Lebesgue measure of the set A. Define the function γ : R → RN
by γ(s) = min(s+, a), where s+ = max(s, 0), then γ ia a Lipschitz function and
γ(0) = 0. Set ω = γ ◦ uh, it is clear that ω is radial, 0 ≤ ω ≤ a for a.e. x ∈ RN and
ω ∈ Hα(RN ).

Now we define the sets

A1 = {x ∈ A : uh(x) < 0}, A2 = {x ∈ A : uh(x) > a}.

Then A = A1 ∪ A2, and we have that ω(x) = uh(x) for all x ∈ RN \ A, ω(x) = 0
for all x ∈ A1, and ω(x) = a for all x ∈ A2. Thus,

Rh(ω)−Rh(uh)

=
1
2

∫∫
RN×RN

|ω(x)− ω(y)|2

|x− y|N+2α
dx dy − 1

2

∫∫
RN×RN

|uh(x)− uh(y)|2

|x− y|N+2α
dx dy

+
1
2

∫
RN

(ω2 − u2
h)dx+

∫
RN

Q(x)
(
H(ω)−H(uh)

)
dx

=
1
2

∫∫
RN×RN

|ω(x)− ω(y)|2

|x− y|N+2α
dx dy − 1

2

∫∫
RN×RN

|uh(x)− uh(y)|2

|x− y|N+2α
dx dy

+
1
2

∫
A

(ω2 − u2
h)dx+

∫
A

Q(x)
(
H(ω)−H(uh)

)
dx.

If x ∈ A1 and y ∈ A1, then

|ω(x)− ω(y)| = 0 ≤ |uh(x)− uh(y)|. (2.3)

If x ∈ A1 and y ∈ A2, then

|ω(x)− ω(y)| = a ≤ |uh(x)− uh(y)|. (2.4)

If x ∈ A1 and y ∈ RN \A, then

|ω(x)− ω(y)| = uh(y) ≤ |uh(x)− uh(y)|. (2.5)

If x ∈ A2, y ∈ A2, then

|ω(x)− ω(y)| = 0 ≤ |uh(x)− uh(y)|. (2.6)

If x ∈ A2, y ∈ RN \A, then

|ω(x)− ω(y)| = |a− uh(y)| ≤ |uh(x)− uh(y)|. (2.7)

If x ∈ RN \A, y ∈ RN \A, then

|ω(x)− ω(y)| = |uh(x)− uh(y)|. (2.8)

From (2.3)-(2.8), for any x, y ∈ RN , one has

|ω(x)− ω(y)| ≤ |uh(x)− uh(y)|,
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so

1
2

∫∫
RN×RN

|ω(x)− ω(y)|2

|x− y|N+2α
dx dy − 1

2

∫∫
RN×RN

|uh(x)− uh(y)|2

|x− y|N+2α
dx dy ≤ 0.

Note that ∫
A

(ω2 − u2
h)dx = −

∫
A1

u2
hdx+

∫
A2

(a2 − u2
h)dx ≤ 0.

Since h(s) = 0 for all s ≤ 0, we have∫
A1

Q(x)
(
H(ω)−H(uh)

)
dx = 0.

By the mean value theorem, for a.e. x ∈ A2, there exists θ(x) ∈ [a, uh(x)] ⊆ [a, b]
such that

H(ω(x))−H(uh(x)) = H(a)−H(uh(x)) = h(θ(x))(a− uh(x)).

By (A7), we have ∫
A2

Q(x)
(
H(ω)−H(uh)

)
dx ≤ 0.

So Rh(ω)−Rh(uh) ≤ 0. Moreover Rh(ω)−Rh(uh) ≥ 0 according to the definition
of uh. Thus

1
2

∫∫
RN×RN

|ω(x)− ω(y)|2

|x− y|N+2α
dx dy − 1

2

∫∫
RN×RN

|uh(x)− uh(y)|2

|x− y|N+2α
dx dy = 0,

1
2

∫
A

(ω2 − u2
h)dx = 0,

∫
A

Q(x)
(
H(ω)−H(uh)

)
dx = 0.

In particular, ∫
A1

u2
hdx =

∫
A2

(a2 − u2
h)dx = 0,

this implies that meas(A) should be zero and this is a contradiction with the as-
sumption.

(iii) By [17], we have

R′h(uh)(ω − uh) ≥ 0 for every ω ∈W b. (2.9)

where we use a non-smooth symmetric critical principle for the Szulkin-type func-
tional.

Now we prove that uh is a weak solution of (2.1), that is, for all v ∈ Hα(RN ),∫
RN

(−∆)α/2uh(−∆)α/2v + uhv dx =
∫

RN
Q(x)h(uh)v dx.

By (2.9), for all ω ∈W b, it follows that∫
RN

(−∆)α/2uh(−∆)α/2(ω − uh) + uh(ω − uh)dx

−
∫

RN
Q(x)h(uh)(ω − uh) dx ≥ 0.

(2.10)

Define the function γ(s) = sgn(s) min(|s|, b), and fix ε > 0 and v ∈ Hα(RN )
arbitrarily. Since γ is Lipschitz and γ(0) = 0, ωγ = γ ◦ (uh + εv) ∈ Hα(RN ). The
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explicit expression of the truncation function ωγ is

ωγ(x) =


−b if x ∈ {uh + εv < −b},
uh(x) + εv(x) if x ∈ {−b ≤ uh + εv < b},
b if x ∈ {uh + εv ≥ b},

thus ωγ ∈W b. Taking ω = ωγ as a test function in (2.10), we obtain

0 ≤
∫

RN
(−∆)α/2uh(−∆)α/2(ωγ − uh) + uh(ωγ − uh)dx

−
∫

RN
Q(x)h(uh)(ωγ − uh) dx

=
∫∫

RN×RN

(uh(x)− uh(y))(ωγ(x)− uh(x)− ωγ(y) + uh(y))
|x− y|N+2α

dx dy

+
∫

RN
uh(ωγ − uh)dx−

∫
RN

Q(x)h(uh)(ωγ − uh) dx

=
∫∫
{uh+εv<−b}×{uh+εv<−b}

−|uh(x)− uh(y)|2

|x− y|N+2α
dx dy

+
∫∫
{uh+εv<−b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(−b− uh(x)− εv(y))
|x− y|N+2α

dx dy

+
∫∫
{uh+εv<−b}×{uh+εv≥b}

(uh(x)− uh(y))(−2b− uh(x) + uh(y))
|x− y|N+2α

dx dy

+
∫∫
{−b≤uh+εv<b}×{uh+εv<−b}

(uh(x)− uh(y))(εv(x) + b+ uh(y))
|x− y|N+2α

dx dy

+ ε

∫∫
{−b≤uh+εv<b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫∫
{−b≤uh+εv<b}×{uh+εv≥b}

(uh(x)− uh(y))(εv(x)− b+ uh(y))
|x− y|N+2α

dx dy

+
∫∫
{uh+εv≥b}×{uh+εv<−b}

(uh(x)− uh(y))(b− uh(x)− εv(y))
|x− y|N+2α

dx dy

+
∫∫
{uh+εv≥b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(b− uh(x)− εv(y))
|x− y|N+2α

dx dy

+
∫∫
{uh+εv≥b}×{uh+εv≥b}

(uh(x)− uh(y))(uh(y)− uh(x))
|x− y|N+2α

dx dy

−
∫
{uh+εv<−b}

[(b+ uh)uh −Q(x)h(uh)(b+ uh)]dx

+ ε

∫
{−b≤uh+εv<b}

[uhv −Q(x)h(uh)v]dx

−
∫
{uh+εv≥b}

[(uh − b)uh +Q(x)h(uh)(uh − b)]dx.

After a suitable rearrangement of the above terms, we obtain that

0 ≤ ε
∫∫

RN×RN

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy + ε

∫
RN

uhv dx
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− ε
∫

RN
Q(x)h(uh)v dx

+
∫∫
{uh+εv<−b}×{uh+εv<−b}

−|uh(x)− uh(y)|2

|x− y|N+2α
dx dy

− ε
∫∫
{uh+εv<−b}×{uh+εv<−b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫∫
{uh+εv<−b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(−b− uh(x)− εv(y))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv<−b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫∫
{uh+εv<−b}×{uh+εv≥b}

(uh(x)− uh(y))(−2b− uh(x) + uh(y))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv<−b}×{uh+εv≥b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫∫
{−b≤uh+εv<b}×{uh+εv<−b}

(uh(x)− uh(y))(εv(x) + b+ uh(y))
|x− y|N+2α

dx dy

− ε
∫∫
{−b≤uh+εv<b}×{uh+εv<−b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫∫
{−b≤uh+εv<b}×{uh+εv≥b}

(uh(x)− uh(y))(εv(x)− b+ uh(y))
|x− y|N+2α

dx dy

− ε
∫∫
{−b≤uh+εv<b}×{uh+εv≥b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫∫
{uh+εv≥b}×{uh+εv<−b}

(uh(x)− uh(y))(b− uh(x)− εv(y))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv≥b}×{uh+εv<−b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫∫
{uh+εv≥b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(b− uh(x)− εv(y))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv≥b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫∫
{uh+εv≥b}×{uh+εv≥b}

(uh(x)− uh(y))(uh(y)− uh(x))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv≥b}×{uh+εv≥b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫
{uh+εv<−b}

[Q(x)h(uh)− uh](b+ uh + εv)dx

+
∫
{uh+εv≥b}

[Q(x)h(uh)− uh](−b+ uh + εv)dx.
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By the direct computation, one has∫∫
{uh+εv<−b}×{uh+εv<−b}

−|uh(x)− uh(y)|2

|x− y|N+2α
dx dy

− ε
∫∫
{uh+εv<−b}×{uh+εv<−b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

≤ ε
∫∫
{uh+εv<−b}×{uh+εv<−b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy,

∫∫
{uh+εv<−b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(−b− uh(x)− εv(y))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv<−b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

≤ ε
∫∫
{uh+εv<−b}×{−b≤uh+εv<b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy,

∫∫
{uh+εv<−b}×{uh+εv≥b}

(uh(x)− uh(y))(−2b− uh(x) + uh(y))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv<−b}×{uh+εv≥b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

≤ ε
∫∫
{uh+εv<−b}×{uh+εv≥b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy,

∫∫
{−b≤uh+εv<b}×{uh+εv<−b}

(uh(x)− uh(y))(εv(x) + b+ uh(y))
|x− y|N+2α

dx dy

− ε
∫∫
{−b≤uh+εv<b}×{uh+εv<−b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

≤ ε
∫∫
{−b≤uh+εv<b}×{uh+εv<−b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy,

∫∫
{−b≤uh+εv<b}×{uh+εv≥b}

(uh(x)− uh(y))(εv(x)− b+ uh(y))
|x− y|N+2α

dx dy

− ε
∫∫
{−b≤uh+εv<b}×{uh+εv≥b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

≤ ε
∫∫
{−b≤uh+εv<b}×{uh+εv≥b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy,

∫∫
{uh+εv≥b}×{uh+εv<−b}

(uh(x)− uh(y))(b− uh(x)− εv(y))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv≥b}×{uh+εv<−b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

≤ ε
∫∫
{uh+εv≥b}×{uh+εv<−b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy,
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{uh+εv≥b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(b− uh(x)− εv(y))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv≥b}×{−b≤uh+εv<b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

≤ ε
∫∫
{uh+εv≥b}×{−b≤uh+εv<b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy,

and ∫∫
{uh+εv≥b}×{uh+εv≥b}

(uh(x)− uh(y))(uh(y)− uh(x))
|x− y|N+2α

dx dy

− ε
∫∫
{uh+εv≥b}×{uh+εv≥b}

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

≤ ε
∫∫
{uh+εv≥b}×{uh+εv≥b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy.

Moreover, from uh ∈ [0, a] ⊂ [−b, b] for a.e. x ∈ RN , one has∫
{uh+εv<−b}

(
Q(x)h(uh)− uh

)
(b+ uh + εv) dx

≤ −ε
∫
{uh+εv<−b}

(
MhQ(x) + uh(x)

)
v(x)dx

and ∫
{uh+εv≥b}

(
Q(x)h(uh)− uh

)
(−b+ uh + εv)dx

≤ εMh

∫
{uh+εv≥b}

Q(x)v(x)dx.

Using the above the estimates and dividing by ε > 0, we obtain

0 ≤
∫∫

RN×RN

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy +
∫

RN
uhv dx

−
∫

RN
Q(x)h(uh)v dx

+
∫∫
{uh+εv<−b}×{uh+εv<−b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy

+
∫∫
{uh+εv<−b}×{−b≤uh+εv<b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy

+
∫∫
{uh+εv<−b}×{uh+εv≥b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy

+
∫∫
{−b≤uh+εv<b}×{uh+εv<−b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy

+
∫∫
{−b≤uh+εv<b}×{uh+εv≥b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy

+
∫∫
{uh+εv≥b}×{uh+εv<−b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy
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+
∫∫
{uh+εv≥b}×{−b≤uh+εv<b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy

+
∫∫
{uh+εv≥b}×{uh+εv≥b}

|uh(x)− uh(y)||v(x)− v(y)|
|x− y|N+2α

dx dy

−
∫
{uh+εv<−b}

(
MhQ(x) + uh(x)

)
v(x)dx

+Mh

∫
{uh+εv≥b}

Q(x)v(x)dx.

Letting ε→ 0+, we have

meas({uh + εv < −b})→ 0 and meas({uh + εv ≥ b})→ 0,

respectively. So, it follows that

0 ≤
∫∫

RN×RN

(uh(x)− uh(y))(v(x)− v(y))
|x− y|N+2α

dx dy

+
∫

RN
uhv dx−

∫
RN

Q(x)h(uh)v dx.

Using −v instead of v, we also have the above inequality. So, uh is a weak solution
of (2.1). The proof is complete. �

Fix σ ∈ (0, 1) and ρ > 0, for any t > 0 we introduce the function

ωtσ(x) :=


0 if x ∈ RN \Bρ,

t
(1−σ)ρ (ρ− |x|) if x ∈ Bρ \Bσρ,
t if x ∈ Bσρ,

(2.11)

where Br denotes the N-dimensional ball with center 0 and radius r > 0. It is clear
that ωtσ(x) is radial. Later we will show that ωtσ(x) ∈ Hα(RN ). To prove the main
theorems in this paper, we need a important estimate for the norm of ωtα(x). For
this, we set

ν0 := 1 +
1
λ1
, λ1 = inf

u∈H1
0 (Bρ)\{0}

‖∇u‖2L2(Bρ)

‖u‖2L2(Bρ)

. (2.12)

Proposition 2.2. Let σ ∈ (0, 1), ρ > 0 and t > 0. Let ωsσ be the function given in
(2.11), SN−2 be the Lebesgue measure of the unit sphere in RN−1, and

Γ(t) :=
∫ +∞

0

zt−1e−zdz, t > 0,

be the usual Gamma function. Then ωtσ ∈ Hα(RN ), and one has∫∫
RN×RN

|ωtσ(x)− ωtσ(y)|2

|x− y|N+2α
dx dy <

t2

(1− σ)2
· π

N/2ρN−2(1− σN )
Γ(1 + N

2 )
κ1κ2

= K(ρ, σ),
(2.13)

where

κ1 :=


2ν0 if N = 1,
(π + 4

1+2α )ν0 if N = 2,
Sn−2(π2 + 2

1+2α )ν0 if N ≥ 3,
,
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κ2 :=
1

2(1− α)
+

2
α
,

where ν0 is given in (2.12).

Proof. The proof can be found in [11], for the sake of completeness, we give it here.
Computing the standard seminorm of the function ωtσ in H1(RN ), one has

[ωtσ]2H1(RN ) =
∫

RN
|∇ωtσ(x)|2dx

=
∫
Bρ\Bσρ

t2

(1− σ)2ρ2
dx

=
t2

(1− σ)2ρ2
(|Bρ| − |Bσρ|)

=
t2

(1− σ)2
πN/2ρN−2(1− σN )

Γ(1 + N
2 )

.

(2.14)

Since ωtσ ∈ H1
0 (Bρ), by [11, Proposition 1.1(b)], it follows that ωtσ ∈ Wα,2(Bρ).

Moreover, the boundary ∂Bρ is Lipschitz, by [11, Lemma 1.3], we have that ωtσ ∈
Hα(RN ).

Hence, since α ∈ (0, 1), [11, Corollary 1.15] yields

[ωsσ]2Hα(RN ) ≤ 2
(∫

RN

1− cosx1

|x|N+2α
dx
)∫

RN
|ξ|2α||Fωtσ(ξ)|2dξ

< 2
(∫

RN

1− cosx1

|x|N+2α
dx
)∫

RN
(1 + |ξ|2|)|Fωtσ(ξ)|2dξ.

(2.15)

Now, by standard arguments on the Fourier transform and Poincaré inequality, we
have ∫

RN
(1 + |ξ|2|)|Fωtσ(ξ)|2dξ ≤ ν0[ωtσ]2H1(RN ). (2.16)

Moreover, by Parseval-Plancherel identity, it follows that

ωsσ ∈ L2(RN ) if and only if Fωtσ ∈ L2(RN )

and
‖ωtσ‖2L2(RN ) = ‖Fωtσ‖2L2(RN ). (2.17)

Moreover,
|ωtσ| ∈ L2(RN ) if and only if |ξ|Fωtσ ∈ L2(RN ),

and
‖∇ωtσ‖2L2(RN ) = ‖ |ξ|Fωtσ‖2L2(RN ). (2.18)

By (2.17) and (2.18), we have∫
RN

(1 + |ξ|2|)|Fωtσ(ξ)|2dξ = ‖ωtσ‖2L2(RN ) + ‖∇ωtσ‖2L2(RN ).

Hence, by (2.12) and the definition of λ1, we have that the inequality (2.16) is a
direct consequence of above equality, taking into account that ωtσ ∈ H1

0 (Bρ).
Then, by (2.15) and (2.16), it follows that∫∫

RN×RN

|ωtσ(x)− ωtσ(y)|2

|x− y|N+2α
dx dy < 2

(∫
RN

1− cosx1

|x|N+2α
dx
)

[ωtσ]2H1(RN ).

Finally. from (2.14) and [11, Remark 1.13], we can get the inequality (2.13). �
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3. Proofs of Theorems 1.2 and 1.3

By (A3) and the continuity of f and g, we may fix the positive sequences {ai}i,
{bi}i and {εi}i such that limi→∞ ai = limi→∞ bi = 0 and for all i ∈ N ,

bi+1 < ai < ti < bi < 1, (3.1)

f(t) + εg(t) ≤ 0 for all t ∈ [ai, bi] and ε ∈ [−εi, εi]. (3.2)

For every i ∈ N , we define the truncation function fi, gi : [0,+∞)→ RN by

fi(t) = f(min(t, bi)) and gi(t) = g(min(t, bi)). (3.3)

By (A2) and (A3), it is easy to see that f(0) = 0. Since fi(0) = gi(0) = 0, we may
extend continuously the function fi and gi to RN , taking 0 for negative arguments.
For every t ∈ RN and i ∈ N , let Fi(t) =

∫ t
0
fi(τ)dτ and Gi(t) =

∫ t
0
gi(τ)dτ .

For every i ∈ N and ε ∈ [−εi, εi], the function h0
i,ε := fi + εgi is a continuous,

bounded function with h0
i,ε(0) = 0. By (3.2) and (3.3), we have h0

i,ε(t) ≤ 0 for all
t ∈ [ai, bi]. Thus, by Theorem 2.1, for every i ∈ N and ε ∈ [−εi, εi], the problem

(−∆)αu+ u = Q(x)h0
i,ε(u), x ∈ RN

u ≥ 0,
(3.4)

has a radially symmetric weak solution u0
i,ε ∈ Hα(RN ) with

u0
i,ε ∈ [0, ai] for a.e. x ∈ RN , (3.5)

u0
i,ε is the minimizer of the functional Rεi on W bi

rad, (3.6)

where Rεi is the functional associated with problem (3.4), and

Rεi(u) =
1
2
‖u‖2 −

∫
RN

Q(x)
(
Fi(u) + εGi(u)

)
dx, u ∈ Hα

rad(RN ).

By (3.3) and (3.5), u0
i,ε is a weak solution not only for (3.4) but also for problem

(1.1).

Proof of Theorem 1.2. As an abbreviation, for every i ∈ N , write u0
i = u0

i,0 and
Ri = R0

i . According the observation for problem (3.4), we only need to show that
there are infinitely many distinct elements in the sequence {u0

i,0}i verifying (1.2).
We first prove that

Ri(u0
i ) < 0 for all i ∈ N, (3.7)

lim
i→∞

Ri(u0
i ) = 0 . (3.8)

The left side of (A2) implies that there exist l0 > 0 and δ ∈ (0, b1) such that

F (t) ≥ −l0t2 for all t ∈ (0, δ). (3.9)

Let L0 be large enough such that

1
2
K(ρ, σ)l0‖Q‖L1 < L0(σρ)NωN minBσρQ. (3.10)

where ρ > 0 and K(ρ, σ) come from (2.13). The right side of (A2) implies there is
a sequence {t̃i} ⊂ (0, δ) such that t̃i ≤ ai and F (t̃i) > L0t̃

2
i for all i ∈ N . Let i ∈ N
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fixed and ωeti
σ ∈ Hα

rad(RN ) be the function from (2.11) corresponding to t̃i > 0.
Then ωeti

σ ∈W
bi
rad, and by (2.13) and (3.9), we have

Ri(ω
eti
σ ) =

1
2
‖ωeti

σ ‖2 −
∫

RN
Q(x)Fi(ω

eti
σ )dx

=
1
2
‖ωeti

σ ‖2 − F (t̃i)
∫
Bσρ

Q(x)dx−
∫
Bρ\Bσρ

Q(x)Fi(ω
eti
σ )dx

≤
[1

2
K(ρ, σ)− L0(σρ)NωN min

Bσρ
Q+ l0‖Q‖L1

]
t̃2i

So, by (3.10), one has

Ri(u0
i ) = min

W
bi
rad

Ri ≤ Ri(ω
eti
σ ) < 0 (3.11)

which proves (3.7). Now we prove the limit (3.8). For every i ∈ N , by the mean
value theorem, one has

Ri(u0
i ) ≥ −

∫
RN

Q(x)Fi(u0
i )dx ≥ −‖Q‖L1 max

t∈[0,1]
|f(t)|ai.

Because of limi→∞ ai = 0, the above inequality and (3.11) leads to the limit (3.8).
By (3.3) and (3.5), we know that

Ri(u0
i ) = R1(u0

i ) for all i ∈ N.
Moreover, by (3.7) and (3.8), we know that the sequence {u0

i } are the infinitely
many distinct radially symmetric weak solutions of problem (1.1).

Finally, we prove (1.2). It is clear that ‖u0
i ‖L∞ ≤ ai for all i ∈ N by (3.5). Since

limi→∞ ai = 0, the first limit holds. For the second limit, by (3.11), (3.1), (3.3)
and (3.5), for i ∈ N , one has

1
2
‖u0

i ‖2 ≤ ‖Q‖L1 max
t∈[0,1]

|f(t)|ai → 0, as i→∞.

The proof is complete. �

Proof of Theorem 1.3. By the observation for problem (3.4), to prove this theorem,
we only need to prove that for every k ∈ N , there are at least k distinct elements
u0
i,ε verifying (1.3) when ε belongs to a certain interval around the origin.

Let {θi}i be a sequence such that θi < 0 for all i ∈ N and limi→∞ θi = 0. By
(3.8) and (3.11), we have limi→∞Ri(ω

eti
σ ) = 0. Thus, up to a subsequence, we

may assume that the sequence {(θi, Ri(u0
i ), Ri(ω

eti
σ ), ai)}i ⊂ R4 which converges to

(0, 0, 0, 0) has the property that for all i ∈ N ,

θi < Ri(u0
i ) ≤ Ri(ω

eti
σ ) < θi+1, (3.12)

ai < min
{1
i
,

1
2i2‖Q‖L1(max[0,1] |f |+ max[0,1] |g|+ 1)

}
. (3.13)

Denote

ε′i =
θi+1 −Ri(ωeti

σ )
‖Q‖L1(max[0,1] |g|+ 1)

and ε′′i =
Ri(u0

i )− θi
‖Q‖L1(max[0,1] |g|+ 1)

∀i ∈ N.

and fix k ∈ N . By (3.12),

ε0k = min{1, ε1, . . . , εk, ε′1, . . . , ε′k, ε′′1 , . . . , ε′′k} > 0.
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Then for every i ∈ {1, . . . , k} and ε ∈ [−ε0k, ε0k], it follows from (3.1), (3.6) and the
choice of ε′i that

Rεi(u
0
i,ε) ≤ Rεi(ω

eti
σ )

= Ri(ω
eti
σ )− ε

∫
RN

Q(x)Gi(ω
eti
σ )dx < θi+1.

Meanwhile, we also have from (3.1), (3.6) for ε = 0 and the choice of ε′′i ,

Rεi(u
0
i,ε) = Ri(u0

i,ε)− ε
∫

RN
Q(x)Gi(u0

i,ε)dx

≥ Ri(u0
i )− ε

∫
RN

Q(x)Gi(u0
i,ε)dx > θi.

Thus, for every i ∈ {1, . . . , k} and ε ∈ [−ε0k, ε0k], one has

θi < Rεi(u
0
i,ε) < θi+1,

so
Rε1(u0

1,ε) < · · · < Rεk(u0
k,ε).

But u0
i,ε ∈ W

b1
rad for every i ∈ {1, . . . , k}, so Rεi(u

0
i,ε) = Rε1(u0

i,ε) from (3.3). Thus
for every ε ∈ [−ε0k, ε0k], we obtain

Rε1(u0
1,ε) < · · · < Rε1(u0

k,ε),

this shows that the elements u0
1,ε, . . . , u

0
k,ε are distinct whenever ε ∈ [−ε0k, ε0k].

Now we show that (1.3). By (3.5) and (3.13), the left limit of (1.3) holds. For the
right limit of (1.3), it is easy to see that for every i ∈ {1, . . . , k} and ε ∈ [−ε0k, ε0k],

Rε1(u0
i,ε) = Rεi(u

0
i,ε) < θi+1 < 0.

Thus, for every i ∈ {1, . . . , k} and ε ∈ [−ε0k, ε0k], by the mean value theorem, (3.1),
(3.5), (3.13) and ε0k ≤ 1, one has

1
2
‖u0

i,ε‖2 <
∫

RN
Q(x)

(
Fi(u0

i,ε) + εGi(u0
i,ε)
)

≤ ‖Q‖L1

(
max
[0,1]
|f |+ max

[0,1]
|g|
)
ai

≤ 1
2i2

,

which completes the proof. �

4. Proofs of Theorems 1.6 and 1.8

The left-hand side of (A4) implies the existence of l∞ > 0 and δ > 0 such that

F (t) ≥ −l∞t2 for all t > δ. (4.1)

Let L∞ be large enough such that
1
2
K(ρ, σ) + l∞‖Q‖L1 < L∞(σρ)NωN min

Bσρ
Q, (4.2)

where ρ > 0 and K(ρ, σ) comes from (2.13). The right side of (A4) implies there is
a sequence {t̃i}i ⊂ (0,∞) such that limi→∞ t̃i =∞ and

F (t̃i) > L∞t̃
2
i for all i ∈ N. (4.3)
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Since limi→∞ t̃i =∞, we may fix a subsequence {t̃mi}i of {t̃i}i such that t̃i ≤ t̃mi
for all i ∈ N . Moreover, since f and g are continuous, we may fix the positive
sequences {ai}i, {bi}i and {εi}i such that limi→∞ ai = limi→∞ bi = +∞ and for
all i ∈ N ,

ai < t̃mi < bi < ai+1, (4.4)

f(t) + εg(t) ≤ 0 for all t ∈ [ai, bi] and ε ∈ [−εi, εi]. (4.5)

For every i ∈ N , we define the truncation function fi, gi : [0,+∞) → RN as in
(3.3). Since fi(0) = gi(0) = 0, so we may extend continuously the function fi
and gi to RN , taking 0 for negative arguments. For every t ∈ RN and i ∈ N , let
Fi(t) =

∫ t
0
fi(τ)dτ and Gi(t) =

∫ t
0
gi(τ)dτ .

For every i ∈ N and ε ∈ [−εi, εi], the function h∞i,ε := fi + εgi is a continuous,
bounded function with h∞i,ε(0) = 0. By (4.5) and (3.3), we have h∞i,ε(t) ≤ 0 for all
t ∈ [ai, bi]. Thus, by Theorem 2.1, for every i ∈ N and ε ∈ [−εi, εi], the problem

(−∆)αu+ u = Q(x)h∞i,ε(u), x ∈ RN

u ≥ 0,
(4.6)

has a radially symmetric weak solution u∞i,ε ∈ Hα(RN ) with

u∞i,ε ∈ [0, ai] for a.e. x ∈ RN , (4.7)

u∞i,ε is the minimizer of the functional Rεi on W bi
rad, (4.8)

where Rεi is defined as in section 4. By (3.3) and (4.7), u∞i,ε is a weak solution not
only for (4.6) but also for problem (1.1).

Proof of Theorem 1.6. As in proof of Theorem 1.2, for every i ∈ N , write u∞i = u∞i,0
and Ri = R0

i . According the observation for problem (4.6), we only need to show
that there are infinitely many distinct elements in the sequence {u∞i,0}i verifying
(1.4). We prove that

lim
i→∞

Ri(u∞i ) = −∞ . (4.9)

Let i ∈ N be fixed and ωeti
σ ∈ Hα

rad(RN ) be the function from (2.11) corresponding
to t̃i > 0. Then ωeti

σ ∈W
bi
rad, and by (2.13), (4.1) and (4.3), we have

Ri(ω
eti
σ ) =

1
2
‖ωeti

σ ‖2 −
∫

RN
Q(x)Fi(ω

eti
σ )dx

=
1
2
‖ωesi

σ ‖2 − F (s̃i)
∫
Bσρ

Q(x)dx−
∫

(Bρ\Bσρ )∩{ω
eti
σ >δ}

Q(x)Fi(ω
eti
σ )dx

−
∫

(Bρ\Bσρ )∩{ω
eti
σ ≤δ}

Q(x)Fi(ω
eti
σ )dx

≤
[1

2
K(ρ, σ)− L∞(σρ)NωN min

Bσρ
Q+ l∞‖Q‖L1

]
t̃2i + ‖Q‖L1 max

t∈[0,δ]
|F (t)|.

Since limi→∞ t̃i = ∞ and (4.2), one has limi→∞Ri(ω
eti
σ ) = −∞. But Ri(u∞i ) ≤

Ri(ω
eti
σ ) for all i ∈ N , which proves (4.9).

Suppose that in the sequence {u∞i }i there are only finitely many distinct el-
ements, denote {u∞1 , . . . , u∞i0 } for some i0 ∈ N . Thus the sequence {Ri(u∞i )}i
reduces mostly to the finite set which contradicts (4.9).



18 C. JI, F. FANG EJDE-2018/126

Now we prove the limit (1.4). Argument by contradiction. Assume that there
exists a subsequence {u∞ki }i of {u∞i }i such that for all i ∈ N , ‖u∞ki ‖L∞ ≤ M , for
some M > 0. In particular, {u∞ki }i ⊂ W bl

rad for some l ∈ N . Thus for every ki ≥ l,
one has

Rl(u∞l ) = min
W
bl
rad

Rl = min
W
bl
rad

Rki

≥ min
W
bki
rad

Rki = Rki(u
∞
ki )

≥ min
W
bl
rad

Rki

= Rl(u∞l ).

As a consequence,
Rki(u

∞
ki ) = Rl(u∞l ) for all i ∈ N. (4.10)

Moreover the sequence {Ri(u∞i )}i is non-increasing. By (3.3) and (4.8), for all
i ∈ N , we have

Ri+1(u∞i+1) = min
W
bi+1
rad

Ri+1 ≤ min
W
bi
rad

Ri+1 = min
W
bi
rad

Ri = Ri(u∞i ).

Combining this latter fact with (4.10), one can find a number i0 ∈ N such that
Ri(u∞i ) = Rl(u∞l ) for all i ≥ i0, this is a contraction with (4.9). The proof is
complete. �

Proof of Remark 1.5. Assume that (1.5) holds for f with q ∈ (2, 2∗α
2 ). Assume by

contradiction that there exists a subsequence {u∞ki }i of {u∞i }i such that for all
i ∈ N , we have ‖u∞ki ‖ ≤ M̃ for some M̃ > 0. Fix β ∈ [2q, 2∗α). By (1.5) and the
mean value theorem, one has∣∣ ∫

RN
Q(x)Fki(u

∞
ki )dx

∣∣ ≤ C(‖Q‖L2‖u∞ki ‖L2 + ‖Q‖
L

β
β−q
‖u∞ki ‖

q
Lβ

)
≤ C1

(
‖Q‖L2M̃ + ‖Q‖

L
β
β−q

M̃q
)
<∞.

Thus, the sequence {Rki(u∞ki )}i is bounded. Since the sequence {Rki(u∞ki )}i is
non-increasing, it will be bounded, this contradicts (4.9). �

Proof of Theorem 1.8. By the observation for problem (4.6), in order to prove this
theorem, we only need to prove that for every k ∈ N , there are at least k distinct
elements u∞i,ε verifying (1.7) when ε belongs to a certain interval around the origin.

Let {θi}i be a sequence such that θi < 0 for all i ∈ N and limi→∞ θi = −∞. By
the proof of Theorem 1.6, up to a subsequence, we may assume that the sequence
{(θi, Ri(u∞i ), Ri(ω

eti
σ ), ai)}i ⊂ R4 which converges to (−∞,−∞,−∞,∞) has the

property that for all i ∈ N ,

θi+1 < Ri(u∞i ) ≤ Ri(ω
eti
σ ) < θi, (4.11)

ai ≥ i. (4.12)

Denote

ε′i =
θi −Ri(ωeti

σ )
‖Q‖L1(max[0,bi] |g|+ 1)bi

and ε′′i =
Ri(u∞i )− θi+1

‖Q‖L1(max[0,bi] |g|+ 1)bi
i ∈ N.
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and fix k ∈ N . By (4.11), one has

ε∞k = min{1, ε1, . . . , εk, ε′1, . . . , ε′k, ε′′1 , . . . , ε′′k} > 0.

Then for every i ∈ {1, . . . , k} and ε ∈ [−ε0k, ε0k], it follows from (4.4), (4.8), the
choice of ε′i and t̃i ≤ t̃mi that

Rεi(u
∞
i,ε) ≤ Rεi(ωesi

σ )

= Ri(ωesi
σ )− ε

∫
RN

Q(x)Gi(ωesi
σ )dx < θi.

Meanwhile, from (4.8) for ε = 0, (4.4), the choice of ε′′i and t̃i ≤ t̃mi we have

Rεi(u
∞
i,ε) = Ri(u∞i,ε)− ε

∫
RN

Q(x)Gi(u∞i,ε)dx

≥ Ri(u∞i )− ε
∫

RN
Q(x)Gi(u∞i,ε)dx > θi+1.

Thus, for every i ∈ {1, . . . , k} and ε ∈ [−ε∞k , ε∞k ], one has

θi+1 < Rεi(u
∞
i,ε) < θi, (4.13)

so
Rεk(u∞k,ε) < · · · < Rε1(u0

1,ε) < 0. (4.14)

But u∞i,ε ∈ W
bk
rad for every i ∈ {1, . . . , k} by (4.4), so Rεi(u

∞
i,ε) = Rε1(u∞i,ε) by (3.3).

Thus for every ε ∈ [−ε0k, ε0k], it follows from (4.14) that

Rεk(u∞k,ε) < · · · < Rεk(u∞1,ε) < 0,

this shows that the elements u∞1,ε, . . . , u
∞
k,ε are distinct whenever ε ∈ [−ε∞k , ε∞k ].

Now we prove (1.7). Fix ε ∈ [−ε∞k , ε∞k ]. First, since Rε1(u∞1,ε) < 0 = Rε1(0), then
‖u∞1,ε‖L∞ > 0 which proves (1.7) for i = 1. We further prove that

‖u∞i,ε‖L∞ > ai−1 for all i ∈ {2, . . . , k}. (4.15)

Argument by contradiction. Assume that there exists an element i0 ∈ {2, . . . , k}
such that ‖u∞i0,ε‖L∞ ≤ ai0−1. Since ai0−1 < bi0−1, then u∞i0,ε ∈W

bi0−1

rad . So, by (3.3)
and (4.8), it follows that

Rεi0−1(u∞i0−1,ε) = min
W
bi0−1
rad

Rεi0−1 ≤ Rεi0−1(u∞i0,ε) = Rεi0(u∞i0,ε),

which contradicts (4.14). Thus, (4.15) holds. By (4.15) and (4.12), we can complete
the proof. �

Proof of Remark 1.7. Assume that both functions f and g satisfy (1.5) with q ∈
(2, 2∗α

2 ). Fix β ∈ (2q, 2∗α). We may assume that the sequence {θi}i from (4.11)
satisfies

θi < −2C1(1 + |ε|)
(
‖Q‖L2(i0 − 1) + ‖Q‖

L
β
β−q

(i0 − 1)q
)

for all i ∈ N,

where C1 > 0. Fix ε ∈ [−ε∞k , ε∞k ] and assume that ‖u∞i0,ε‖ ≤ i0 − 1 for some
i0 ∈ {1, . . . , k}. Then, we have

1
2
‖u∞i0,ε‖

2 = Rεi0(u∞i0,ε) +
∫

RN
Q(x)

(
Fi0(u∞i0,ε) +Gi0(u∞i0,ε)

)
dx

≤ θi0 + C1(1 + |ε|)
(
‖Q‖L2‖u∞i0,ε‖+ ‖Q‖

L
β
β−q
‖u∞ki ‖

q
)
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≤ θi0 + 2C1

(
‖Q‖L2(i0 − 1) + ‖Q‖

L
β
β−q

(i0 − 1)q
)
< 0.

This is a contradiction. Therefore (1.8) holds. �
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