
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 124, pp. 1–21.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

TWO SOLUTIONS FOR NONHOMOGENEOUS
KLEIN-GORDON-MAXWELL SYSTEM WITH
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Abstract. In this article, we study the nonhomogeneous Klein-Gordon-Maxwell
system

−∆u+ λV (x)u−K(x)(2ω + φ)φu = f(x, u) + h(x), x ∈ R3,

∆φ = K(x)(ω + φ)u2, x ∈ R3,

where ω > 0 is a constant and λ > 0 is a parameter. Using the Linking

theorem and Ekeland’s variational principle in critical point theory, we prove
the existence of multiple solutions, under suitable assumptions that allow a

sign-changing potential.

1. Introduction and statement of main results

In this article, we study the nonhomogeneous Klein-Gordon-Maxwell system

−∆u+ λV (x)u−K(x)(2ω + φ)φu = f(x, u) + h(x), x ∈ R3,

∆φ = K(x)(ω + φ)u2, x ∈ R3,
(1.1)

where ω > 0 is a constant and λ ≥ 1 is a parameter, V ∈ C(R3,R) and f ∈ C(R3×
R,R). By using the Linking Theorem and the Ekeland’s variational principle in
critical point theory, we obtain the multiple solutions for (1.1). Here, the potential
V is allowed to be a sign-changing function. Such system was firstly studied by
Benci and Fortunato [5] as a model which describes nonlinear Klein-Gordon fields in
three dimensional space interacting with the electrostatic field. For more details on
the physical aspects of the problem we refer the readers to see [6] and the references
therein.

When h ≡ 0, that is the homogeneous case, has been widely studied in recent
years. In 2002, Benci and Fortunato [6] considered the Klein-Gordon-Maxwell
system

−∆u+ [m2 − (ω + φ)2]φu = f(x, u), x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3,
(1.2)
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for the power of nonlinearity f(x, u) = |u|q−2u, where ω and m are constants. By
using a version of the mountain pass theorem, they proved that (1.2) has infinitely
many radially symmetric solutions under |m| > |ω| and 4 < q < 6. D’Aprile and

Mugnai [15] sutdied the case 2 < q < 4 assuming
√

q−2
2 m > ω > 0. Later, the

authors in [3] gave a small improvement with 2 < q < 4. Azzollini and Pomponio
[2] obtained the existence of a ground state solution for (1.2) under one of the
conditions

(i) 4 ≤ q < 6 and m > ω;
(ii) 2 < q < 4 and m

√
q − 2 > ω

√
6− q.

Soon afterwards, it is improved by Wang [26]. Motivated by the methods of Benci
and Fortunato, Cassani [9] considered (1.2) for the critical case by adding a lower
order perturbation

−∆u+ [m2 − (ω + φ)2]φu = µ|u|q−2u+ |u|2
∗−2u, x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3,
(1.3)

where µ > 0 and 2∗ = 6. He showed that (1.3) has at least a radially symmetric
solution under one of the following conditions:

(i) 4 < q < 6, |m| > |ω| and µ > 0;
(ii) q = 4, |m| > |ω| and µ is sufficiently large.

Which was improved by the result in [10] provided one of the following conditions
is satisfied:

(i) 4 < q < 6, |m| > |ω| > 0 and µ > 0;
(ii) q = 4, |m| > |ω| > 0 and µ is sufficiently large;

(iii) 2 < q < 4, |m|
√

q−2
2 > |ω| > 0 and µ is sufficiently large.

Subsequently, Wang [25] generalized the result of [10]. Recently, the authors in
[11] proved the existence of positive ground state solutions for the problem (1.3)
with a periodic potential V ; that is,

−∆u+ V (x)u+ [m2 − (ω + φ)2]φu = µ|u|q−2u+ |u|2
∗−2u, x ∈ R3,

∆φ = (ω + φ)u2, x ∈ R3.

In [20], Georgiev and Visciglia introduced a system like homogeneous (1.1) with
potentials and λ = 1, however they considered a small external Coulomb potential
in the corresponding Lagrangian density. Cunha [13] considered the existence of
positive ground state solutions for (1.1) with periodic potential V (x). Other related
results about homogeneous Klein-Gordon-Maxwell system can be found in [14, 16,
17, 18, 21, 22] and other equations with sign-changing potential see [30].

Next, we consider the nonhomogeneous case, that is h 6≡ 0. Chen and Song [12]
proved that (1.1), with λ = 1 and K(x) ≡ 1, has two nontrivial solutions if f(x, t)
satisfies the local (AR) condition:

There exist µ > 2 and r0 > 0 such that G(x, t) := 1
µf(x, t)t − F (x, t) ≥ 0 for

every x ∈ R3 and |t| ≥ r0, where F (x, t) =
∫ t

0
f(x, s)ds.

Xu and Chen [29] studied the existence and multiplicity of solutions for system
(1.1) for the pure power of nonlinearity with f(x, u) = |u|q−2u, λ = 1, and K(x) ≡
1. They also assumed that V (x) ≡ 1 and h(x) is radially symmetric.
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Motivated by the above works, we consider system (1.1) with more general po-
tential V (x) and f(x, u). We make the following assumptions:

(A1) There is b > 0 such that meas{x ∈ R3 : V (x) ≤ b} < +∞, where meas
denotes the Lebesgue measures;

(A2) V ∈ C(R3,R) and V is bounded below;
(A3) Ω = intV −1(0) is nonempty and has smooth boundary and Ω = V −1(0).

This type of hypotheses was first introduced by Bartsch and Wang [4] in the study
of a nonlinear Schrödinger equation and the potential V (x) satisfying (A1)–(A3) is
referred as the steep well potential.

Under assumptions (A1)–(A2) and some more generic 4-superlinear conditions
on the continuous function f(x, u), we prove the existence of multiple solutions of
problem (1.1) when λ > 0 large by using the variation method.

(A4) F (x, u) =
∫ u

0
f(x, s)ds ≥ 0 for all (x, u) and f(x, u) = o(u) uniformly in x

as u→ 0, |f(x, u)| ≤ C(|u|+ |u|q), q < 6 for all (x, u);
(A5) F (x, u)/u4 → +∞ as |u| → +∞ uniformly in x;
(A6) F(x, u) := 1

4f(x, u)u− F (x, u) ≥ 0 for all (x, u) ∈ R3 × R;
(A7) There exist a1, L1 > 0 and τ ∈ (3/2, 2) such that

|f(x, u)|τ ≤ a1F(x, u)|u|τ , for all x ∈ R3 and |u| ≥ L1;

(A8) K(x) ∈ L3(R3) ∪ L∞(R3) and K(x) ≥ 0 is not identically zero for a.e.
x ∈ R3;

(A9) h(x) ∈ L2(R3) and h(x) ≥ 0 for a.e. x ∈ R3.

Remark 1.1. It follows from (A6) and (A7) that |f(x, u)|τ ≤ a1
4 |f(x, u)||u|τ+1 for

large u. Thus, by (A4), for any ε > 0, there exists Cε > 0 such that

|f(x, u)| ≤ ε|u|+ Cε|u|q−1, ∀(x, u) ∈ R3 × R, (1.4)

|F (x, u)| ≤ ε|u|2 + Cε|u|q, ∀(x, u) ∈ R3 × R, (1.5)

where q = 2τ/(τ − 1) ∈ (4, 2∗) and 2∗ = 6 is the critical exponent for the Sobolev
embedding in dimension 3.

Remark 1.2. It is not difficult to find out functions f satisfying (A4)–(A7), for
example,

f(x, t) = g(x)t3
(

2 ln(1 + t2) +
t2

1 + t2

)
, ∀(x, t) ∈ R3 × R,

where g is a is a continuous bounded function with infx∈R3 g(x) > 0.

Before stating our main results, we give some notation. For 1 ≤ s ≤ +∞ and
Ω ⊂ R3, Ls(Ω) denotes a Lebesgue space; the norm in Ls(Ω) is denoted by |u|s,Ω,
where Ω is a proper subset of R3, by | · |s when Ω = R3. Let D1,2(R3) be the
completion of C∞0 (R3) with respect to the norm

‖u‖2D := ‖u‖2D1,2(R3) =
∫

R3
|∇u|2 dx.

The usual Sobolev space H1(R3) is endowed with the standard product and
norm

(u, v)H1 =
∫

R3
(∇u∇v + uv) dx; ‖u‖2H1 =

∫
R3

(|∇u|2 + |u|2) dx.
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The best Sobolev constant S̄ for the Sobolev embedding D1,2(R3) ↪→ L6(R3) is

S̄ = inf
u∈D1,2(R3)\{0}

‖u‖D
|u|6

.

For r > 0 and z ∈ R3, Br(z) denotes the ball of radius r centered at z.
We denote by ” ⇀ ” the weak convergence and by ” → ” strong convergence.

Also if we take a subsequence of a sequence {un}, we shall denote it again {un}.
We use o(1) to denote any quantity which tends to zero when n→∞. The letters
di, C, Ci will be used to denote various positive constants which may vary from line
to line and are not essential to the problem. Now we can state our main results.

Theorem 1.3. Assume that (A1)–(A2), (A4)–(A9) are satisfied. If V (x) < 0 for
some x ∈ R3, then for each k ∈ N, there exist λk > k, bk > 0 and ηk > 0 such that
(1.1) has at least two nontrivial solutions for every λ = λk, |K|∞ < bk(or|K|3 < bk)
and |h|2 ≤ ηk.

Theorem 1.4. Assume that (A1)–(A9) are satisfied. If V −1(0) has nonempty
interior, then there exist Λ > 0, bλ > 0 and ηλ > 0 such that problem (1.1) has at
least two nontrivial solutions for every λ > Λ,|h|2 ≤ ηλ and |K|∞ < bλ(or|K|3 <
bλ).

If V ≥ 0, we remove the restriction of the norm of K and we have the following
theorem.

Theorem 1.5. Assume V ≥ 0, (A1)–(A9) are satisfied. If V −1(0) has nonempty
interior Ω and h 6= 0, then there exist Λ∗ > 0 and η > 0 such that (1.1) has at least
two nontrivial solutions for every λ > Λ∗ and |h|2 ≤ η.

To obtain our main results, we have to overcome some difficulties in using vari-
ational method. The main difficulty consists in the lack of compactness of the
Sobolev embedding H1(R3) into Lp(R3), p ∈ (2, 6). Since we assume that the
potential is not radially symmetric, we cannot use the usual way to recover com-
pactness, for example, restricting in the subspace H1

r (R3) of radially symmetric
functions. To recover the compactness, we borrow some ideas used in [4, 19] and
establish the parameter dependent compactness conditions.

To the best of our knowledge, our theorems are the first results about the ex-
istence of multiple solutions for the nonhomogeneous Klein-Gordon-Maxwell equa-
tions on R3 with general nonlinear term and sign-changing potential. As it is
pointed out in [13], many technical difficulties arise due to the presence of a non-
local term φ, which is not homogeneous as it is in the Schrödinger-Poisson systems.
In other words, the adaptation of the ideas to the procedure of our problem is not
trivial at all, because of the presence of the nonlocal term φu. Hence, a more careful
analysis of the interaction between the couple (u, φ) is required.

The paper is organized as follows. We introduce the variational setting and
the compactness conditions in Section 2. In Section 3, we give the proofs of main
results.

2. Variational setting and compactness condition

By [3], we know that the signs of ω are not relevant to the existence of solutions,
so we assume that ω > 0. In this section, we firstly give the variational setting of
problem (1.1) and then establish the compactness conditions.
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Let V (x) = V +(x)− V −(x), where V ± = max{±V (x), 0}. Let

E =
{
u ∈ H1(R3) :

∫
R3
|∇u|2 + V +(x)u2 dx <∞

}
be equipped with the inner product (u, v) =

∫
R3(∇u∇v + V +(x)uv) dx and the

norm ‖u‖ = (u, u)1/2. For λ > 0, we also need the following inner product and
norm

(u, v)λ =
∫

R3
(∇u∇v + λV +(x)uv) dx, ‖u‖λ = (u, u)1/2

λ .

It is clear ‖u‖ ≤ ‖u‖λ for λ ≥ 1. Set Eλ = (E, ‖ · ‖λ). It follows from the
Poincaré inequality and (A1)–(A2), we know that the embedding Eλ ↪→ H1(R3) is
continuous, and therefore, for s ∈ [2, 6], there exists ds > 0( independent of λ ≥ 1)
such that

|u|s ≤ ds‖u‖λ, ∀u ∈ Eλ. (2.1)
Let

Fλ = {u ∈ Eλ : suppu ⊂ V −1([0,∞))},
and F⊥λ denote the orthogonal complement of Fλ in Eλ. Clearly, Fλ = Eλ if V ≥ 0,
otherwise F⊥λ 6= {0}. Define

Aλ := −∆ + λV,

then Aλ is formally self-adjoint in L2(R3) and the associated bilinear form

aλ(u, v) =
∫

R3
(∇u∇v + λV (x)uv) dx

is continuous in Eλ. As in [19], for fixed λ > 0, we consider the eigenvalue problem

−∆u+ λV +(x)u = µλV −(x)u, u ∈ F⊥λ . (2.2)

By (A1)–(A2), we know that the quadratic form u 7→
∫

R3 λV
−(x)u2 dx is weakly

continuous. Hence following [28, Theorems 4.45 and 4.46], we can deduce the fol-
lowing proposition, which is the spectral theorem for compact self-adjoint operators
jointly with the Courant-Fischer minimax characterization of eigenvalues.

Proposition 2.1. Suppose that (A1), (A2) hold, then for any fixed λ > 0, the
eigenvalue problem (2.2) has a sequence of positive eigenvalues {µj(λ)}, which may
be characterized by

µj(λ) = inf
dimM≥j,M⊂F⊥λ

sup
{
‖u‖2λ : u ∈M,

∫
R3
λV −(x)u2 dx = 1

}
,

for j = 1, 2, 3, . . . . Furthermore, µ1(λ) ≤ µ2(λ) ≤ · · · ≤ µj(λ) → +∞ as j →
+∞, and the corresponding eigenfunctions {ej(λ)}, which may be be chosen so that
(ei(λ), ej(λ))λ = δij, are a basis of F⊥λ .

Next, we give some properties for the eigenvalues {µj(λ)} defined above.

Proposition 2.2 ([19]). Assume that (A1)–(A2) hold and V − 6≡ {0}. Then, for
each fixed j ∈ N,

(i) µj(λ)→ 0 as λ→ +∞;
(ii) µj(λ) is a non-increasing continuous function of λ.

Remark 2.3. By Proposition 2.2, there exists Λ0 > 0 such that µ1(λ) ≤ 1 for all
λ > Λ0.
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Denote

E−λ := span{ej(λ) : µj(λ) ≤ 1} and E+
λ := span{ej(λ) : µj(λ) > 1}.

Then Eλ = E−λ ⊕ E
+
λ ⊕ Fλ is an orthogonal decomposition. The quadratic form

aλ is negative semidefinite on E−λ , positive definite on E+
λ ⊕ Fλ and it is easy to

see that aλ(u, v) = 0 if u, v are in different subspaces of the above decomposition
of Eλ.

From Remark 2.3, we have that dimE−λ ≥ 1 when λ > Λ0. Moreover, since
µj(λ)→ +∞ as j → +∞, dimE−λ < +∞ for every fixed λ > 0.

System (1.1) has a variational structure. In fact, we consider the functional
Jλ : Eλ ×D1,2(R3)→ R defined by

Jλ(u, φ) =
1
2

∫
R3

(|∇u|2 + λV (x)u2) dx− 1
2

∫
R3
|∇φ|2 dx

− 1
2

∫
R3
K(x)(2ω + φ)φu2 dx−

∫
R3
F (x, u) dx−

∫
R3
h(x)u dx.

The solutions (u, φ) ∈ Eλ ×D1,2(R3) of system (1.1) are the critical points of Jλ.
By using the reduction method described in [7], we are led to the study of a new
functional Iλ(u) (Iλ(u) is defined in (2.3)). We need the following technical result.

Proposition 2.4. Let K(x) satisfy the condition (A8). Then for any u ∈ Eλ, there
exists a unique φ = φu ∈ D1,2(R3) which satisfies

∆φ = K(x)(φ+ ω)u2 in R3.

Moreover, the map Φ : u ∈ Eλ 7→ φu ∈ D1,2(R3) is continuously differentiable, and

(i) −ω ≤ φu ≤ 0 on the set {x ∈ R3|u(x) 6= 0};
(ii) ‖φu‖D ≤ C1|K|3‖u‖2λ and

∫
R3 K(x)φuu2 dx ≤ C2|K|23‖u‖4λ, if K ∈ L3(R3);

(iii) ‖φu‖D ≤ C3|K|∞‖u‖2λ and
∫

R3 K(x)φuu2 dx ≤ C4|K|2∞‖u‖4λ, if
K ∈ L∞(R3).

Proof. Let K(x) ∈ L3(R3), u ∈ Eλ and define the bilinear form

L(w1, w2) ∈ D1,2(R3)×D1,2(R3) 7→
∫

R3
[∇w1∇w2 +K(x)u2w1w2] dx ∈ R.

It is easy to see that L is well defined. Moreover, since K(x) ≥ 0, L(w1, w1) ≥
‖w1‖2D. Furthermore, since K(x) ∈ L3(R3), by the Hölder inequality, we obtain
that

L(w1, w2) =
∫

R3
[∇w1∇w2 +K(x)u2w1w2] dx

≤ ‖w1‖D‖w2‖D + |K|3|u|26|w1|6|w2|6
≤ ‖w1‖D‖w2‖D + d2

6S̄
−2|K|3‖u‖2λ‖w1‖D‖w2‖D

= (1 + d2
6S̄
−2|K|3‖u‖2λ)‖w1‖D‖w2‖D.

Hence L defines an inner product, equivalent to the standard inner product in
D1,2(R3). Moreover Eλ ⊂ L4(R3) and then∣∣ ∫

R3
ωK(x)u2w1 dx

∣∣ ≤ S̄−1ω|K|3|u|24‖w1‖D.
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Therefore, the linear map

w1 ∈ D1,2(R3) 7→
∫

R3
−ωK(x)u2w1 dx ∈ R

is continuous. Hence, by the Lax-Milgram theorem, there exists a unique φu ∈
D1,2(R3) such that∫

R3
[∇φu∇w1 +K(x)u2φuw1] dx =

∫
R3
−ωK(x)u2w1 dx, ∀w1 ∈ D1,2(R3),

φu is the unique solution of ∆φ = K(x)(φ+ ω)u2.
For the case K ∈ L∞(R3) is similar to [24, Lemma 3.1], we omit it here.
(i) Arguing by contradiction, we assume that there exists an open subset Ω ⊂ R3

satisfying
φu < −ω.

Then, for φu a solution of ∆φ = K(x)(φ+ ω)u2, we have

−∆(φu + ω) +K(x)(φu + ω)u2 = −∆φu +K(x)u2φu + ωK(x)u2 = 0.

Set ϕ = φu + ω, we obtain that

−∆ϕ+K(x)ϕu2 = 0 in Ω, ϕ = 0 on ∂Ω.

Then ϕ = 0 contradicts φu < −ω.
An analogous argument shows that φ ≤ 0.
(ii) Since φu solves the equation ∆φ = K(x)(φ+ω)u2,K ∈ L3(R3) and K(x) ≥ 0,

we have

‖φu‖2D ≤ −
∫

R3
(K(x)φ2

uu
2 + ωK(x)u2φu) dx

≤ −
∫

R3
ωK(x)u2φu dx

≤ ω|K|3|u|24|φu|6
≤ ωS̄−1d2

4|K|3‖u‖2λ‖φu‖D.

Hence ‖φu‖D ≤ C1|K|3‖u‖2λ, where C1 = ωS̄−1d2
4.

For the second inequality, we obtain∫
R3
K(x)φuu2 dx ≤ |K|3|φu|6|u|24

≤ S̄−1d2
4|K|3‖φu‖D‖u‖2λ

≤ ωS̄−2d4
4|K|23‖u‖4λ

≤ C2|K|23‖u‖4λ,

where C2 = ωS̄−2d4
4.

(iii) Again by φu solving the equation ∆φ = K(x)(φ + ω)u2,K ∈ L∞(R3) and
K(x) ≥ 0, we have

‖φu‖2D ≤ −
∫

R3
(K(x)φ2

uu
2 + ωK(x)u2φu) dx

≤ −
∫

R3
ωK(x)u2φu dx

≤ ω|K|∞|u|212/5|φu|6
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≤ ωS̄−1d2
12/5|K|∞‖u‖

2
λ‖φu‖D.

Hence ‖φu‖D ≤ C3|K|∞‖u‖2λ, where C3 = ωS̄−1d2
12/5.

For the second inequality,∫
R3
K(x)φuu2 dx ≤ |K|∞|φu|6|u|212/5

≤ S̄−1d2
12/5|K|∞‖φu‖D‖u‖

2
λ

≤ ωS̄−2d4
12/5|K|

2
∞‖u‖4λ

≤ C4|K|2∞‖u‖4λ,

where C4 = ωS̄−2d4
12/5. The proof is complete. �

Remark 2.5. By the proof of Proposition 2.4, we can know that the condition
(A8) can be replaced by

(A8’) K(x) ∈ Lq1(R3) ∪ L∞(R3) and K(x) ≥ 0 is not identically zero for a.e.
x ∈ R3, where q1 ≥ 3.

Multiplying −4φu + K(x)φuu2 = −ωK(x)u2 by φu and integration by parts,
we obtain ∫

R3
(|∇φu|2 +K(x)φ2

uu
2) dx = −

∫
R3
ωK(x)φuu2 dx.

By above equality and the definition of Jλ, we obtain a C1 functional Iλ : Eλ → R
given by

Iλ(u) = Jλ(u, φu)

=
1
2

∫
R3

(|∇u|2 + λV (x)u2) dx− 1
2

∫
R3

(|∇φu|2 +K(x)φ2
uu

2) dx

−
∫

R3
ωK(x)φuu2 dx−

∫
R3
F (x, u) dx−

∫
R3
h(x)u dx

=
1
2

∫
R3

(|∇u|2 + λV (x)u2) dx− 1
2

∫
R3
K(x)ωφuu2 dx

−
∫

R3
F (x, u) dx−

∫
R3
h(x)u dx .

(2.3)

Its Gateaux derivative is

〈I ′λ(u), v〉 =
∫

R3
(∇u · ∇v + λV (x)uv) dx−

∫
R3
K(x)(2ω + φu)φuuv dx

−
∫

R3
f(x, u)v dx−

∫
R3
h(x)v dx

for all v ∈ Eλ. Here we use the fact that φu = (4−K(x)u2)−1[ωK(x)u2]. Set

M(u) =
∫

R3
−ωK(x)φuu2 dx.

Now we give some properties of the functional M . Its derivative M ′ possesses the
BL-splitting property, which is similar to Brezis-Lieb Lemma [8].

Proposition 2.6. Let K ∈ L∞(R3) ∪ L3(R3). If un ⇀ u in H1(R3) and un(x)→
u(x) a.e. x ∈ R3, then

(i) φun ⇀ φu in D1,2(R3) and M(u) ≤ lim infn→∞M(un);
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(ii) M(un − u) = M(un)−M(u) + o(1);
(iii) M ′(un − u) = M ′(un)−M ′(u) + o(1) in H−1(R3).

Proof. (i) A straight forward adaption of [33, Lemma 2.1]. The proof of (ii) and
(iii) have been given in [30, 32] for N(u) =

∫
R3 K(x)φuu2 dx, and it is easy to see

that the conclusions remain valid for M(u). The proof is complete. �

Next, we investigate the compactness conditions for the functional Iλ. Recall
that a C1 functional J satisfies (PS) condition at level c if any sequence {un} ⊂ E
such that J(un) → c and J ′(un) → 0 has a convergent subsequence; and such
sequence is called a (PS)c sequence. We only consider the case K ∈ L∞(R3), the
other case K ∈ L3(R3) is similar.

Lemma 2.7. Suppose that (A1)–(A2), (A4)–(A9) are satisfied. Then every (PS)c
sequence of Iλ is bounded in Eλ for each c ∈ R.

Proof. Let {un} ⊂ Eλ be a (PS)c sequence of Iλ. Suppose by contradiction that

Iλ(un)→ c, I ′λ(un)→ 0, ‖un‖λ →∞ (2.4)

as n → ∞ after passing to a subsequence. Take wn := un/‖un‖λ. Then ‖wn‖λ =
1, wn ⇀ w in Eλ and wn(x)→ w(x) a.e. x ∈ R3.

We first consider the case w = 0. By (2.4), (A6), Proposition 2.4 and the fact
wn → 0 in L2({x ∈ R3 : V (x) < 0}), we obtain

o(1) =
1

‖un‖2λ

(
Iλ(un)− 1

4
〈I ′λ(un), un〉

)
=

1
4
‖wn‖2λ −

λ

4

∫
R3
V −(x)w2

n dx+
1

4‖un‖2λ

∫
R3
K(x)φ2

unu
2
n dx

+
1

‖un‖2λ

∫
R3
F(x, un) dx− 3

4‖un‖2λ

∫
R3
h(x)un dx

≥ 1
4
− λ

4
|V −|∞

∫
suppV −

w2
n dx−

3
4
|h|2d2

1
‖un‖λ

=
1
4

+ o(1),

which is a contradiction.
If w 6= 0, then Ω1 := {x ∈ R3 : w(x) 6= 0} has positive Lebesgue measure. For

x ∈ Ω1, one has |un(x)| → ∞ as n→∞, and then, by (A5),
F (x, un(x))
u4
n(x)

w4
n(x)→ +∞ as n→∞,

which, jointly with Fatou’s lemma, shows that∫
Ω1

F (x, un)
u4
n

w4
n dx→ +∞ as n→∞. (2.5)

Combining this with (A4), (2.3), the first limit of (2.4), (A8), (A9) and Proposition
2.4 (ii), we obtain

C4

2
|K|∞ω ≥ lim sup

n→∞

∫
R3

F (x, un)
‖un‖4λ

dx ≥ lim sup
n→∞

∫
Ω1

F (x, un)
u4
n

w4
n dx = +∞.

This is impossible. Hence {un} is bounded in Eλ.
For the case K ∈ L3(R3), we can use the Cauchy-Schwarz inequality and the

boundedness of φun to get the result. �



10 LIXIA WANG, SHANGJIE CHEN EJDE-2018/124

Lemma 2.8. Suppose that (A1), (A2), (A8), (A9) and (1.4) hold. If un ⇀ u in
Eλ, un(x)→ u(x) a.e. in R3, and we denote wn := un − u, then

Iλ(un) = Iλ(wn) + Iλ(u) + o(1), (2.6)

〈I ′λ(un), ϕ〉 = 〈I ′λ(wn), ϕ〉+ 〈I ′λ(u), ϕ〉+ o(1), uniformly for all ϕ ∈ Eλ (2.7)

as n→∞. In particular, if Iλ(un)→ c(∈ R) and I ′λ(un)→ 0 in E∗λ (the dual space
of Eλ), then I ′λ(u) = 0 and

Iλ(wn)→ c− Iλ(u),

〈I ′λ(wn), ϕ〉 → 0, uniformly for all ϕ ∈ Eλ
(2.8)

after passing to a subsequence.

Proof. Since un ⇀ u in Eλ, we have (un − u, u)λ → 0 as n → ∞, which implies
that

‖un‖2λ = (wn + u,wn + u)λ = ‖wn‖2λ + ‖u‖2λ + o(1). (2.9)
By (A1), the Hölder inequality and wn ⇀ 0, we have∣∣∣ ∫

R3
V −(x)wnu dx

∣∣∣ =
∣∣∣ ∫

suppV −
V −wnu dx

∣∣∣ ≤ |V −|∞(∫
suppV −

w2
n dx

)1/2

|u|2 → 0

as n→∞. Thus∫
R3
V −(x)u2

n dx =
∫

R3
V −(x)w2

n dx+
∫

R3
V −(x)u2 dx+ o(1).

By Proposition 2.6 (ii), we have

M(un) = M(wn) +M(u) + o(1).

Since h ∈ L2(R3),∫
R3
h(x)un dx =

∫
R3
h(x)wn dx+

∫
R3
h(x)u dx,

therefore, to prove (2.6) and (2.7), it suffices to check that∫
R3

(F (x, un)− F (x,wn)− F (x, u)) dx = o(1), (2.10)

sup
‖φ‖λ=1

∫
R3

(f(x, un)− f(x,wn)− f(x, u))φdx = o(1). (2.11)

We prove (2.10) firstly. Inspired by [1], we observe that

F (x, un)− F (x, un − u) = −
∫ 1

0

( d
dt
F (x, un − tu)

)
dt =

∫ 1

0

f(x, un − tu)udt.

and hence, by (1.4), we obtain

|F (x, un)− F (x, un − u)| ≤ ε1|un||u|+ ε1|u|2 + Cε1 |un|p−1|u|+ Cε1 |u|p,

where ε1, Cε1 > 0 and p ∈ (4, 6). Therefore, for each ε > 0, and the Young
inequality, we obtain

|F (x, un)− F (x,wn)− F (x, u)| ≤ C[ε|un|2 + Cε|u|2 + ε|un|p + Cε|u|p].

Next, we consider the function fn given by

fn(x) := max{|F (x, un)− F (x,wn)− F (x, u)| − Cε(|un|2 + |un|p), 0}.
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Then 0 ≤ fn(x) ≤ CCε(|u|2+|u|p) ∈ L1(R3). Moreover, by the Lebesgue dominated
convergence theorem, ∫

R3
fn(x) dx→ 0 as n→∞, (2.12)

since un → u a.e. in R3. By the definition of fn, it follows that

|F (x, un)− F (x,wn)− F (x, u)| ≤ fn(x) + Cε(|un|2 + |un|p).
Combining this with (2.12) and (1.5), shows that∫

R3
|F (x, un)− F (x,wn)− F (x, u)| dx ≤ Cε

for n sufficiently large. It implies that∫
R3

[F (x, un)− F (x,wn)− F (x, u)] dx = o(1).

The prove of (2.11) is similar to [31, Lemma 4.7], we omit here. Now, we check
that I ′λ(u) = 0. In fact, for each ψ ∈ C∞0 (R3), we have

(un − u, ψ)λ → 0 as n→∞. (2.13)

and ∣∣ ∫
R3
V −(x)(un − u)ψ dx

∣∣ ≤ |V −|∞(∫
suppψ

(un − u)2 dx
)1/2

|ψ|2 → 0 (2.14)

as n → ∞, since un → u in L2
loc(R3). By Proposition 2.6 (i), un ⇀ u in Eλ yields

φun ⇀ φu in D1,2(R3). So

φun ⇀ φu in L6(R3).

For every ψ ∈ C∞0 (R3) and Proposition 2.6 (ii), we obtain∫
R3

2ωK(x)φununψ dx =
∫

R3
2ωK(x)φwnwnψ dx+

∫
R3

2ωK(x)φuuψ dx+ o(1).

Now we need to prove∫
R3
K(x)φ2

ununψ dx =
∫

R3
K(x)φ2

wnwnψ dx+
∫

R3
K(x)φ2

uuψ dx+ o(1).

By un → u in Lsloc(R3), 1 ≤ s < 6; φun → φu in Lsloc(R3), 1 ≤ s < 6, the bounded-
ness of (φun) and the Hölder inequality, we have∫

R3
K(x)(φ2

unun − φ
2
uu)ψ dx

=
∫

R3
K(x)φ2

un(un − u)ψ dx+
∫

R3
K(x)(φ2

un − φ
2
u)uψ dx

≤ C|K|∞‖∇φun‖2
(∫

Ωψ

|un − u|3/2 dx
)2/3

+ |K|∞
∫

Ωψ

(φ2
un − φ

2
u)uψ dx→ 0,

(2.15)

as n→∞, here Ωψ is the support set of ψ.
Furthermore, by the dominated convergence theorem and (1.4), we have∫

R3
[f(x, un)− f(x, u)]ψ dx =

∫
Ωψ

[f(x, un)− f(x, u)]ψ dx = o(1).



12 LIXIA WANG, SHANGJIE CHEN EJDE-2018/124

Since un ⇀ u in L2(R3) and h ∈ L2(R3), we obtain
∫

R3 h(un − u) dx = o(1). This
jointly with (2.13), (2.14), (2.15) and the dominated convergence theorem, shows
that

〈I ′λ(u), ψ〉 = lim
n→∞

〈I ′λ(un), ψ〉 = 0, ∀ψ ∈ C∞0 (R3).

Hence I ′λ(u) = 0. Combining with (2.6)-(2.7) and Proposition 2.6 (iii), we obtain
(2.8). The proof is complete. �

Lemma 2.9. Assume that V ≥ 0, and (A1)–(A2), (A4)–(A9), hold. Then, for any
M > 0, there is Λ = Λ(M) > 0 such that Iλ satisfies (PS)c condition for all c < M
and λ > Λ.

Proof. Let {un} ⊂ Eλ be a (PS)c sequence with c < M . By Lemma 2.7, we
know that {un} is bounded in Eλ, and there exists C > 0 such that ‖un‖λ ≤ C.
Therefore, up to a subsequence, we can assume that

un ⇀ u in Eλ;

un → u in Lsloc(R3) (1 ≤ s < 2∗);

un(x)→ u(x) a.e. x ∈ R3.

(2.16)

Now we can show that un → u in Eλ for λ > 0 large. Denote wn := un − u, then
wn ⇀ 0 in Eλ. According to Lemma 2.8 and the fact (2.8) holds uniformly for all
ϕ ∈ Eλ, we have I ′λ(u) = 0, and

Iλ(wn)→ c− Iλ(u), I ′λ(wn)→ 0 as n→∞. (2.17)

According to V ≥ 0 and (A6), we obtain

Iλ(u) = Iλ(u)− 1
4
〈I ′λ(u), u〉

=
1
4
‖u‖2λ +

1
4

∫
R3
K(x)φ2

uu
2 dx+

∫
R3
F(x, u) dx− 3

4

∫
R3
hu dx

= Φλ(u)− 3
4

∫
R3
hu dx,

here

Φλ(u) =
1
4
‖u‖2λ +

1
4

∫
R3
K(x)φ2

uu
2 dx+

∫
R3
F(x, u) dx ≥ 0.

Again by (2.17), (2.16) and Proposition 2.4 (i), we have

1
4
‖wn‖2λ +

∫
R3
F(x,wn) dx

= Iλ(wn)− 1
4
〈I ′λ(wn), wn〉+

3
4

∫
R3
hwn dx+ o(1)

≤ c− Iλ(u) + o(1)

= c−
[
Φλ(u)− 3

4

∫
R3
hu dx

]
+

3
4

∫
R3
hwn dx+ o(1)

= c− Φλ(u) +
3
4

∫
R3
hu dx+ o(1)

≤M + M̃ + o(1).

(2.18)
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Here we use the fact c < M and

3
4
|h|2|u|2 ≤

3
4
|h|2d2‖u‖λ ≤

3
4
|h|2d2 lim inf

n→∞
‖un‖λ ≤ |h|2d2C ≤ M̃,

where M̃ is a positive constant independent of λ. Hence∫
R3
F(x,wn) dx ≤M + M̃ + o(1). (2.19)

Because V (x) < b on a set of finite measure and wn ⇀ 0, we obtain

|wn|22 ≤
1
λb

∫
V≥b

λV +(x)w2
n dx+

∫
V <b

w2
n dx ≤

1
λb
‖wn‖2λ + o(1). (2.20)

For 2 < s < 2∗, by the Hölder and Sobolev inequality and (2.20), we have

|wn|ss =
∫

R3
|wn|s dx

≤
(∫

R3
|wn|2 dx

) 6−s
s
(∫

R3
|wn|6 dx

) 9s−18
s

≤
[ 1
λb

∫
R3

(
|∇wn|2 + λV +w2

n

)
dx
] 6−s

s
(
S̄−6

[ ∫
R3
|∇wn|2 dx

]3) 9s−18
s

+ o(1)

≤
( 1
λb

) 6−s
4 S̄−

3(s−2)
2 ‖wn‖sλ + o(1).

(2.21)

According to (A4), for any ε > 0, there exists δ = δ(ε) > 0 such that |f(x, t)| ≤ ε|t|
for all x ∈ R3 and |t| ≤ δ, and (A7) is satisfied for |t| ≥ δ (with the same τ but
possibly larger than a1). Hence we have that∫

|wn|≤δ
f(x,wn)wn dx ≤ ε

∫
|wn|≤δ

w2
n dx ≤

ε

λb
‖wn‖2λ + o(1), (2.22)

and∫
|wn|≥δ

f(x,wn)wn dx ≤
(∫
|wn|≥δ

|f(x,wn)
wn

|τ dx
)1/τ

|wn|2s

≤
(∫
|wn|≥δ

a1F(x,wn) dx
)1/τ

|wn|2s

≤ [a1(M + M̃)]1/τ S̄−
3(2s−4)

2s
( 1
λb

)θ‖wn‖2λ + o(1)

(2.23)

by (A7), (2.19), (2.21) with s = 2τ/(τ − 1) and the Hölder inequality, where θ =
6−s
2s > 0.

Since un ⇀ u in L2(R3) and h ∈ L2(R3), we obtain that∫
R3
h(un − u) dx→ 0 as n→∞. (2.24)
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Therefore, by (2.22), (2.23), (2.24) and Proposition 2.4 (i), we have

o(1) = 〈I ′λ(wn), wn〉

≥ ‖wn‖2λ −
∫

R3
K(x)(2ω + φwn)φwnw

2
n dx−

∫
R3
f(x,wn)wn dx

−
∫

R3
hwn dx

≥
[
1− ε

λb
− [a1(M + M̃)]1/τ S̄−

3(2s−4)
2s

( 1
λb

)θ]
‖wn‖2λ + o(1).

(2.25)

So, there exists Λ = Λ(M) > 0 such that wn → 0 in Eλ when λ > Λ. Since
wn = un − u, it follows that un → u in Eλ. This completes the proof. �

Lemma 2.10. Assume (A1)–(A2), (A4)–(A9) hold. Let {un} be a (PS)c sequence
of Iλ with level c > 0. Then for any M > 0, there is Λ = Λ(M) > 0 such that, up
to a subsequence, un ⇀ u in Eλ with u being a nontrivial critical point of Iλ and
satisfying Iλ(u) ≤ c for all c < M and λ > Λ.

Proof. We modify the proof of Lemma 2.9. By Lemma 2.8, we obtain

I ′λ(u) = 0, Iλ(wn)→ c− Iλ(u), I ′λ(un)→ 0 as n→∞. (2.26)

However, since V is allowed to be sign-changing and the appearance of nonlinear
term h, from

Iλ(u) = Iλ(u)− 1
4
〈I ′λ(u), u〉

=
1
4
‖u‖2λ −

λ

4

∫
R3
V −(x)u2 dx+

1
4

∫
R3
K(x)φ2

uu
2 dx

+
∫

R3
F(x, u) dx− 3

4

∫
R3
hu dx,

we cannot deduce that Iλ(u) ≥ 0. We consider two possibilities:
(i) Iλ(u) < 0;
(ii) Iλ(u) ≥ 0.

If Iλ(u) < 0, then u 6= 0 is nontrivial and the proof is done. If Iλ(u) ≥ 0, following
the argument in the proof of Lemma 2.9 step by step, we can get un → u in Eλ.
Indeed, by (A1) and wn → 0 in L2({x ∈ R3 : V (x) < b}), we obtain∣∣∣ ∫

R3
V −(x)w2

n(x) dx
∣∣∣ ≤ |V −|∞ ∫

suppV −
w2
n dx = o(1),

which jointly this with (2.26) and Proposition 2.4 (i), we have∫
R3
F(x,wn) dx

= Iλ(wn)− 1
4
〈I ′λ(wn), wn〉 −

1
4
‖wn‖2λ

+
1
4

∫
R3
λV −(x)w2

n dx−
1
4

∫
R3
K(x)φ2

wnw
2
n dx+

3
4

∫
R3
hwn dx

≤ c− Iλ(u) + o(1) ≤M + o(1).

It follows that (2.23), (2.24) and (2.25) remain valid. Therefore un → u in Eλ and
Iλ(u) = c(> 0). The proof is complete. �
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3. Proofs of main results

If V is sign-changing, we first verify that the functional Iλ has the linking geom-
etry to apply the following linking theorem [23].

Proposition 3.1. Let E = E1 ⊕ E2 be a Banach space with dimE2 < ∞, Φ ∈
C1(E,R3). If there exist R > ρ > 0, α > 0 and e0 ∈ E1 such that

α := inf Φ(E1 ∩ Sρ) > sup Φ(∂Q)

where Sρ = {u ∈ E : ‖u‖ = ρ}, Q = {u = v + te0 : v ∈ E2, t ≥ 0, ‖u‖ ≤ R}. Then
Φ has a (PS)c sequence with c ∈ [α, sup Φ(Q)].

In our paper, we use Proposition 3.1 with E1 = E+
λ ⊕ Fλ and E2 = E−λ . By

Proposition 2.2, µj(λ) → 0 as λ → ∞ for every fixed j. By Remark 2.3, there is
Λ1 > 0 such that E−λ 6= ∅ and E−λ is finite dimensional for λ > Λ1. Now we can
investigate the linking structure of the functional Iλ.

Lemma 3.2. Assume that (A1)–(A2), (A8), (A9) and (1.4) with p ∈ (4, 2∗) are
satisfied. Then, for each λ > Λ1 (the constant given in Remark 2.3), there exist
αλ, ρλ and ηλ > 0 such that

Iλ(u) ≥ αλ for all u ∈ E+
λ ⊕ Fλ with ‖u‖λ = ρλ and |h|2 < ηλ. (3.1)

Furthermore, if V ≥ 0, we can choose α, ρ, η > 0 independent of λ.

Proof. For any u ∈ E+
λ ⊕ Fλ, writing u = u1 + u2 with u1 ∈ E+

λ and u2 ∈ Fλ.
Clearly, (u1, u2)λ = 0, and∫

R3
(|∇u|2 + λV (x)u2) dx =

∫
R3

(|∇u1|2 + λV (x)u2
1) dx+ ‖u2‖2λ. (3.2)

By Proposition 2.1, we obtain that µj(λ)→ +∞ as j → +∞ for each fixed λ > Λ1.
So there is a positive integer nλ such that µj(λ) ≤ 1 for j ≤ nλ and µj(λ) > 1 for
j > nλ + 1. For u1 ∈ E+

λ , we set u1 = Σ∞j=nλ+1µj(λ)ej(λ). Thus∫
R3

(|∇u1|2 + λV (x)u2
1) dx = ‖u1‖2λ −

∫
R3
λV −(x)u2

1 dx

≥
(

1− 1
µnλ+1(λ)

)
‖u1‖2λ.

(3.3)

By using (2.1), (3.2), (3.3) and −ω ≤ φu ≤ 0 on the set {x ∈ R3|u(x) 6= 0}, we
have

Iλ(u) ≥ 1
2

(
1− 1

µnλ+1(λ)

)
‖u‖2λ − ε|u|22 − Cε|u|pp − |h|2|u|2

≥ 1
2

(
1− 1

µnλ+1(λ)

)
‖u‖2λ − εd2

2‖u‖2λ − Cεdpp‖u‖
p
λ − d2|h|2‖u‖λ

≥ ‖u‖λ
{[1

2

(
1− 1

µnλ+1(λ)

)
− εd2

2

]
‖u‖λ − Cεdpp‖u‖

p−1
λ − d2|h|2

}
.

Let g(t) = [ 1
2 (1− 1

µnλ+1(λ) − εd
2
2]t− Cεdpptp−1, for t > 0, p ∈ (4, 6) there exists

ρ(λ) =
[ 1

2 (1− 1
µnλ+1(λ) )− εd2

2

Cεd
p
p(p− 1)

] 1
p−2
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such that maxt≥0 g(t) = g(ρ(λ)) > 0. From above inequality, Iλ(u) |‖u‖λ=ρ(λ)> 0
for all |h|2 < ηλ := g(ρ(λ))

2d2
. Of course, ρ(λ) can be chosen small enough, we can

obtain the same result: there exists αλ > 0, such that Iλ(u) ≥ αλ, here ‖u‖λ = ρλ.
If V ≥ 0, since Eλ = Fλ, and∫

R3
(|∇u|2 + λV (x)u2) dx = ‖u‖2λ,

we can choose α, ρ, η > 0 (independent of λ) such that (3.1) holds. �

Lemma 3.3. Suppose that (A1), (A2), (A4), (A5), (A8), (A9) are satisfied. Then,
for any finite dimensional subspace Ẽλ ⊂ Eλ, it holds

Iλ(u)→ −∞ as ‖u‖λ →∞, u ∈ Ẽλ.

Proof. Arguing indirectly, we can assume that there is a sequence (un) ⊂ Ẽλ with
‖un‖λ →∞ such that

−∞ < inf
n
Iλ(un). (3.4)

Take vn := un/‖un‖λ. Since dim Ẽλ < +∞, there exists v ∈ Ẽλ \ {0} such that

vn → v in Ẽλ, vn(x)→ v(x) a.e. x ∈ R3

after passing to a subsequence. If v(x) 6= 0, then |un(x)| → +∞ as n → ∞, and
hence by (A5), we obtain that

F (x, un(x))
u4
n(x)

v4
n(x)→ +∞ as n→∞,

which jointly this with (A4), (2.3), Proposition 2.4 (ii) and Fatou’s lemma, we
obtain

Iλ(un)
‖un‖4λ

≤ 1
2‖un‖2λ

+
C4ω

2
|K|∞ −

∫
R3

F (x, un)
‖un‖4λ

dx−
∫

R3
h(x)

un
‖un‖4λ

dx

≤ 1
2‖un‖2λ

+
C4ω

2
|K|∞ −

(∫
v=0

+
∫
v 6=0

)F (x, un)
u4
n

v4
n dx+

|h|2d2

‖un‖3λ

≤ 1
2‖un‖2λ

+
C4ω

2
|K|∞ −

∫
v 6=0

F (x, un)
u4
n

v4
n dx+

|h|2d2

‖un‖3λ
→ −∞.

This contradicts (3.4). �

Lemma 3.4. Suppose that (A1), (A2), (A4), (A5) (A8), (A9) and are satisfied.
If V (x) < 0 for some x, then for each k ∈ N, there exist λk > k, bk > 0, wk ∈
E+
λk
⊕ Fλk , Rλk > ρλk (ρλk is the constant given in Lemma 3.2), and ηk > 0 such

that, for |h|2 < ηk, |K|∞ < bk(or|K|3 < bk),
(a) sup Iλk(∂Qk) ≤ 0;
(b) sup Iλk(Qk) is bounded above by a constant independent of λk,

where Qk := {u = v + twk : v ∈ E−λk , t ≥ 0, ‖u‖λk ≤ Rλk}.

Proof. We adapt an argument from Ding and Szulkin [19]. For each k ∈ N, since
µj(k)→ +∞ as j →∞, there exists jk ∈ N such that µjk(k) > 1. By Proposition
2.2, there exists λk > k such that

1 < µjk(λk) < 1 +
1
λk
.
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Taking wk := ejk(λk) be an eigenfunction of µjk(λk), then wk ∈ E+
λk

as µjk(λk) > 1.
Because dimE−λk ⊕ Rwk < +∞, it follows directly from Lemma 3.3 that (a) holds
with Rλk > 0 large enough.

According to (A5), for each η̃ > |V −|∞, there is rη̃ > 0 such that F (x, t) ≥ 1
2 η̃t

2

if |t| ≥ rη̃. For u = v + w ∈ E−λk ⊕ Rwk, we have∫
R3
V −(x)u2 dx =

∫
R3
V −(x)v2 dx+

∫
R3
V −(x)w2 dx

by the orthogonality of E−λk and Rwk. Therefore, by Proposition 2.4 (ii), we obtain

Iλk(u) ≤ 1
2

∫
R3

(
|∇w|2 + λkV (x)w2

)
dx− 1

2

∫
R3
K(x)ωφuu2 dx

−
∫

suppV −
F (x, u) dx−

∫
R3
hu dx

≤ 1
2

[µjk(λk)− 1]λk
∫

R3
V −(x)w2 dx− 1

2

∫
suppV −

η̃u2 dx

+
C4ω

2
|K|∞‖u‖4λk + d2|h|2‖u‖λk −

∫
suppV −,|u|≤rη̃

(
F (x, u)− 1

2
η̃u2
)
dx

≤ 1
2

∫
R3
V −(x)w2 dx− η̃

2|V −|∞

∫
R3
V −(x)w2 dx+ Cη̃ +

C4ω

2
|K|2∞R4

λk

+ d2|h|2Rλk
≤ Cη̃ + 1

for u = v + w ∈ E−λk ⊕ Rwk with ‖u‖λk ≤ Rλk , |K|∞ < bk := (C4ωR
4
λk

)−1/2, C4

is defined in Proposition 2.4 (iii) and |h|2 < ηk := 1
2d2Rλk

, where Cη̃ depends on η̃

but not λk.
If K ∈ L3(R3), by the Hölder inequality, we obtain that∣∣ ∫

R3
K(x)ωφuu2 dx

∣∣ ≤ ω|K|3|φu|6|u|24
≤ ω|K|3S̄−1‖φu‖Dd2

4‖u‖2λ
≤ C1|K|3‖u‖4λ
≤ C1|K|3R4

λk
.

for |K|3 < bk := (C1R
4
λk

)−1. �

Lemma 3.5. Suppose that (A1), (A2), (A4), (A5) (A8), (A9) are satisfied. If
Ω := intV −1(0) is nonempty, then, for each λ > Λ1 (is the constant given in
Remark 2.3), there exist w ∈ E+

λ ⊕ Fλ, Rλ > 0, bλ > 0 and ηλ > 0 such that for
|h|2 < ηλ, |K|∞ < bλor(|K|3 < bλ),

(a) sup Iλ(∂Q) ≤ 0;
(b) sup Iλ(Q) is bounded above by a constant independent of λ,

where Q := {u = v + tw : v ∈ E−λ , t ≥ 0, ‖u‖λ ≤ Rλ}.

Proof. Choose e0 ∈ C∞0 (Ω) \ {0}, then e0 ∈ Fλ. By Lemma 3.3, there is Rλ > 0
large such that Iλ(u) ≤ 0 where u ∈ E−λ ⊕ Re0 and ‖u‖λ ≥ Rλ.



18 LIXIA WANG, SHANGJIE CHEN EJDE-2018/124

For u = v + w ∈ E−λ ⊕ Re0, we have

Iλ(u) ≤ 1
2

∫
R3
|∇w|2 dx− 1

2

∫
R3
K(x)ωφuu2 dx−

∫
Ω

F (x, u) dx−
∫

R3
hu dx

≤ 1
2

∫
R3
|∇w|2 dx− η̃

2

∫
Ω

u2 dx−
∫

Ω,|u|≤rη̃

(
F (x, u)− η̃

2
u2
)
dx

+
C4ω

2
|K|∞‖u‖4λ + |h|2d2‖u‖λ

≤ 1
2

∫
R3
|∇w|2 dx− η̃

2

∫
Ω

u2 dx+ Cη̃ +
C4ω

2
|K|2∞‖u‖4λ + |h|2d2‖u‖λ.

(3.5)

Observing that w ∈ C∞0 (Ω), we have∫
R3
|∇w|2 dx =

∫
Ω

(−∆w)u dx ≤ |∆w|2|u|2,Ω

≤ c0|∇w|2|u|2,Ω ≤
c20
2η̃
|∇w|22 +

η̃

2
|u|22,Ω,

(3.6)

where c0 is a constant depending on e0. Choosing η̃ > c20, we have |∇w|22 ≤ η̃|u|22,Ω,
and it follows from (3.5) that

Iλ(u) ≤ Cη̃ +
C4ω

2
|K|∞R4

λ + |h|2d2Rλ ≤ Cη̃ + 1

for all u ∈ E−λ ⊕ Re0 with ‖u‖λ ≤ Rλ, |h|2 < ηλ := 1
2d2Rλ

and |K|∞ < bλ :=
(C4ωR

4
λ)−1/2, where Cη̃ depends on η̃ but not λ.

If K ∈ L3(R3), by the Hölder inequality, obtain∣∣ ∫
R3
K(x)ωφuu2 dx

∣∣ ≤ ω|K|3|φu|6|u|24 ≤ ω|K|3S̄−1‖φu‖Dd2
4‖u‖2λ

≤ C1|K|3‖u‖4λ ≤ C1|K|3R4
λ.

for |K|3 < bλ := S̄(C1d
2
4ωR

4
λ)−1. �

Now we are in a position to prove our main results.

Proof of Theorem 1.3. It is divided into two steps.
Step 1 There exists a function uλ ∈ Eλ such that I ′λ(uλ) = 0 and Iλ(uλ) < 0.
Since h ∈ L2(R3) and h ≥ 0(6≡ 0), we can choose a function ψ ∈ Eλ such that∫

R3
h(x)ψ(x) dx > 0.

Hence, by −ω ≤ φu ≤ 0 we obtain

Iλ(tψ) =
t2

2
‖ψ‖2λ −

λt2

2

∫
R3
V −(x)ψ2 dx− 1

2

∫
R3
K(x)ωφtψ(tψ)2 dx

−
∫

R3
F (x, tψ) dx− t

∫
R3
h(x)ψ dx

≤ t2

2
‖ψ‖2λ +

t2

2

∫
R3
ω2ψ2 dx+

t4

4
C1‖ψ‖4λ − t

∫
R3
h(x)ψ dx

< 0 for t > 0 small enough.

Thus, there exists uλ small enough such that Iλ(uλ) < 0. By Lemma 3.3, we have

c0,λ = inf{Iλ(u) : u ∈ Bρλ} < 0,
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where ρλ > 0 is given by Lemma 3.2, Bρλ = {u ∈ Eλ : ‖u‖λ < ρλ}. By the
Ekeland’s variational principle, there exists a minimizing sequence {un,λ} ⊂ Bρλ
such that

c0,λ ≤ Iλ(un,λ) < c0,λ +
1
nλ
,

Iλ(wλ) ≥ Iλ(un,λ)− 1
nλ
‖wλ − un,λ‖λ

for all wλ ∈ Bρλ . Therefore, {un,λ} is a bounded Palais-Smale sequence of Iλ.
Then, by a standard procedure, Lemmas 2.8 and 2.9 imply that there is a function
uλ ∈ Eλ such that I ′λ(uλ) = 0 and Iλ(uλ) = c0,λ < 0.

If V ≥ 0, we can show that ρλ, c0,λ, u0,λ are independent of λ.

Step 2 There exists a function ũλ ∈ Eλ such that I ′λ(ũλ) = 0 and Iλ(ũλ) > 0.
It follows from Lemmas 3.2, 3.4 and Proposition 3.1 that, for each k ∈ N, λ = λk
and |h|2 < ηk, Iλk has a (PS)c sequence with c ∈ [αλk , sup Iλk(Qk)]. Setting
M := sup Iλk(Qk), then Iλk has a nontrivial critical point according to Lemmas
2.7, 2.10 and Proposition 3.1. Hence there exists a function ũλ ∈ Eλ such that
I ′λ(ũλ) = 0 and Iλ(ũλ) = c ≥ αλk > 0. The proof is complete. �

Proof of Theorem 1.4. The first solution is similar to the first solution of Theo-
rem 1.3. The second solution follows from Lemmas 2.7, 2.10, 3.2 and 3.5, and
Proposition 3.1. The proof is complete. �

Proof of Theorem 1.5. It is divided into two steps.

Step 1 There exists a function u0 ∈ Eλ such that I ′λ(u0) = 0 and Iλ(u0) < 0. In the
proof of Theorem 1.3, we can choose c0 = c0,λ, Bρ = Bρ,λ, then by the Ekeland’s
variational principle, there exists a sequence {un} ⊂ Bρ such that

c0 ≤ Iλ(un) < c0 +
1
n
,

Iλ(w) ≥ Iλ(un)− 1
n
‖w − un‖λ

for all w ∈ Bρ. Then by a standard procedure, we can show that {un} is a bounded
Palais-Smale sequence of Iλ. Therefore Lemmas 2.8 and 2.9 imply that there exists
a function u0 ∈ Eλ such that I ′λ(u0) = 0 and Iλ(u0) = c0 < 0.

Step 2 There exists a function ũλ ∈ Eλ such that I ′λ(ũλ) = 0 and Iλ(ũλ) > 0. Since
we suppose V ≥ 0, the functional Iλ has mountain pass geometry and the existence
of nontrivial solutions can be obtained by mountain pass theorem [23, 27, 34].
Indeed, by Lemma 3.2, there exist constants α, ρ, η > 0 (independent of λ) such
that, for each λ > Λ0,

Iλ(u) ≥ α for u ∈ Eλ with ‖u‖λ = ρ and |h|2 < η.

Take e ∈ C∞0 (Ω) \ {0}, by (A4), (A5) and Fatou’s lemma, we obtain

Iλ(te)
t4

≤ 1
2t2

∫
Ω

|∇e|2 dx− 1
2t2

∫
Ω

K(x)ω2e2 dx−
∫
{x∈Ω:e(x)6=0}

F (x, te)
(te)4

e4 dx

− t−3

∫
Ω

he dx→ −∞
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as t → +∞, which yields that Iλ(te) < 0 for t > 0 large. Clearly, there is C > 0
(independent of λ) such that

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) ≤ sup
t≥0

Iλ(te0) ≤ C

where Γ = {γ ∈ C([0, 1], Eλ) : γ(0) = 0, ‖γ(1)‖λ ≥ ρ, Iλ(γ(1)) < 0}. By the
Mountain pass theorem and Lemma 2.9, we obtain a nontrivial critical point ũλ of
Iλ with Iλ(ũλ) ∈ [α,C] for λ large. The proof is complete. �
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