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Abstract. We present a construction of the Jacobi-Maupertuis (JM) princi-

ple for an equation of the Liénard type,

ẍ + f(x)ẋ2 + g(x) = 0,

using Jacobi’s last multiplier. The JM metric allows us to reformulate the

Newtonian equation of motion for a variable mass as a geodesic equation for
a Riemannian metric. We illustrate the procedure with examples of Painlevé-

Gambier XXI, the Jacobi equation and the Henon-Heiles system.

1. Introduction

Nonlinear differential equations of the Liénard type occupy a special place in
the study of dynamical systems as they serve to model various physical, chemical
and biological processes. The standard Liénard equation involves a dissipative term
depending linearly on the velocity. However there are practical problems in which
higher order dependance on velocities are appropriate. Such equations have the
generic form ẍ + f(x)ẋ2 + g(x) = 0. It is interesting to note that equations of
this type naturally arise in Newtonian dynamics when the mass, instead of being a
constant, is allowed to vary with the position coordinate – the so called position de-
pendent mass (PDM) scenario. Recently it has been shown [11, 1] that an inhomo-
geneous compactification of the extra dimension of a five-dimensional Kaluza-Klein
metric has been shown to generate a PDM in the corresponding four-dimensional
system. But this method yields a very special class of PDM Hamiltonian which di-
rectly related to the solution of the Lioville equation. In a related project Cariñena
et al [2] formulated a method that starts with the study of the existence of Killing
vector fields for the PDM geodesic motion and the construction of the associated
Noether momenta.

There is also an alternative mechanism in which this dependance on a mass func-
tion manifests itself in the context of differential systems, namely through Jacobi’s
last multiplier (JLM). The JLM originally arose in the problem of reducing a sys-
tem of first-order ordinary differential equations to quadrature and has a long and
chequered history. In recent years its role in the context of the inverse problem of
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dynamical systems has led to a revival of interest in the JLM. In this brief note we
examine the connection between the JLM and the principle of least action within
the framework of a Liénard type differential equation with a quadratic dependance
on the velocity.

It is known that the Liénard type equation is connected to the Painlevé-Gambier
equations [8, 9]. So it is natural for us to ask whether we can reformulate the sub-
class of the Painlevé-Gambier family as geodesic equations for a Riemannian metric
using the Jacobi-Maupertuis principle. There are several choices for a Riemannian
manifold and metric tensor: a space-time configuration manifold and the Eisen-
hart metric (for example, [4, 5, 6, 14], a configuration manifold and the Jacobi-
Maupertuis metric [12, 13]. In this paper we choose a configuration space of an
analyzed system for a Riemannian manifold. The crux of the matter is that the
Hamiltonian or energy function provided by the JLM should remain constant for
these equations. In [3], geometrical theory for the mechanics of a position-dependent
mass particle is developed using proper generalization of Euler-Maupertuis’ theory
and generalized Jacobi’s principle. In this paper we generalize this to Liénard type
equation and show that these are equivalent to the geodesic equations for the JM
metric. We illustrate our construction with some interesting examples.

Main Result. Let V be a Hamiltonian vector field of the Liénard type equation
ẍ+f(x)ẋ2+g(x) = 0 in R2 with Hamiltonian H = 1

2M(x)ẋ2+U(x), where M(x) =
exp(2

∫ x
f(s)ds) and U(x) =

∫ x
M(s)g(s)ds. Then by Maupertuis principle, V

coincides with the trajectories of the modified vector field V ′ on the fixed isoenergy
level H(x, ẋ) = E for the Hamiltonian H̃ = 1

2(E−U(x))M(x)ẋ2. This defines a
geodesic flow of some Riemannian metric given by Jacobi. In other words, solutions
to the Liénard type equation with energy E are, after reparametrization, geodesics
for the Jacobi-Maupertuis metric.

A corollary of the main result shows that we can reformulate the Newtonian
equation of motion for a variable mass, Painlevé-Gambier XXI equation, the Ja-
cobi equation and Henon-Heiles system in terms of geodesic flows of the Jacobi-
Maupertuis metric.

The outline of this article is as follows: in section 2 we introduce the Jacobi Last
Multiplier and point out its connection to the Lagrangian of a second-order ODE.
Thereafter we explicitly derive the Lagrangian and the Hamiltonian functions for
a Liénard equation of the second kind, i.e., with a quadratic dependance on the
velocity and highlight the role of the position dependant mass term. In section 3 we
express the equation in terms of geodesic flows of the Jacobi-Maupertuis metric and
some observations regarding the geometric consequences of the PDM are outlined.
Explicit examples from the Painlevé-Gambier family of equations are considered
along with the two-dimensional Henon-Heiles system.

2. Lagrangians and the Jacobi last multiplier

Let M = M(x1, . . . , xn) be a non-negative C1 function non-identically vanishing
on any open subset of Rn, then M is a Jacobi multiplier of the vector field X =
W i ∂

∂xi if ∫
D

M(x1, . . . , xn)dx1 . . . dxn =
∫
φt(D)

M(x1, . . . , xn)dx1 . . . dxn (2.1)
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where D is any open subset of Rn and φt(·) is the flow generated by the solution
x = x(t) of the system

dxi

dt
= W i(x1, . . . , xn) i = 1, . . . , n. (2.2)

Thus the Jacobi multiplier can be viewed as the density associated with the invari-
ant measure

∫
D
Mdx. The divergence free condition is

dM

dt
+
∂W i

∂xi
M = 0. (2.3)

The appellation ‘last’ is a historical legacy. If a Jacobi multiplier is known together
with (n − 2) first integrals, we can reduce locally the n dimensional system to a
two-dimensional vector field on the intersection of the (n − 2) level sets formed
by the first integrals. The existence of a Jacobi Last Multiplier [7] then implies
the existence of an extra first integral and the system may therefore be reduced to
quadrature.

For the second-order ODE

ẍ = F (x, ẋ, t) ⇒ ẋ = y, ẏ = F (x, y, t) (2.4)

we have
dM

dt
+
∂F

∂y
M = 0. (2.5)

On the other hand by expanding the Euler-Lagrange equation of motion
∂L

∂x
− d

dt

(∂L
∂ẋ

)
= 0, (2.6)

we have
∂L

∂x
= ẏ
(∂2L

∂ẋ2

)
+ ẋ

∂

∂x

(∂L
∂ẋ

)
= ẏ
(∂2L

∂ẋ2

)
+ y

∂

∂ẋ

(∂L
∂x

)
.

Differentiating it with respect to, ẋ = y, gives

∂

∂ẋ

(∂L
∂x

)
=
∂ẏ

∂y

(∂2L

∂ẋ2

)
+ ẏ
(∂3L

∂ẋ3

)
+

∂

∂ẋ

(∂L
∂x

)
+ y

∂2

∂ẋ2

(∂L
∂x

)
,

implies
∂F

∂y

(∂2L

∂ẋ2

)
+
[
ẏ
∂

∂ẋ

(∂2L

∂ẋ2

)
+ y

∂

∂x

(∂2L

∂ẋ2

)]
= 0.

Therefore
d

dt

(∂2L

∂ẋ2

)
+
(∂F
∂y

)(∂2L

∂ẋ2

)
= 0. (2.7)

Thus, by comparing (2.7) to (2.5), we may identify the JLM as follows:

M =
∂2L

∂ẋ2
. (2.8)

Given a JLM we can easily integrate (2.8) twice to obtain

L(x, ẋ, t) =
∫ ẋ (∫ y

Mdz
)
dy +R(x, t)ẋ+ S(x, t). (2.9)

where R and S are functions arising from integration. To determine these functions
we substitute the Lagrangian of (2.9) into the Euler-Lagrange equation of motion
(2.6) and compare the resulting equation with the given ODE (2.4).

Consider now a Liénard equation of the second kind,

ẍ+ f(x)ẋ2 + g(x) = 0, (2.10)
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where f and g are defined in a neighbourhood of 0 ∈ R. We assume that g(0) = 0,
which says that O is a critical point, and xg(x) > 0 in a punctured neighbourhood
of 0 ∈ R, which ensures that the origin is a centre.

Proposition 2.1. A Liénard equation of the second kind, ẍ+ f(x)ẋ2 + g(x) = 0,
admits a Hamiltonian of the form H = 1/2M(x)ẋ2 + U(x) which is a constant of
motion where M(x) is the Jacobi last multiplier and U(x) is a potential function.

Proof. From the definition (2.5) of the last multiplier it follows that for the equation
under consideration

M(x) = exp(2F (x)) where F (x) =
∫ x

f(s)ds. (2.11)

Consequently by (2.9), we have

L =
1
2
M(x)ẋ2 +R(x, t)ẋ+ S(x, t). (2.12)

From the Euler-Lagrange equation one finds that the functions R and S must satisfy

Sx −Rt = −M(x)g(x)

This gives us the freedom to set S = Gt−U(x) and R = Gx for some gauge function
G, so that there exists a potential function U(x) given by

U(x) =
∫ x

M(s)g(s)ds. (2.13)

The Lagrangian then has the form

L =
1
2
M(x)ẋ2 − U(x) +

dG

dt
. (2.14)

Clearly the total derivative term may be ignored and by means of the standard
Legendre transformation the Hamiltonian is given by

H =
1
2
M(x)ẋ2 + U(x). (2.15)

It is now straight forward to verify that dH/dt = 0 so that H = E(say) is a constant
of motion. This completes the proof. �

From (2.15) it is evident that the JLM, M(x), plays the role of a variable mass
term. We can reduce the differential system to a unit mass problem by defining a
transformation x −→ X =

∫ x
0

√
M(s)ds = ψ(x) whence

1
2
Ẋ2 +

∫ ψ−1(X)

0

M(s)g(s)ds = E. (2.16)

In terms of X the equation of motion is given by

Ẍ + eF (ψ−1(X))g(ψ−1(X)) = 0. (2.17)

We now proceed to cover some fundamentals regarding the Jacobi metric, and
deduce it for the Liénard equation. We mainly follow the Nair et al formalism of
Jacobi-Maupertuis principle [12] and elaborate on it in the next section.
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3. Jacobi-Maupertuis metric and Liénard type equation

When the Hamiltonian is not explicitly time dependent, i.e., H = E0, a constant,
then the solutions may be restricted to the energy surface E = E0. Suppose Q is
a manifold with local coordinates x = {xi}, i = 1, . . . , n and x(τ) ∈ Q ⊆ Rn be
a curve with τ ∈ [0, T ]. Let TxQ and T ∗xQ be the tangent and cotangent spaces
with velocity ẋ(τ) ∈ TxQ ⊆ Rn and momenta p(τ) ∈ T ∗xQ ⊆ Rn. Denote by γ a
curve in the manifold Q parametrized by t ∈ [a, b] with γ(a) = x0 and γ(b) = xN .
The according to the Maupertuis principle among all the curves x(t) connecting
the two points x0 and xn parametrized such that H(x, p) = E0 the trajectory of
the Hamiltons equation of motion is an extremal of the integral of action∫

γ

pdx =
∫
γ

pẋdt =
∫
γ

∂L(t)
∂ẋ

ẋ(t)dt. (3.1)

Here L is assumed to be a regular Lagrangian L : TQ→ R where L = K − U and
the kinetic energy K : TQ→ R.

Proposition 3.1. Let the Hamiltonian H = K + U be a constant of motion i.e.,
H = E (say) with the kinetic energy K being a homogeneous quadratic function of
the velocities and U(x) is some potential function such that U(x) < E: then there
exists a Riemannian metric defined by ds̃ =

√
2(E − U(x))ds with K = 1/2(ds/dt)2

such that the trajectories are the geodesic equations corresponding to the Jacobi-
Maupertuis principle of least action.

Proof. Let ds2 be a Riemannian metric on the configuration space with kinetic
energy

K =
1
2
gij(x)ẋiẋj =

1
2

(
ds

dt

)2

. (3.2)

As the total energy is a constant E with potential U(x) < E the Hamiltonian
satisfies H = K + U = E. Because K is a homogeneous quadratic function hence
Euler theorem implies 2K = ẋi∂L/∂ẋi = (ds/dt)2. Therefore from (3.1) we have∫

γ

∂L(t)
∂ẋ

ẋ(t)dt =
∫
γ

2Kdt =
∫
γ

2K
ds√
2K

=
∫
γ

√
2Kds

=
∫
γ

√
2(E − U(x))ds =

∫
γ

ds̃,

where the Riemannian metric s̃ is defined by ds̃ =
√

2(E − U(x))ds. This shows
that it is possible to derive a metric which is given by the kinetic energy itself
[4] and the trajectories are geodesics in the metric ds̃. From (3.2) one finds ds =√
qijdxidxj and the Maupertuis principle involves solving for the stationary points

of the action
∫ √

2Kds, i.e.,

δ

∫ √
2Kds = 0 or δ

∫ √
2(E − U(x))gijdxidxj = 0, (3.3)

with the integral being over the generalized coordinates {xi} along all paths con-
necting γ(a) and γ(b).

It is evident from ds̃ =
√

2(E − U(x))gijdxidxj that

ds̃2 = g̃ijdx
idxj where g̃ij(x) = 2(E − U(x))gij(x). (3.4)
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The geodesic equation corresponding to the least action δ
∫ s2
s1
dt
√
g̃ij ẋiẋj = 0 is

given by

d2xi

ds̃2
+ Γijk

dxj

ds̃

dxj

ds̃
= 0, where Γijk =

1
2
g̃il
(∂g̃jl
∂xk

+
∂g̃kl
∂xj

− ∂g̃jk
∂xl

)
. (3.5)

This complete the proof. �

For an equation of the Liénard type (2.10), from Proposition (2.1) we have

K =
1
2
M(x)ẋ2 where M(x) = exp(2F (x))

so that g11(x) = M(x) while from the Jacobi-Maupertuis (JM) metric (3.4) we
observe that g̃11 = 2(E−U(x))M(x). The geodesic equation (3.5) therefore reduces
to

d2x

ds̃2
+ Γ1

11

(dx
ds̃

)2

= 0 with Γ1
11 =

M ′(x)
2M(x)

− U ′(x)
2(E − U(x))

,

or in explicit terms

d2x

ds̃2
+
(M ′(x)

2M(x)
− U ′(x)

2(E − U(x))

)(dx
ds̃

)2

= 0. (3.6)

Equation (3.6) gives the geodesic for the JM-metric of a Liénard equation of the
type (2.10).

Proposition 3.2. The geodesic equation (3.6) and (2.10) are equivalent.

Proof. From K = E − U(x) = 1/2M(x)ẋ2 we have

ẋ2 = 2(E − U(x))/M(x) (3.7)

and as ds̃2 = g̃11dx
2 = 2((E − U(x))M(x)dx2, it follows that

ds̃

dt
= 2(E − U(x)) ⇒ dx

dt
= 2(E − U(x))

dx

ds̃
. (3.8)

This enables us to obtain
d2x

ds̃2
=

1
2(E − U(x))

d

dt

{ 1
2(E − U(x))

dx

dt

}
=

1
4(E − U(x))2

[d2x

dt2
+

U ′(x)
(E − U(x))

ẋ2
] (3.9)

Consequently (3.6), taking (3.7) into account, assumes the form

1
4(E − U(x))2

[d2x

dt2
+

U ′(x)
(E − U(x))

ẋ2
]

=
[ U ′(x)

2(E − U(x))
− M ′(x)

2M(x)

] 1
4(E − U(x))2

ẋ2;

in other words we have
d2x

dt2
+
M ′(x)
2M(x)

ẋ2 +
U ′(x)

2(E − U(x))
ẋ2 = 0. (3.10)

However as ẋ2 = 2(E − U(x))/M(x) the last term of the above equation can be
expressed as U ′(x)/M(x) and as a result the equation has the appearance

d2x

dt2
+
M ′(x)
2M(x)

ẋ2 +
U ′(x)
M(x)

= 0. (3.11)

This equation reduces to (2.10) upon making the identificationsM(x) = exp(2F (x))
which implies M ′(x)/2M(x) = f(x) and U(x) =

∫ x
M(y)g(y)dy which implies
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U ′(x)/M(x) = g(x) where g(x) refers to the forcing term of the Liénard equation
(2.10). �

Remark 3.3. Finally it is interesting to note how (2.10) or equivalently (3.11)
may be viewed geometrically. To this end we write (3.11) as

d2x

dt2
+
M ′(x)
2M(x)

ẋ2 = −U
′(x)

M(x)
(3.12)

and look upon the right hand side as an external force function. Restricting our-
selves to the left hand side we consider a 1+1 dimensional line element of the form
ds2 = c2dt2−M(x)dx2 = c2dτ2 which yields the following geodesic equations for a
free particle moving in this spacetime, namely

d2x

dτ2
+
M ′(x)
2M(x)

(dx
dτ

)2

= 0,
d2t

dτ2
= 0.

These equations imply upon elimination of the proper time τ the left hand side of
(3.12)and the latter may be recast as

d

dt
(M(x)ẋ) =

M ′(x)
2

ẋ2.

Thus from a Newtonian perspective we see that the position dependent mass func-
tion M(x) changes the geometry of spacetime in a manner such that the particle
experiences an additional geometric force fG = M ′(x)ẋ2/2. However unlike the case
when the PDM is also a function of time [15] the curvature of spacetime is flat be-
cause as a result of the transformation dX =

√
M(x)dx one has ds2 = c2dt2−dX2

and the resulting geodesic equation of a free particle in this transformed spacetime
is just d2X

dt2 = 0 or

d

dt

(√
M(x)

dx

dt

)
= 0, or

1
2
M(x)ẋ2 = const.

which implies the conservation of the kinetic energy.

To complete this article we illustrate our results with a few examples.

Example 3.4. We consider the Painléve-Gambier XXI

ẍ− 3
4x
ẋ2 − 3x2 = 0,

for which we have F (x) = −3/4
∫
dx/x = −3/4 log |x| so that M(x) = |x|−3/2;

and as 2K = M(x)ẋ2 = g11(x)ẋ2 we have g11(x) = M(x) = |x|−3/2 while U(x) =∫ x
M(z)g(z)dz = ∓2x3/2 depending on whether x > 0 or x < 0. As a result we

find g̃11 = 2(E ± 2x3/2)|x|−3/2.

Example 3.5. We consider the Jacobi equation

ẍ+
1
2
φxẋ

2 + φtẋ+B(t, x) = 0,

for which we have M(x, t) = exp(φ(x, t)) = g11 and the Lagrangian

L =
1
2
eφẋ2 − U(x, t), where U(x, t) =

∫ x

eφ(y,t)B(y, t)dy .
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It canb be verified that the Hamiltonian is a constant of motion and g̃11 = 2(E −
U(x, t)) exp(φ(x, t)). The geodesic equation is

d2x

ds̃2
+ Γ1

11

(dx
ds̃

)2

= 0, with Γ1
11 =

φx
2
− Ux

2(E − U(x, t))
.

Example 3.6. We consider the Henon-Heiles system

ẍ = −(Ax+ 2αxy),

ÿ = −(By + αx2 − βy2)

which has has the Lagrangian

L(x, y, ẋ, ẏ) =
1
2

(ẋ2 + ẏ2)−
(A

2
x2 +

B

2
y2 + αx2y − β

3
y3
)
.

It is therefore easily seen that Mxx = Myy = 1 and it admits the first integral

I =
1
2

(ẋ2 + ẏ2) +
(A

2
x2 +

B

2
y2 + αx2y − β

3
y3
)
,

which is just the Hamiltonian of the system. Consequently we have g11 = Mxx = 1
and g22 = Myy = 1 while

g̃11 = 2(E − U(x, y)) = g̃22,

where

U(x, y) =
1
2

(ẋ2 + ẏ2)−
(A

2
x2 +

B

2
y2 + αx2y − β

3
y3
)

The geodesic equations have the form

d2x

ds̃2
− 1

2(E − U(x, y))

(
Ux

(dx
ds̃

)2

+ 2Uy
(dx
ds̃

)(dy
ds̃

)
+ Ux

(dy
ds̃

)2)
= 0,

d2y

ds̃2
− 1

2(E − U(x, y))

(
Uy

(dx
ds̃

)2

+ 2Ux
(dx
ds̃

)(dy
ds̃

)
+ Uy

(dy
ds̃

)2)
= 0

Conclusion. In this article, we studied the so called Liénard type equations, such
equations naturally appear in physical system such as position dependent mass
particles, and show these are equivalent to the geodesic equations for the Jacobi-
Maupertuis (JM) metric. We have illustrated our construction with some explicit
examples including The Painlevé-Gambier XXI, The Jacobi and the Henon-Heiles
system of equations.
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