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Abstract. In this article we study the existence of weak solutions for quasi-
linear parabolic system in divergence form with variable growth. By means of

Young measures, Galerkin’s approximation method and the theory of variable

exponents spaces, we obtain the existence of weak solutions.

1. Introduction and statement of main result

The spaces Lp(x)(Ω) andWm,p(x)(Ω) were first discussed by Kováčik and Rákosńık
in [24]. Lately, a lot of attention has been paid to the study of various mathemat-
ical problems with variable exponent growth conditions; see [9, 11, 12, 14, 16] for
the properties of such spaces, and [6, 15, 20] for applications of variable exponent
spaces on partial differential equations. The theory of variable exponent spaces
has been driven by various problems in nonlinear elastic mechanics, imaging pro-
cessing, electrorheological fluids and other physics phenomena; see for example
[1, 2, 3, 7, 27, 39].

When p(x) is a constant function, Norbert Hungerbühler studied the following
problem in [22]:

−div σ
(
x, u(x), Du(x)

)
= f, x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(1.1)

The classical monotone operator methods developed by [5, 25, 29, 36] cannot be
applied here. Norbert Hungerbühler obtain the existence of weak solutions for
(1.1) by Young measures which were proposed by Young in [38]. Many applications
and developments of Young measures to the calculus of variations, optimal con-
trol theory and nonlinear partial differential equations are presented by MacShane,
Gamkrelidze and Tarter in [21, 26, 35, 37]. Inspired by the works mentioned above,
results from [22] were extended in [18] to the case that σ satisfies variable growth
conditions, by Young measures generated by sequences in variable exponent spaces;
see [18, 19] for the basic theorems and properties.
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In this article, we consider the initial and boundary value problem for the quasi-
linear parabolic system:

∂u

∂t
− div σ

(
x, t,Du(x, t)

)
= −div f, (x, t) ∈ Q

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

u(x, 0) = u0(x), x ∈ Ω ,

(1.2)

where Ω ⊂ RN (N ≥ 2) is a bounded open domain, u : Ω × (0, T ) → Rm, 0 <
T <∞, Q = Ω× (0, T ), p(x) is Lipschitz continuous and 1 < p− := infx∈Ω̄ p(x) ≤
p(x) ≤ p+ := supx∈Ω̄ p(x) <∞, f ∈ Lp′(x)(Q; Mm×N ), u0 ∈ L2(Ω; Rm), σ satisfies
the conditions (H1)–(H3) below. Inspired by [8], we consider that p(x) only depends
x in this problem. The related definition and properties will be given in section 2.
In our paper, we denote by Mm×n the real vector space of m×n matrices equipped
with the inner product

M ◦N :=
∑

1≤i≤m, 1≤j≤n

MijNij .

Now we give conditions required for σ in (1.2).
(H1) (Continuity) σ : Ω× (0, T )×Mm×N →Mm×N is a Carathéodory function,

i.e. (x, t) 7→ σ(x, t, ξ) is measurable for every ξ ∈Mm×N and ξ 7→ σ(x, t, ξ)
is continuous for almost every (x, t) ∈ Q.

(H2) (Growth and coercivity) There exist c1 ≥ 0, c2 > 0, 0 < a ∈ Lp′(x)(Q), b ∈
L1(Q), such that

|σ(x, t, ξ)| ≤ a(x, t) + c1|ξ|p(x)−1,

σ(x, t, ξ) ◦ ξ ≥ −b(x, t) + c2|ξ|p(x).

(H3) (Monotonicity) σ satisfies one of the following conditions:
(i) For all (x, t) ∈ Q, ξ 7→ σ(x, t, ξ) is a C1-function and is monotone, i.e.
for all (x, t) ∈ Q and ξ, η ∈Mm×N , we have(

σ(x, t, ξ)− σ(x, t, η)
)
◦ (ξ − η) ≥ 0.

(ii) There exists a function W : Ω × (0, T ) × Mm×N → R such that
σ(x, t, ξ) = DξW (x, t, ξ), and ξ → W (x, t, ξ) is convex and C1 for all
(x, t) ∈ Q.
(iii) σ is strictly monotone, i.e. σ is monotone and

(
σ(x, t, ξ)− σ(x, t, η)

)
◦

(ξ − η) = 0 implies ξ = η.
(iv)∫

Q

∫
Mm×n

(
σ(x, t, λ)− σ(x, t, λ)

)
◦ (λ− λ) dν(x,t)(λ) dxdt > 0

where λ = 〈ν(x,t), I〉, ν = {ν(x,t)}(x,t)∈Q is any family of Young measures
generated by a bounded sequence in Lp(x)(Q) and not a Dirac measure for
a.e. (x, t) ∈ Q.

Our main result is as follows:

Theorem 1.1. If σ satisfies conditions (H1)–(H3), then problem (1.2) has a weak
solution for every f ∈ Lp(x)(Q; Mm×N ) and every u0 ∈ L2(Ω; Rm).
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Condition (H2) states the variable growth and coercivity condition. (H3)(iv) is
weaker than typical strictly monotone condition, even than the p-quasimonotone
condition introduced by Norbert Hungerbühler in [22] when p(x) is a constant.

This article is organized as the following: In Section 2, several important prop-
erties on variable exponent spaces and the theory of Young measures will be pre-
sented. In Section 3, we will give the Galerkin approximation and necessary priori
estimates. In section 4, the existence of weak solutions for problem (1.2) will be
proved; the conclusions will be given in section 5.

2. Preliminaries

In this section, we recall some facts on variable exponent spaces Lp(x)(Ω) and
W k,p(x)(Ω).

Let P(Ω) be the set of all Lebesgue measurable functions p : Ω→ [1,+∞), where
Ω ⊂ Rn(n ≥ 2) is a nonempty open subset. Denote

ρp(x)(u) =
∫

Ω

|u(x)|p(x)dx, (2.1)

‖u‖p(x) = inf{t > 0 : ρp(x)(
u

t
) ≤ 1}. (2.2)

The variable exponent Lebesgue space Lp(x)(Ω) is the class of all functions u such
that ρp(x)(t0u) <∞ for some t0 > 0. Lp(x)(Ω) is a Banach space endowed with the
norm (2.2). (2.1) is called the modular of u in Lp(x)(Ω).

For a given p(x) ∈ P(Ω), we define the conjugate function p′(x) as

p′(x) =

{
∞, if x ∈ Ω1 = {x ∈ Ω : p(x) = 1};
p(x)
p(x)−1 , for other x ∈ Ω.

Lemma 2.1 ([9]). Let p ∈ P(Ω), then∫
Ω

|u(x) · v(x)|dx ≤ 2‖u‖p(x)‖v‖p′(x)

for every u ∈ Lp(x)(Ω) and every v ∈ Lp′(x)(Ω).

In the rest of this section, for every p ∈ P(Ω), we assume that 1 ≤ p− ≤ p(x) ≤
p+ <∞.

Lemma 2.2 ([16]). For every u ∈ Lp(x)(Ω), we have:
(1) If ‖u‖p(x) ≥ 1, then ‖u‖p−p(x) ≤ ρp(x)(u) ≤ ‖u‖p+p(x).
(2) If ‖u‖p(x) < 1, then ‖u‖p+p(x) ≤ ρp(x)(u) ≤ ‖u‖p−p(x).

Lemma 2.3 ([16]). If p− > 1, Lp(x)(Ω) is reflexive, and the dual space of Lp(x)(Ω)
is Lp

′(x)(Ω).

Lemma 2.4 ([24]). Let |Ω| < ∞, where |Ω| denotes the Lebesgue measure of Ω,
p1(x), p2(x) ∈ P(Ω), then a necessary and sufficient condition for Lp2(x)(Ω) ⊂
Lp1(x)(Ω) is that p1(x) ≤ p2(x) for almost every x ∈ Ω, and in this case the
embedding is continuous.

We assume that Ω ⊂ Rd is a bounded domain, (0, T ) ⊂ R, T is a fixed real
number, Q = Ω× (0, T ), p is a Lipschitz function. We define

X(Q) :=
{
u ∈ L2(Q)d : ∇u ∈ Lp(·,·)(Q)d×d, u(τ, ·) ∈ Vτ (Ω) a.e. τ ∈ (0, T )

}
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The norm on X(Q) is given by

‖u‖X(Q) := ‖u‖L2(Q)d + ‖∇u‖Lp(·,·)(Q)d×d

where for all τ ∈ (0, T ), we have

Vτ (Ω) :=
{
u ∈ L2(Ω)d ∩W 1,1

0 (Ω)d : ∇u ∈ Lp(τ,·)(Ω)d×d
}

The norm on Vτ (Ω) is defined by

‖u‖Vτ (Ω) := ‖u‖L2(Ω)d + ‖∇u‖Lp(τ,·)(Ω)d×d

Lemma 2.5 ([10]). The space X(Q) is a Banach space under the norm ‖ · ‖X(Q);
and C∞0 (Q) is density in X(Q).

Lemma 2.6 ([10]). The space X(Q) is reflexible.

Lemma 2.7 ([10]). The dual space X ′(Q) is isomorphic to the subspace of D′(Q)
consisting of distributions T of the form

‖T‖ := inf
{
‖g‖L2(Q)d + ‖G‖Lp(·,·)(Q)d×d : T = g − divG

}
,

where g ∈ L2(Q)d.

Lemma 2.8 ([4]). Let Ω ⊂ Rn be Lebesgue measurable (not necessarily bounded)
and zj : Ω → Rm, j = 1, 2, . . ., be a sequence of Lebesgue measurable functions.
Then there exists a subsequence zk and a family {νx}x∈Ω of nonnegative Radon
measures on Rn, such that

(i) ‖νx‖ :=
∫
dνx ≤ 1 for almost every x ∈ Ω.

(ii) ϕ(zk)⇀∗ ϕ̄ weakly* in L∞(Ω) for any ϕ ∈ C0(Rm), where ϕ̄(x) = 〈νx, ϕ〉
and C0(Rm) = {ϕ ∈ C(Rm) : lim|z|→∞ |ϕ(z)| = 0}.

(iii) If for any R > 0

lim
L→∞

sup
k∈N

meas{x ∈ Ω ∩B(0, R) : |zk(x)| ≥ L} = 0,

then ‖νx‖ = 1 for almost every x ∈ Ω, and for any measurable A ⊂ Ω there
holds ϕ(zk) ⇀ ϕ̄ = 〈νx, ϕ〉 weakly in L1(A) for continuous ϕ provided the
sequence ϕ(zk) is weakly precompact in L1(A).

Lemma 2.9 ([4]). If meas Ω < ∞ and νx is a Young measure generated by the
sequence {uj} , then uj converges by measures to u if and only if for a.e. x ∈ Ω
we have νx = δu(x).

Lemma 2.10 ([5]). Let {fj} be a uniformly boundedness in L1(Ω) ,

sup
j
‖fj‖L1(Ω) = C <∞.

There exists a subsequence, not relabled, a nonincreasing sequence of measurable
sets Ωn, Ωn+1 ⊂ Ωn, and f ∈ L1(Ω) such that

fj ⇀ f in L1(Ω \ Ωn)

for all n.

Lemma 2.11 ([5]). If {zj} is a sequence of measurable functions with associated
Young measure ν = {νx}x∈Ω,

lim inf
j→∞

∫
E

ψ
(
x, zj(x)

)
dx ≥

∫
E

∫
Rm

ψ(x, λ) dνx(λ) dx,

for every nonnegative, Carathéodory function ψ and every measurable subset E ⊂ Ω.
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The above theorem is obtained in [31] by proving a complicated lemma. We will
give a much easier proof by using the contradiction method.

Proof. Assume that

lim inf
j→∞

∫
E

ψ
(
x, zj(x)

)
dx <∞.

Then ψ(x, zj(x)) is a bounded sequence in L1(E). Let

ψ̄(x) =
∫

Rm
ψ(x, λ) dνx(λ).

By Lemmas 2.8 and 2.10, there exists En ⊂ Ω, En+1 ⊂ En, measEn → 0 as n→∞,
such that ∫

E\En
ψ
(
x, zj(x)

)
dx→

∫
E\En

ψ̄ dx (2.3)

as j →∞ for all n. On the other hand, it is apparent that∫
E\En

ψ̄ dx→
∫
E

ψ̄ dx

as n → ∞. Now we show the proof of our conclusion by contradiction. Assume
that

lim inf
j→∞

∫
E

ψ
(
x, zj(x)

)
dx <

∫
E

∫
Rm

ψ(x, λ) dνx(λ) dx.

Let

a :=
∫
E

∫
Rm

ψ(x, λ) dνx(λ) dx− lim inf
j→∞

∫
E

ψ
(
x, zj(x)

)
dx > 0.

Since limn→∞
∫
E\En ψ̄ dx =

∫
E
ψ̄ dx, for a > 0, there exist n0 which is large enough,

such that∫
E

ψ̄ dx−
∫
E\En0

ψ̄ dx < a =
∫
E

∫
Rm

ψ(x, λ) dνx(λ) dx− lim inf
j→∞

∫
E

ψ
(
x, zj(x)

)
dx.

Therefore ∫
E\En0

ψ̄ dx > lim inf
j→∞

∫
E

ψ
(
x, zj(x)

)
dx.

Combining this with (2.3) leads to a contradiction. �

Lemma 2.12 ([18]). If {uj} is bounded in Lp(x)(Ω,Rm), then {uj} can generate
Young measure νx satisfied that ‖νx‖ = 1 and there is a subsequence of {uj} weakly
convergent to

∫
Rm λ dνx(λ) in L1(Ω,Rm) .

3. Galerkin approximation and a priori estimates

Let

X :=
{
u ∈ L2(Q; Rm) : Du ∈ Lp(x)(Q; Mm×N ), u(·, τ) ∈ Vτ (Ω) a.e. τ ∈ (0, T )

}
,

where for τ ∈ (0, T ),

Vτ (Ω) :=
{
u ∈ L2(Ω; Rm) ∩W 1,1

0 (Ω; Rm) : Du(·, τ) ∈ Lp(x)(Ω; Mm×N )
}
.

The norm on X is defined by

‖u‖X := ‖u‖L2(Q;Rm) + ‖Du‖Lp(x)(Q;Mm×N ).
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According to Lemmas 2.5–2.7, it is easy to show that X is a Banach space and
C∞0 (Q; Rm) is dense in X. X ′ denotes the dual space of X. For all g ∈ X ′, u ∈ X,
there exists g0 ∈ L2(Q; Rm), g1 ∈ Lp

′(x)(Q; Mm×N ), such that

〈g, u〉 =
∫
Q

g0 · udxdt+
∫
Q

g1 ◦Dudxdt.

Based on the above notes, we will show the definition of weak solutions for (1.2).

Definition 3.1. A function u ∈ L∞(0, T ;L2(Ω))
⋂
X is called as the weak solution

of problem (1.2), if

−
∫
Q

u
∂ϕ

∂t
dxdt+

∫
Ω

u(x, t)ϕ(x, t) dx
∣∣∣T
0

+
∫
Q

σ(x, t,Du)◦Dϕdx dt =
∫
Q

f ◦Dϕdxdt

holds for all ϕ ∈ C1(0, T ;C∞0 (Ω)).

We choose an L2(Ω; Rm)-orthonormal base {ωj}∞j=1, such that

{ωj}∞j=1 ⊂ C∞0 (Ω; Rm), C∞0 (Ω; Rm) ⊂ ∪∞n=1Vn
C1(Ω̄;Rm)

.

Here Vn = span{ω1, ω2, . . . , ωn}.
Since f ∈ Lp′(x)(Q; Mm×N ) and C∞0 (Q; Mm×N ) is identity in Lp

′(x)(Q; Mm×N ),
there exists a sequence {fn} ⊂ C∞0 (Q; Mm×N ) such that

fn → f in Lp(x)(Q; Mm×N )

as n → ∞. For every u0 ∈ L2(Ω; Rm), there is a sequence {ψn}∞n=1, such that
ψn ∈ ∪∞n=1Vn and

ψn → u0 in L2(Ω; Rm)

as n→∞.

Definition 3.2. un ∈ C1(0, T ;Vn) is called by the Galerkin solution of problem
(1.2), if

−
∫
Qτ

∂un
∂t

φ dx dt+
∫
Qτ

σ(x, t,Dun) ◦Dφdxdt =
∫
Qτ

fn ◦Dφdxdt

holds for all τ ∈ (0, T ] and φ ∈ C1(0, T ;Vk)(k ≤ n), where Qτ = Ω× (0, τ).

Now we construct the Galerkin solution of problem (1.2). Define Pn(t, η) : [0, T ]×
Rn → Rn

(Pn(t, η))i =
∫

Ω

σ(x, t,
n∑
j=1

ηjDωj) ◦Dωi dx

where η = (η1, · · ·, ηn). Since σ is a Carathéodory function, Pn(t, η) is continuous
in t, η.

Consider the ordinary differential equation

η′(t) + Pn
(
t, η(t)

)
= Fn

η(0) = Un(0)
(3.1)

where

(Fn)i =
∫

Ω

fn ◦Dωi dx, (Un(0))i =
∫

Ω

ψn(x)ωi dx.
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From (3.1) we have η′η + Pn(t, η)η = Fnη. Furthermore,

Pn(t, η)η =
∫
Q

σ(x, t,
n∑
j=1

ηjDωj) ◦
n∑
i=1

ηiDωi dxdt

≥ −
∫
Q

b(x, t) dxdt+ c2

∫
Q

∣∣∣ n∑
i=1

ηiDωi

∣∣∣p(x)

dxdt ≥ C.

It is apparent that

η′η + C ≤ Fnη ≤
1
2
|Fn|2 +

1
2
|η(t)|2.

Consequently,
1
2
∂|η(t)|2

∂t
≤ 1

2
|Fn|2 +

1
2
|η(t)|2 + C

After integrating the both sides of this inequality , we obtain

|η(t)|2 ≤ Cn +
∫ T

0

|η(s)|2 ds

Then by Gronwall’s inequality, |η(t)| ≤ Cn(T ). Let

Mn = max
(t,η)∈[0,T ]×B(η(0),2Cn(T ))

|Fn − Pn(t, η)|,

Tn = min
{
T,

2Cn(T )
Mn

}
where B

(
η(0), 2Cn(T )

)
is a ball of radius 2Cn(T ) with the center at the point η(0)

in Rn.
By Peano’s theorem, (3.1) has a C1 solution on [0, Tn]. Let t1 = Tn and η(t1)

be a initial value, then we can repeat the above process and get a C1 solution on
[t1, t2], where t2 = t1 + Tn. Thus there is a interval [ti−1, ti−2] ⊂ [0, T ], such that
(3.1) admits a solution on [ti−1, ti−2], where ti = ti−1 +Tn, i = 1, 2, . . . , l−1, tl = T .
Moreover we can get a solution ηn(t) ∈ C1([0, T ]).

From the definition of Pn, it is easy to know that un(x, t) =
∑n
j=1

(
ηn(t)

)
j
ωj(x)

is the Galerkin solution of (1.2).
Now we study the boundedness and convergence of some function sequences.

Lemma 3.3. The sequence {un} is bounded in X, and {σ(x, t,Dun)} is bounded
in Lp

′(x)(Q; Mm×N ).

Proof. Let φ = un. By Definition 3.2, for every τ ∈ [0, T ], one has∫
Qτ

∂un
∂t

un dxdt+
∫
Qτ

σ(x, t,Dun) ◦Dun dxdt =
∫
Qτ

fn ◦Dun dxdt,

which is denoted as I + II = III. By integration and (H2),

I =
1
2
‖un(·, τ)‖2L2(Ω) −

1
2
‖un(·, 0)‖2L2(Ω)

and
II ≥ −

∫
Qτ

b(x, t) dxdt+ c2

∫
Qτ

|Dun|p(x) dxdt

Since fn ∈ Lp
′(x)(Q; Mm×N ), we have

III ≤ C‖fn‖Lp(x)(Qτ ;Mm×N )‖Dun‖Lp(x)(Qτ ;Mm×N )
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We know that un(x, 0) = ψn(x)→ u0 in L2(Ω) . As a result,∫
Ω

u2
n(x, 0) dx =

∫
Ω

|ψn(x)|2 dx ≤ C forall n.

Consequently,
1
2
‖un(·, τ)‖2L2(Ω) + c2

∫
Qτ

|Dun|p(x) dx dt

≤ 1
2
‖un(·, 0)‖2L2(Ω) + ‖b‖L1(Qτ )

+ C‖fn‖Lp′(x)(Qτ ;Mm×N )‖Dun‖Lp(x)(Qτ ;Mm×N )

≤ C + C‖Dun‖Lp(x)(Qτ ;Mm×N )

(3.2)

By Lemma 2.2, it follows that

‖Dun‖Lp(x)(Qτ ) ≤ max
{(∫

Qτ

|Dun|p(x) dx dt
)1/p−

,
(∫

Qτ

|Dun|p(x) dxdt
)1/p+}

.

If ‖Dun‖Lp(x)(Qτ ;Mm×N ) is unbounded, then
∫
Qτ
|Dun|p(x) dxdt is unbounded. This

contradict (3.2). Thus
‖Dun‖Lp(x)(Q;Mm×N ) ≤ C.

Moreover
‖un(·, τ)‖2L2(Ω) ≤ C (3.3)

Then we can get the conclusion that {un} is bounded in X. By Lemma 2.6, there is
a subsequence of {un} (also denoted by {un}) satisfying un ⇀ u in X, as n→∞.

Owing to (H2), we obtain∫
Q

|σ(x, t,Dun)|p
′(x) dxdt

≤ C
(∫

Q

|a(x, t)|p
′(x) dx dt+ c1

∫
Q

|Dun|p(x) dxdt
)
.

Since a ∈ Lp′(x)(Q) and ‖Dun‖Lp(x)(Q;Mm×N ) ≤ C, it follows that∫
Q

|σ(x, t,Dun)|p
′(x) dx dt ≤ C.

From Lemma 2.2 we have

‖σ(x, t,Dun)‖Lp′(x)(Q;Mm×N ) ≤ C. (3.4)

Then σ(x, t,Dun) ⇀ χ in Lp
′(x)(Q; Mm×N ) as n → ∞ (we can choose a proper

subsequence if necessary). �

Lemma 3.4. For function sequences {un} constructed above, we have

un(·, T ) ⇀ u(·, T ) inL2(Ω),

u(·, 0) = u0.

Proof. Thanks to (3.3), the sequence {un} is bounded in L∞
(
0, T ;L2(Ω)

)
. Thus

there exists a subsequence (also denoted by {un}) such that

un(·, T ) ⇀ z in L2(Ω)

as n → ∞. We will prove that z = u(·, T ), and u(·, 0) = u0. We denote u(·, T ) as
u(T ), and denote u(·, 0) as u(0).
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For every ψ ∈ C∞([0, T ]), v ∈ Vk, k ≤ n, we have∫ T

0

∫
Ω

∂tunvψ dxdt+
∫ T

0

∫
Ω

σ(x, t,Dun) ◦Dvψ dxdt =
∫ T

0

∫
Ω

fn ◦Dvψ dxdt.

After integrating, one gets∫
Ω

un(T )ψ(T )v dx−
∫

Ω

un(0)ψ(0)v dx

= −
∫ T

0

∫
Ω

σ(x, t,Dun) ◦Dvψ dxdt+
∫ T

0

∫
Ω

fn ◦Dvψ dxdt

+
∫ T

0

∫
Ω

unvψ
′ dx dt.

If n→∞, then∫
Ω

zψ(T )v dx−
∫

Ω

u0ψ(0)v dx

=
∫ T

0

∫
Ω

f ◦Dvψ dx dt−
∫ T

0

∫
Ω

χ ◦Dψv dx dt+
∫ T

0

∫
Ω

ψ′vudx dt.
(3.5)

Let ψ(0) = ψ(T ) = 0. Then∫ T

0

∫
Ω

f ◦Dvψ dxdt−
∫ T

0

∫
Ω

χ ◦Dψv dx = −
∫ T

0

∫
Ω

ψ′vudx =
∫ T

0

∫
Ω

ψvu′ dx.

Thus by (3.5), we can obtain∫
Ω

zψ(T )v dx−
∫

Ω

u0ψ(0)v dx =
∫ T

0

∫
Ω

ψvu′ dx+
∫ T

0

∫
Ω

ψ′vudx

=
∫

Ω

uψv dx
∣∣∣T
0

=
∫

Ω

u(T )ψ(T )v dx−
∫

Ω

u(0)ψ(0)v dx

Let k →∞, if we take ψ(T ) = 0 and ψ(0) = 1, then we have u(0) = u0; if we take
ψ(T ) = 1 and ψ(0) = 0, then we have u(T ) = z. �

4. Existence of weak solutions

The proof of Lemma 3.3 implies that {Dun} is bounded in Lp(x)(Q; Mm×N ). By
Lemma 2.12, {Dun} can generate a family of Young measures ν(x,t), and 〈ν(x,t), I〉 =
Du(x, t). By Lemmas 2.3 and 2.6, we can choose a proper subsequence if necessary
such that

un ⇀ u in X, n→∞,

Dun ⇀ Du in Lp(x)(Q; Mm×N ).

Lemma 4.1. Suppose that σ satisfies (H1)–(H3), then the Young measures ν(x,t)

generated by {Dun}, which is the gradient of Galerkin sequence {un} constructed
before, satisfy ∫

Q

∫
Mm×N

σ(x, t, λ) ◦ λ dν(x,t)(λ) dxdt

≤
∫
Q

∫
Mm×N

σ(x, t, λ) ◦Dudν(x,t)(λ) dxdt
(4.1)
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Proof. Consider the sequence

In :=
(
σ(x, t,Dun)− σ(x, t,Du)

)
◦ (Dun −Du)

= σ(x, t,Dun) ◦ (Dun −Du)− σ(x, t,Du) ◦ (Dun −Du)
=: In,1 + In,2

Assumption (H2) implies∫
Q

|σ(x, t,Du)|p
′(x) dx dt

≤ C
(∫

Q

|a(x, t)|p
′(x) dxdt+ c1

∫
Q

|Du|p(x) dx dt
)
.

Since Du ∈ Lp(x)(Q; Mm×N ), it follow that σ ∈ Lp′(x)(Q; Mm×N ). Because of the
weak convergence of {Dun}, we obtain In,2 → 0 as n→∞. It follows from Lemma
2.11 that

I := lim inf
n→∞

∫
Q

In dx dt

= lim inf
n→∞

∫
Q

In,1 dx dt

= lim inf
n→∞

∫
Q

σ(x, t,Dun) ◦ (Dun −Du) dxdt

≥
∫
Q

∫
Mm×N

σ(x, t, λ) ◦ (λ−Du)dν(x,t)(λ) dxdt

(4.2)

Now we prove that I ≤ 0. Using∫
Q

∂un
∂t

un dxdt+
∫
Q

σ(x, t,Dun) ◦Dun dx dt =
∫
Q

fn ◦Dun dxdt,

we find that

I = lim inf
n→∞

∫
Q

σ(x, t,Dun) ◦ (Dun −Du) dxdt

= lim inf
n→∞

(∫
Q

σ(x, t,Dun) ◦Dun dx−
∫
Q

σ(x, t,Dun) ◦Dudx dt
)

= lim inf
n→∞

(∫
Q

fn ◦Dun dxdt−
∫
Q

un∂tun dxdt−
∫
Q

σ(x, t,Dun) ◦Dudxdt
)
.

Obviously,∫
Q

fn ◦Dun dxdt−
∫
Q

f ◦Dudxdt =
∫
Q

fn ◦Dun dxdt−
∫
Q

f ◦Dun dxdt

−
∫
Q

f ◦Dun dxdt+
∫
Q

f ◦Dudxdt.

Since
‖fn − f‖Lp′(x)(Q;Mm×N ) → 0, as n→∞,

it is easy to see that∫
Q

fn ◦Dun dx dt−
∫
Q

f ◦Dun dxdt

≤ C‖fn − f‖Lp′(x)(Q;Mm×N )‖Dun‖Lp(x)(Q;Mm×N ) → 0, as n→∞.
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Because of the weak convergence of Dun,∫
Q

f ◦Dun dx dt−
∫
Q

f ◦Dudxdt→ 0, as n→∞.

Consequently,∫
Q

fn ◦Dun dxdt−
∫
Q

f ◦Dudxdt→ 0, as n→∞.

From the weak convergence of σ(x, t,Dun),∫
Q

σ(x, t,Dun) ◦Dudxdt→
∫
Q

χ ◦Dudx dt, as n→∞.

For every ψ ∈ C1(0, T ;Vk), k ≤ n,∫
Q

ψ∂tun dxdt−
∫
Q

σ(x, t,Dun) ◦Dψ dx dt =
∫
Q

fn ◦Dψ dxdt.

After integrating, we have∫
Ω

un(·, T )ψ(T )v dx−
∫

Ω

un(·, 0)ψ(0)v dx−
∫
Q

un∂tψ dxdt

+
∫
Q

σ(x, t,Dun) ◦Dψ dx dt

=
∫
Q

fn ◦Dψ dxdt.

Letting n→∞, we have∫
Ω

u(·, T )ψ(T )v dx−
∫

Ω

u(·, 0)ψ(0)v dx−
∫
Q

u∂tψ dxdt+
∫
Q

χ ◦Dψ dxdt

=
∫
Q

f ◦Dψ dxdt.

Let k →∞, for all ψ ∈ C1
(
0, T ;C1(Ω̄)

)
. The the above equality is valid. Then for

all ψ ∈ C∞0 (Q), the above equality also holds. Thus

−
∫
Q

u∂tψ dx dt = −
∫
Q

χ ◦Dψ dx dt+
∫
Q

f ◦Dψ dx dt = 〈div(χ− f), ψ〉.

Obviously ∂tu = div(χ− f). For u ∈ X, we can derive that∫
Q

u∂tudxdt = −
∫
Q

χ ◦Dudxdt+
∫
Q

f ◦Dudxdt.

On the other hand,∫
Q

u∂tudxdt =
1
2
‖u(·, T )‖2L2(Ω) −

1
2
‖u(·, 0)‖2L2(Ω),∫

Q

un∂tun dx dt =
1
2
‖un(·, T )‖2L2(Ω) −

1
2
‖un(·, 0)‖2L2(Ω).

From the structure of un, we obtain

‖un(·, 0)‖L2(Ω) → ‖u(·, 0)‖L2(Ω).
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Using Lemma 3.4, we have un(·, T ) ⇀ u(·, T ) in L2(Ω). Owing to the weakly lower
semicontinuity of the norm,

‖u(·, T )‖L2(Ω) ≤ lim inf
n→∞

‖un(·, T )‖L2(Ω).

Clearly,

lim inf
n→∞

(
−
∫
Q

un∂tun dxdt
)
≤ −1

2
‖u(·, T )‖2L2(Ω) +

1
2
‖u(·, 0)‖2L2(Ω).

Thus we arrived at the conclusion that I ≤ 0. �

Lemma 4.2. For a.e. (x, t) ∈ Q, we have(
σ(x, t, λ)− σ(x, t,Du)

)
◦ (λ−Du) = 0 on supp ν(x,t).

Proof. Since ∫
Mm×N

λ dν(x,t)(λ) = 〈ν(x,t), I〉 = Du(x, t),

and ν(x,t) is a family of probability measures,
∫

Mm×N 1dν(x,t) = 1. Consequently∫
Q

∫
Mm×N

σ(x, t,Du) ◦ (λ−Du) dν(x,t)(λ) dxdt

=
∫
Q

∫
Mm×N

σ(x, t,Du) ◦ λ dν(x,t)(λ) dxdt

−
∫

Ω

∫
Mm×N

σ(x, t,Du) ◦Dudν(x,t)(λ) dxdt

=
∫
Q

σ(x, t,Du) ◦
∫

Mm×N
λ dν(x,t)(λ) dxdt

−
∫

Ω

σ(x, t,Du) ◦Du
∫

Mm×N
1 dν(x,t)(λ) dxdt

=
∫
Q

σ(x, t,Du) ◦Dudxdt−
∫

Ω

σ(x, t,Du) ◦Du
∫

Mm×N
1 dν(x,t)(λ) dx dt = 0.

From Lemma 4.1, we obtain∫
Ω

∫
Mm×N

σ(x, t, λ) ◦ (λ−Du) dν(x,t)(λ) dx dt ≤ 0.

Thus ∫
Ω

∫
Mm×N

(σ(x, t, λ)− σ(x, t,Du)) ◦ (λ−Du)dν(x,t)(λ) dxdt ≤ 0.

By the monotonicity of σ, the integrand in the above inequality is nonnegative.
Then for a.e. (x, t) ∈ Q, we can obtain that

(σ(x, t, λ)− σ(x, t,Du)) ◦ (λ−Du) = 0 in supp νx.

�

We are now in a position to show the existence of solutions of (1.2).

Proof of Theorem 1.1. We consider 4 cases which correspond to the 4 cases in (H3).
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Case (i). We prove that for a.e. (x, t) ∈ Q and every µ ∈ Mm×N the following
equation holds on supp νx,

σ(x, t, λ) ◦ µ = σ(x, t,Du) ◦ µ+
(
∇σ(x, t,Du)µ

)
◦ (Du− λ), (4.3)

where ∇ is the derivative with respect to the third variable of σ. Actually, by the
monotonicity of σ, for all α ∈ R, we have(

σ(x, t, λ)− σ(x, t,Du+ αµ)
)
◦ (λ−Du− αµ) ≥ 0.

From Lemma 4.2 on supp νx we obtain(
σ(x, t, λ)− σ(x, t,Du+ αµ)

)
◦ (λ−Du− αµ)

= σ(x, t, λ) ◦ (λ−Du)− σ(x, t, λ) ◦ αµ− σ(x, t,Du+ αµ) ◦ (λ−Du− αµ)

= σ(x, t,Du) ◦ (λ−Du)− σ(x, t, λ) ◦ αµ− σ(x, t,Du+ αµ) ◦ (λ−Du− αµ).

It can be easily seen that

−σ(x, t, λ) ◦ αµ ≥ −σ(x, t,Du) ◦ (λ−Du) + σ(x, t,Du+ αµ) ◦ (λ−Du− αµ),

and
σ(x, t,Du+ αµ) = σ(x, t,Du) +∇σ(x, t,Du)αµ+ o(α).

Then we infer that

σ(x, t,Du+ αµ) ◦ (λ−Du− αµ)

= σ(x, t,Du+ αµ) ◦ (λ−Du)− σ(x, t,Du+ αµ) ◦ αµ
= σ(x, t,Du) ◦ (λ−Du) +∇σ(x, t,Du)αµ ◦ (λ−Du)

− σ(x, t,Du) ◦ αµ+∇σ(x, t,Du)αµ ◦ αµ+ o(α)

= σ(x, t,Du) ◦ (λ−Du) + α
(
∇σ(x, t,Du)µ ◦ (λ−Du)− σ(x, t,Du) ◦ µ

)
+ o(α).

Moreover

−σ(x, t, λ) ◦ αµ ≥ α
((
∇σ(x, t,Du)µ

)
◦ (λ−Du)− σ(x, t,Du) ◦ µ

)
+ o(α)

Since the sign of α is arbitrary, the above equation implies (4.2). Set µ = Eij ,
where Eij is the matrix whose entry in the ith row and jth column is 1 and others
are 0. Then by (4.2),

σ(x, t, λ)ij = σ(x, t,Du)ij +
(
∇σ(x, t,Du)Eij

)
◦ (Du− λ).

Furthermore, ∫
supp ν(x,t)

σ(x, t, λ)ij dν(x,t)(λ)

=
∫

supp ν(x,t)

σ(x, t,Du)ij dν(x,t)(λ)

+
(
∇σ(x, t,Du)Eij

)
◦
∫

supp ν(x,t)

(Du− λ) dν(x,t)(λ).

Note that∫
supp ν(x,t)

(Du− λ) dν(x,t)(λ) = Du(x, t)−
∫

supp ν(x,t)

λ dν(x,t)(λ) = 0.
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Thus we can derived that∫
supp ν(x,t)

σ(x, u, λ) dν(x,t)(λ) =
∫

supp ν(x,t)

σ(x, t,Du) dν(x,t)(λ)

= σ(x, t,Du)
∫

supp ν(x,t)

dν(x,t)(λ)

= σ(x, t,Du).

Since {σ(x, t,Dun)} is weakly convergent in Lp
′(x)(Q; Mm×N ). By Dunford-Pettis

criterion and Lemma 2.9, {σ(x, t,Dun)} has a L1-weak limit:

σ :=
∫

supp ν(x,t)

σ(x, t, λ) dν(x,t)(λ) = σ(x, t,Du).

Evidently,
σ(x, t,Dun) ⇀ σ(x, t,Du) inLp

′(x)(Q; Mm×N ).
For all φ ∈ C1(0, T ;Vk), k ≤ n, one has∫

Q

φ∂tun dx dt+
∫
Q

σ(x, t,Dun) ◦Dφdxdt =
∫
Q

fn ◦Dφdx dt,

where∫
Q

φ∂tun dxdt =
∫

Ω

un(·, T )φ(T ) dx−
∫

Ω

un(·, 0)φ(0)v dx−
∫
Q

un∂tφdxdt.

Letting n→∞ we obtain∫
Ω

u(·, T )φ(T ) dx−
∫

Ω

u(·, 0)φ(0)v dx−
∫
Q

u∂tφdxdt+
∫
Q

σ(x, t,Du) ◦Dφdxdt

=
∫
Q

f ◦Dφdxdt.

Let k →∞, then for φ ∈ C1(0, T ;C∞0 (Ω)), we are led to the conclusion that

−
∫
Q

u
∂φ

∂t
dx dt+

∫
Ω

u(x, t)φ(x, t) dx
∣∣∣T
0

+
∫
Q

σ(x, t,Du)◦Dφdxdt =
∫
Q

f ◦Dφdx dt.

Case (ii). We prove that for all (x, t) ∈ Q we have

supp ν(x,t) ⊂ K(x,t)

=
{
λ ∈Mm×N : W (x, t, λ) = W (x, t,Du) + σ(x, t,Du) ◦ (λ−Du)

}
.

If λ ∈ supp ν(x,t), by Lemma 4.2, for every β ∈ [0, 1],(
1− β

)(
σ(x, t, λ)− σ(x, t,Du)

)
◦
(
λ−Du

)
= 0.

By monotonicity, for β ∈ [0, 1], we have(
1− β

)(
σ
(
x, t,Du+ β(λ−Du)

)
− σ(x, t, λ)

)
◦
(
Du− λ

)
≥ 0.

Thus for all β ∈ [0, 1],(
1− β

)(
σ
(
x, t,Du+ t(λ−Du)

)
− σ(x, t,Du)

)
◦
(
Du− λ

)
≥ 0.

In view of the monotonicity condition,(
σ
(
x, t,Du+ β(λ−Du)

)
− σ(x, t,Du)

)
◦ β
(
λ−Du

)
≥ 0.
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Since β ∈ [0, 1], we have(
σ
(
x, t,Du+ β(λ−Du)

)
− σ(x, t,Du)

)
◦ (1− β)

(
λ−Du

)
≥ 0.

For all β ∈ [0, 1], if λ ∈ supp ν(x,t), then(
σ
(
x, t,Du+ β(λ−Du)

)
− σ(x, t,Du)

)
◦
(
λ−Du

)
= 0. (4.4)

It follows that

W (x, t, λ) = W (x, t,Du) +
∫ 1

0

σ
(
x, t,Du+ β(λ−Du)

)
◦ (λ−Du) dβ

= W (x, t,Du) + σ(x, t,Du) ◦ (λ−Du).

So we can get λ ∈ K(x,t), i.e. supp ν(x,t) ⊂ K(x,t).
On account of the convexity of W , for all ξ ∈Mm×N ,

W (x, t, ξ) ≥W (x, u,Du) + σ(x, t,Du) ◦ (ξ −Du).

For all λ ∈ K(x,t), put

P (λ) = W (x, t, λ), Q(λ) = W (x, t,Du) + σ(x, t,Du) ◦ (λ−Du).

As λ→W (x, u, λ) is continuous and differentiable, for every ϕ ∈Mm×N , γ ∈ R,

P (λ+ γϕ)− P (λ)
γ

≥ Q(λ+ γϕ)−Q(λ)
γ

(γ > 0),

P (λ+ γϕ)− P (λ)
γ

≤ Q(λ+ γϕ)−Q(λ)
γ

(γ < 0).

Thus DP = DQ, and

σ(x, t, λ) = σ(x, t,Du) ∀λ ∈ K(x,t) ⊃ supp ν(x,t). (4.5)

Consequently,

σ(x, t) :=
∫

Mm×N
σ(x, t, λ) dν(x,t)(λ)

=
∫

supp ν(x,t)

σ(x, t, λ) dν(x,t)(λ) = σ(x, t,Du).
(4.6)

Now we consider the Carathéodory function

g(x, t, λ) = |σ(x, t, λ)− σ(x, t)|, λ ∈Mm×N .

Since σ(x, t,Dun) is weakly convergent in Lp
′(x)(Q; Mm×N ), then σ(x, t,Dun) is

equi-integrable. Thus gn(x, t) = g(x, t,Dun) is equi-integrable, and

gn ⇀ g in L1(Q).

Taking (4.4) and (4.5) into consideration, we obtain

g(x, t) =
∫

Mm×N

∣∣σ(x, t, λ)− σ(x, t)
∣∣dν(x,t)(λ)

=
∫

supp ν(x,t)

∣∣σ(x, t, λ)− σ(x, t)
∣∣dν(x,t)(λ)

=
∫

supp ν(x,t)

∣∣σ(x, t, λ)− σ(x, t,Du(x, t))
∣∣dν(x,t)(λ) = 0.
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It turns out that ∫
Q

∣∣σ(x, t,Dun)− σ(x, t,Du)
∣∣dxdt→ 0.

The remainder of the argument is similar to that in case (i) and so is omitted.
Case (iii). By the strict monotonicity and Lemma 4.2, we have

supp ν(x,t) = {Du(x, t)}.

Thus for a.e. (x, t) ∈ Q, ν(x,t) = δDu(x,t). Using Lemma 2.9, we find Dun → Du in
measure. For a proper subsequence, we assert that Dun → Du a.e. in Q. It follows
that σ(x, t,Dun) → σ(x, t,Du) a.e. in Q. Moreover σ(x, t,Dun) → σ(x, t,Du) in
measure.

From a similar analysis in case (i), we obtain the existence of (1.2) for case (ii).
Case (iv). Suppose that ν(x,t) is not a Dirac measure, for a.e. (x, t) ∈ Q, then we
have

0 <
∫
Q

∫
Mm×N

(
σ(x, t, λ)− σ(x, t, λ̄)

)
◦ (λ− λ̄) dν(x,t)(λ) dxdt

=
∫
Q

∫
Mm×N

(
σ(x, t, λ) ◦ λ− σ(x, t, λ) ◦ λ̄

− σ(x, t, λ̄) ◦ λ+ σ(x, t, λ̄) ◦ λ̄)
)

dν(x,t)(λ) dx dt.

Since ∫
Mm×N

1 dν(x,t)(λ) = 1 and
∫

Mm×N
λ dν(x,t)(λ) = λ̄ = Du(x, t),

we obtain∫
Q

∫
Mm×N

σ(x, t, λ) ◦ λ dν(x,t)(λ) dxdt

>

∫
Q

∫
Mm×N

(
σ(x, t, λ) ◦ λ̄+ σ(x, t, λ̄) ◦ λ− σ(x, t, λ̄) ◦ λ̄)

)
dν(x,t)(λ) dxdt

=
∫
Q

(∫
Mm×N

σ(x, t, λ) dν(x,t)(λ) ◦ λ̄+ σ(x, t, λ̄) ◦
∫

Mm×N
λ dν(x,t)(λ)

− σ(x, t, λ̄) ◦ λ̄ ·
∫

Mm×N
1 dν(x,t)(λ)

)
dxdt

=
∫
Q

∫
Mm×N

σ(x, t, λ) dν(x,t)(λ) ◦ λ̄ dxdt

=
∫
Q

∫
Mm×N

σ(x, t, λ) dν(x,t)(λ) ◦Du(x, t) dxdt.

By Lemma 4.1, ∫
Q

∫
Mm×N

σ(x, t, λ) ◦Dudν(x,t)(λ) dxdt

≥
∫
Q

∫
Mm×N

σ(x, t, λ) ◦ λ dν(x,t)(λ) dxdt

>

∫
Q

∫
Mm×N

σ(x, t, λ) dν(x,t)(λ) ◦Dudxdt.
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This is a contradiction. Hence ν(x,t) is a Dirac measure. Assume that ν(x,t) = δh(x,t).
Then

h(x, t) =
∫

Mm×N
λ dδh(x,t)(λ) =

∫
Mm×N

λ dν(x,t)(λ) = Du(x, t)

Thus ν(x,t) = δDu(x,t). Lemma 2.10 implies that Dun → Du as n→∞. Moreover
σ(x, t,Dun) → σ(x, t,Du) in measure as n → ∞. An argument similar to the one
in case (iii) shows the conclusion we want. The proof is complete. �

Conclusions. In this article, we study the existence of weak solutions for quasilin-
ear parabolic system in divergence form with variable growth by means of Young
measures generated by sequences in variable exponent spaces. We can conclude
that problem (1.2) has a weak solution under four kinds of monotonicity conditions
in (H3). We need notice that (H3)(iii) requires σ is strictly monotone. Actually
classical monotonicity operator method can get our result under (H3)(iii). We give
the other method to obtain the main theorem by Young measures in our paper
under (H3)(iii). But conventional method can not prove the main result under
the other monotonicity conditions. And in H3(iv), we define a new monotonicity
condition. If σ is strictly monotone, then (H3)(iv) holds. Obviously, (H3)(iv) is
weaker than typical strictly monotone condition.

Currently, the research on Young measures generated by sequences in variable
exponent Lebesgue and Sobolev spaces is still in exploration. Our results enrich
and perfect the theory of variable exponent spaces and Young measures.

For related results on nonlinear problems with variable growth we refer to the
monograph by Rădulescu and Repovš [33] and the survey paper by Rădulescu [32].
Recent contributions to this field may be found in the papers [28, 29, 30, 34].
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