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Abstract. We show continuity in generalized Orlicz-Morrey spaces MΦ,ϕ(Rn)
of sublinear integral operators generated by Calderón-Zygmund operator and

their commutators with BMO functions. The obtained estimates are used to

study global regularity of the solution of the Dirichlet problem for linear uni-
formly elliptic operator L =

Pn
i,j=1 aij(x)Dij with discontinuous coefficients.

We show that Lu ∈MΦ,ϕ implies the second-order derivatives belong to MΦ,ϕ.

1. Introduction

The classical Morrey spaces Lp,λ are originally introduced in [37] to study the
local behavior of solutions to elliptic partial differential equations. In fact, the
better inclusion between the Morrey and the Hölder spaces permits to obtain higher
regularity of the solutions to different elliptic and parabolic boundary problems.
Recall that for a bounded domain Ω ⊂ Rn satisfying the cone property, the space
Lp,λ with 1 ≤ p <∞ consists of all functions f ∈ Lp(Ω) such that

‖f‖Lp,λ(Ω) =
(

sup
Br

1
rλ

∫
Br∩Ω

|f(y)|p dy
)1/p

<∞,

where Br ranges over all balls in Rn centered in some point x ∈ Ω and of radius
r > 0. For the properties and applications of the classical Morrey spaces, we refer
the readers to [7, 37, 41, 43] and the references there. Chiarenza and Frasca [8]
showed the boundedness of the Hardy-Littlewood maximal operator in Lp,λ(Rn)
that allows them to prove continuity of fractional and classical Calderón-Zygmund
operators in these spaces. Recall that integral operators of that kind appear in the
representation formulae of the solutions of elliptic/parabolic equations and systems.
Thus the continuity of the Calderón-Zygmund integrals implies regularity of the
solutions in the corresponding spaces. Mizuhara[36] gave a generalization of these
spaces considering a weight function ω(x, r) : Rn × R+ → R+ instead of rλ. He
studied also a continuity in Lp,ω of some classical integral operators. Later Nakai
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extended the results of Chiarenza and Frasca in Lp,ω imposing certain integral and
doubling conditions on ω (see [38]). Taking a weight ω = ϕprn the conditions of
Mizuhara-Nakai become∫ ∞

r

ϕ(x, t)p
dt

t
≤ C ϕ(x, r)p, C−1 ≤ ϕ(x, t)

ϕ(x, r)
≤ C, ∀ r ≤ t ≤ 2r,

where the constants do not depend on t, r and x ∈ Rn.
In series of works, the first author studies the continuity in generalized Morrey

spaces of sublinear operators generated by various integral operators as Calderón-
Zygmund, Riesz potental and others (see [18, 19, 21]). The following theorem
obtained in [18] extends the results of Nakai in Morrey-type spaces with weight
ω = ϕrn (for the definition of the spaces see § 3)

Theorem 1.1 ([18, 19]). Let 1 ≤ p <∞ and (ϕ1, ϕ2) satisfy the condition∫ ∞
t

ϕ1(x, r)
dr

r
≤ Cϕ2(x, t), (1.1)

where C does not depend on x and t. Then the maximal operator M and the
Calderón-Zygmund integral operators K are bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1
and from M1,ϕ1 to the weak space WM1,ϕ2 .

Later this result was extended on spaces with weaker condition on the weight pair
(ϕ1, ϕ2) (see [21], see also [11, 12, 13]). For more recent results on boundedness and
continuity of singular integral operators in generalized Morrey and new functional
spaces and their application in the differential equations theory see [2, 4, 5, 15, 16,
20, 25, 26, 35, 40, 42, 44, 48, 49, 51] and the references there.

Throughout this paper the following notation will be used:
Diu = ∂u/∂xi, Du = (D1u, . . . ,Dnu) means the gradient of u,
Diju = ∂2u/∂xi∂xj , D2u = {Diju}nij=1 is the Hessian matrix of u,
Br = B(x0, r) = {x ∈ Rn : |x− x0| < r}, Bcr = Rn \ Br, 2Br = B(x0, 2r),
Sn−1 is a unit sphere in Rn, Ω ⊂ Rn is a domain and Ωr = Ω ∩ Br(x), x ∈ Ω,
Rn+ = {x ∈ Rn : x = (x′, xn), x′ ∈ Rn−1, xn > 0},
B+
r ≡ B+(x0, r) = B(x0, r) ∩ Rn+, 2B+

r = B+(x0, 2r) where x0 = (x′, 0).
The standard summation convention on repeated upper and lower indices is

adopted. The letter C is used for various positive constants and may change from
one occurrence to another. In this paper, we shall use the symbol A . B to indicate
that there exists a universal positive constant C, independent of all important
parameters, such that A ≤ CB. A ≈ B means that A . B and B . A.

2. Preliminaries on Orlicz and Orlicz-Morrey spaces

Definition 2.1. A function Φ : [0,+∞] → [0,∞] is called a Young function if Φ
is convex, left-continuous, limr→+0 Φ(r) = Φ(0) = 0 and limr→+∞ Φ(r) = Φ(∞) =
∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing.
If there exists s ∈ (0,+∞) such that Φ(s) = +∞, then Φ(r) = +∞ for r ≥ s.

We say that Φ ∈ ∆2, if for any a > 1, there exists a constant Ca > 0 such
that Φ(at) ≤ CaΦ(t) for all t > 0. A Young function Φ is said to satisfy the
∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1
2k

Φ(kr), r ≥ 0,
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for some k > 1. The function Φ(r) = r satisfies the ∆2-condition but does not
satisfy the∇2-condition. If 1 < p <∞, then Φ(r) = rp satisfies both the conditions.
The function Φ(r) = er − r − 1 satisfies the ∇2-condition but does not satisfy the
∆2-condition.

The following two indices

qΦ = inf
t>0

tϕ(t)
Φ(t)

, pΦ = sup
t>0

tϕ(t)
Φ(t)

of Φ, where ϕ(t) is the right-continuous derivative of Φ, are well known in the
theory of Orlicz spaces. As is well known,

pΦ <∞ ⇐⇒ Φ ∈ ∆2,

and the function Φ is strictly convex if and only if qΦ > 1. If 0 < qΦ ≤ pΦ < ∞,
then Φ(t)

tqΦ is increasing and Φ(t)
tpΦ is decreasing on (0,∞).

Lemma 2.2 ([29, Lemma 1.3.2]). Let Φ ∈ ∆2. Then there exist p > 1 and b > 1
such that

Φ(t2)
tp2
≤ bΦ(t1)

tp1
for 0 < t1 < t2.

Lemma 2.3 ([47, Proposition 62.20]). Let Φ be a Young function with canonical
representation

Φ(t) =
∫ t

0

ϕ(s)ds, t ≥ 0.

(1) Assume that Φ ∈ ∆2. More precisely Φ(2t) ≤ AΦ(t) for some A ≥ 2. If
p > 1 + log2A, then∫ ∞

t

ϕ(s)
sp

ds .
Φ(t)
tp

, t > 0.

(2) Assume that Φ ∈ ∇2. Then∫ t

0

ϕ(s)
s

ds .
Φ(t)
t
, t > 0.

Recall that a function Φ is said to be quasiconvex if there exist a convex function
ω and a constant c > 0 such that

ω(t) ≤ Φ(t) ≤ cω(ct), t ∈ [0,∞).

Let Y be the set of all Young functions Φ such that

0 < Φ(r) < +∞ for 0 < r < +∞. (2.1)

If Φ ∈ Y, then Φ is absolutely continuous on every closed interval in [0,+∞) and
bijective from [0,+∞) to itself.

Definition 2.4. For a Young function Φ, the set

LΦ(Rn) =
{
f ∈ Lloc

1 (Rn) :
∫

Rn
Φ(k|f(x)|)dx < +∞ for some k > 0

}
is called Orlicz space. The space Lloc

Φ (Rn) endowed with the natural topology is
defined as the set of all functions f such that fχ

B
∈ LΦ(Rn) for all balls B ⊂ Rn.
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Note that LΦ(Rn) is a Banach space with respect to the norm

‖f‖LΦ = inf
{
λ > 0 :

∫
Rn

Φ
( |f(x)|

λ

)
dx ≤ 1

}
,

see, for example [45, Section 3, Theorem 10], so that∫
Rn

Φ
( |f(x)|
‖f‖LΦ

)
dx ≤ 1.

For a measurable set Ω ⊂ Rn, a measurable function f and t > 0, let

m(Ω, f, t) = |{x ∈ Ω : |f(x)| > t}|.
In the case Ω = Rn, we shortly denote it by m(f, t).

Definition 2.5. The weak Orlicz space

WLΦ(Rn) = {f ∈ L1
loc(Rn) : ‖f‖WLΦ < +∞}

is defined by the norm

‖f‖WLΦ = inf
{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t
)
≤ 1
}
.

For Young functions Φ and Ψ, we write Φ ≈ Ψ if there exists a constant C ≥ 1
such that

Φ(C−1r) ≤ Ψ(r) ≤ Φ(Cr) for all r ≥ 0.
If Φ ≈ Ψ, then LΦ(Rn) = LΨ(Rn) with equivalent norms. We note that, for Young
functions Φ and Ψ, if there exist C,R ≥ 1 such that

Φ(C−1r) ≤ Ψ(r) ≤ Φ(Cr) for r ∈ (0, R−1) ∪ (R,∞),

then Φ ≈ Ψ.
For a Young function Φ and 0 ≤ s ≤ +∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s} (inf ∅ = +∞).

If Φ ∈ Y, then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r < +∞.

For a Young function Φ, the complementary function Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)}, r ∈ [0,∞)
+∞, r = +∞.

(2.2)

The complementary function Φ̃ is also a Young function and ˜̃Φ = Φ. If Φ(r) = r,
then Φ̃(r) = 0 for 0 ≤ r ≤ 1 and Φ̃(r) = +∞ for r > 1. If 1 < p < ∞,
1/p + 1/p′ = 1 and Φ(r) = rp/p, then Φ̃(r) = rp

′
/p′. If Φ(r) = er − r − 1, then

Φ̃(r) = (1 + r) log(1 + r)− r.

Remark 2.6. Note that Φ ∈ ∇2 if and only if Φ̃ ∈ ∆2. Also, if Φ is a Young
function, then Φ ∈ ∇2 if and only if Φγ be quasiconvex for some γ ∈ (0, 1) (see, for
example [29, p. 15]).

It is known that
r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0. (2.3)

The following analogue of the Hölder inequality is known.
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Theorem 2.7 ([50]). For a Young function Φ and its complementary function Φ̃,
the following inequality is valid

‖fg‖L1(Rn) ≤ 2‖f‖LΦ‖g‖LeΦ .
Note that Young functions satisfy the property

Φ(αt) ≤ αΦ(t) (2.4)

for all 0 < α < 1 and 0 ≤ t < ∞, which is a consequence of the convexity:
Φ(αt) = Φ(αt+ (1− α)0) ≤ αΦ(t) + (1− α)Φ(0) = αΦ(t).

Lemma 2.8 ([3, 34]). Let Φ be a Young function and B a ball in Rn. Then

‖χ
B
‖WLΦ(Rn) = ‖χ

B
‖LΦ(Rn) =

1
Φ−1(|B|−1)

.

In the next sections where we prove our main estimates, we use the following
lemma, which follows from Theorem 2.7 and Lemma 2.8.

Lemma 2.9. For a Young function Φ and B = B(x, r), we have

‖f‖L1(B) ≤ 2|B|Φ−1
(
|B|−1

)
‖f‖LΦ(B).

Definition 2.10. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞)
and Φ any Young function. We denote by MΦ,ϕ(Rn) the generalized Orlicz-Morrey
space, the space of all functions f ∈ Lloc

Φ (Rn) with finite quasinorm

‖f‖MΦ,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1Φ−1(|B(x, r)|−1) ‖f‖LΦ(B(x,r)).

Also by WMΦ,ϕ(Rn) we denote the weak generalized Orlicz-Morrey space of all
functions f ∈WLloc

Φ (Rn) for which

‖f‖WMΦ,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1Φ−1(|B(x, r)|−1) ‖f‖WLΦ(B(x,r)) <∞,

where WLΦ(B(x, r)) denotes the weak LΦ-space of measurable functions f for
which

‖f‖WLΦ(B(x,r)) ≡ ‖fχB(x,r)‖WLΦ(Rn).

According to this definition, we recover the spaces Mp,ϕ and WMp,ϕ under the
choice Φ(r) = rp:

Mp,ϕ = MΦ,ϕ

∣∣
Φ(r)=rp

, WMΦ,λ = WMΦ,ϕ

∣∣
Φ(r)=rp

.

3. Definitions and statement of the problem

In the present section we give the definitions of the functional spaces to which
the coefficients and the data of the problem belong. The domain Ω ⊂ Rn supposed
to be bounded with ∂Ω ∈ C1,1.

Definition 3.1. Let ϕ : Ω× R+ → R+ be a measurable function and 1 ≤ p <∞.
The generalized Orlicz-Morrey space MΦ,ϕ(Ω) consists of all f ∈ Lloc

Φ (Ω)

‖f‖MΦ,ϕ(Ω) = sup
x∈Ω,r>0

ϕ(x, r)−1Φ−1(|B(x, r)|−1)‖f‖LΦ(Ω∩B(x,r))

For any bounded domain Ω we define MΦ,ϕ(Ω) taking f ∈ LΦ(Ω) and Ωr instead
of B(x, r) in the norm above.
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The generalized Sobolev-Orlicz-Morrey space W2,Φ,ϕ(Ω) consists of all Sobolev
functions u ∈ W2,Φ(Ω) with distributional derivatives Dsu ∈ MΦ,ϕ(Ω), endowed
with the norm

‖u‖W2,Φ,ϕ(Ω) =
∑

0≤|s|≤2

‖Dsf‖MΦ,ϕ(Ω).

The space W2,Φ,ϕ(Ω) ∩W 0
1,Φ(Ω) consists of all functions u ∈ W2,Φ(Ω) ∩W 0

1,Φ(Ω)
with Dsu ∈ MΦ,ϕ(Ω), and is endowed by the same norm. Recall that W 0

1,Φ(Ω) is
the closure of C∞0 (Ω) with respect to the norm in W1,Φ.

Definition 3.2. Let ϕ : Ω× R+ → R+ be a measurable function, the generalized
weak Morrey space WMΦ,ϕ(Ω) consists of all measurable functions such that

‖f‖WMΦ,ϕ(Ω) = sup
x∈Ω,r>0

ϕ(x, r)−1Φ−1(|B(x, r)|−1)‖f‖WLΦ(Ω∩B(x,r)),

where WLΦ(Ω ∩ B(x, r)) denotes the weak LΦ-space of measurable functions f for
which

‖f‖WLΦ(B(x,r)) ≡ ‖fχΩ∩B(x,r)‖WLΦ(Rn).

For a bounded domain Ω we define the space WMΦ,ϕ(Ω) taking f ∈WLΦ(Ω).

Definition 3.3. Let a ∈ Lloc
1 (Rn) and aBr = 1

|Br|
∫
Br a(y)dy is the mean integral

of a. We say that
• a ∈ BMO (bounded mean oscillation, [31]) if

‖a‖∗ = sup
R>0

sup
Br,r≤R

1
|Br|

∫
Br
|a(y)− aBr |dy < +∞.

The quantity ‖a‖∗ is a norm in BMO modulo constant function under
which BMO is a Banach space;
• a ∈ VMO (vanishing mean oscillation, [46]) if a ∈ BMO and

lim
R→0

γa(R) = lim
R→0

sup
Br,r≤R

1
|Br|

∫
Br
|a(y)− aBr |dy = 0.

The quantity γa(R) is called VMO-modulus of a.
For any bounded domain Ω ⊂ Rn we define BMO(Ω) and VMO(Ω) taking a ∈
L1(Ω) and Ωr instead of Br in the definition above.

According to [1, 32], having a function a ∈ BMO(Ω) or VMO(Ω) it is possi-
ble to extend it in the whole Rn preserving its BMO-norm or VMO-modulus,
respectively. In the following we use this property without explicit references.
Any bounded uniformly continuous function f ∈ BUC with modulus of conti-
nuity ωf (r) is also VMO and γf (r) ≡ ωf (r). Besides that, BMO and VMO
contain also discontinuous functions and the following example shows the inclusion
W1,n(Rn) ⊂ VMO ⊂ BMO.

Example 3.4. fα(x) = | log |x||α ∈ VMO for any α ∈ (0, 1); fα ∈ W1,n(Rn) for
α ∈ (0, 1−1/n), fα /∈W1,n(Rn) for α ∈ [1−1/n, 1); f(x) = | log |x|| ∈ BMO\VMO;
sin fα(x) ∈ VMO ∩ L∞(Rn).

In the Sections 4, 6 and 7 we study continuity in the spaces MΦ,ϕ of certain sub-
linear integrals and their commutators with BMO functions. These results unified
withe known estimates in Lp(Rn) permit to obtain continuity of the Calderón-
Zygmund operators in Mp,ϕ(Rn) that is shown in § 8. The last section is dedicated
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to the Dirichlet problem for a linear uniformly elliptic operator with VMO coef-
ficients. This problem is firstly studied by Chiarenza, Frasca and Longo. In their
pioneer works [9], [10] they prove unique strong solvability of

Lu ≡ aij(x)Diju = f(x) a.a. x ∈ Ω,

u ∈ W2,p(Ω) ∩W 0
1,p(Ω), p ∈ (1,∞)

(3.1)

providing such way the classical theory on operators with continuous coefficients
to those with discontinuous ones. Later their results are extended in the Sobolev-
Morrey spaces W2,p,λ(Ω) ∩ W 0

1,p(Ω), λ ∈ (1, n) (see [15], [16]). In the present
work we show that Lu ∈ MΦ,ϕ(Ω) implies the same regularity of the second order
derivatives Diju. The weight ϕ(x, r) satisfies an integral condition weaker than
(1.1).

4. Sublinear operators and commutators generated by singular
integrals in the space MΦ,ϕ(Rn)

In this section we present results obtained in [27] concerning continuity of sub-
linear operators generated by singular integrals as Calderón-Zygmund. Let T be
a sublinear operator such that for any f ∈ L1(Rn) with compact support and
x /∈ suppf holds

|Tf(x)| ≤ C
∫

Rn

|f(y)|
|x− y|n

dy, (4.1)

where C is independent of f .

Theorem 4.1. Let Φ any Young function, ϕ1, ϕ2 : Rn × R+ → R+ be measurable
functions such that for any x ∈ Rn and for any t > 0,∫ ∞

r

(
ess inft<s<∞

ϕ1(x, s)
Φ−1

(
s−n

))Φ−1
(
t−n
)dt
t
≤ Cϕ2(x, r) (4.2)

and T be sublinear operator satisfying (4.1).
(i) If T bounded on LΦ(Rn), then T is bounded from MΦ,ϕ1(Rn) to MΦ,ϕ2(Rn)

and
‖Tf‖MΦ,ϕ2 (Rn) ≤ C‖f‖MΦ,ϕ1 (Rn).

(ii) If T bounded from LΦ(Rn) to WLΦ(Rn), then it is bounded from MΦ,ϕ1(Rn)
to WMΦ,ϕ2(Rn) and

‖Tf‖WMΦ,ϕ2 (Rn) ≤ C‖f‖MΦ,ϕ1 (Rn)

with constants independent of f .

Note that condition (4.2) is weaker than the one in Theorem 1.1. Indeed, if
condition (1.1) holds then∫ ∞

r

(
ess inft<s<∞

ϕ1(x, s)
Φ−1

(
s−n

))Φ−1
(
t−n
)dt
t
≤
∫ ∞
r

ϕ1(x, t)
dt

t

that implies (4.2). We give also two examples of admissible pairs of functions.

Example 4.2. For β ∈ (0, n) consider the weight functions

ϕ1(r) =
rβ

Φ−1
(
r−n

) ∣∣ sin (max
{

1,
π

r

})∣∣, ϕ2(r) =
r2β

Φ−1(r−n)
.
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If r ∈ (0, 1) then ess infr<s<∞
ϕ1(x,s)

Φ−1
(
s−n
) = 0 and

∫ ∞
r

(
ess inft<s<∞

ϕ1(x, s)
Φ−1

(
s−n

))Φ−1
(
t−n
)dt
t

=

0 r ∈ (0, 1)
rβ

Φ−1
(
r−n
) r ∈ (1,∞)

≤ Cϕ2(r).

Hence the pair (ϕ1, ϕ2) satisfies (4.2) but not (1.1).

Example 4.3. For β ∈ (0, n) consider the functions

ϕ1(r) =
r−β

χ(1,∞)(r)Φ−1
(
r−n

) , ϕ2(r) =
1 + rβ

Φ−1
(
r−n

) .
They satisfy condition (4.2) but not (1.1).

Consider now the commutator Taf = T [a, f ] = aTf − T (af) such that for any
f ∈ LΦ(Rn) with a compact support and x /∈ suppf holds

|Taf(x)| ≤ C
∫

Rn
|a(x)− a(y)| |f(y)|

|x− y|n
dy, (4.3)

where C is independent of f and x. Suppose in addition that Ta is bounded in
LΦ(Rn) satisfying the estimate ‖Taf‖LΦ(Rn) ≤ C‖a‖∗‖f‖LΦ(Rn). Then the following
result holds (see [14, 27]).

Theorem 4.4. Let Φ any Young function, a ∈ BMO, ϕ1, ϕ2 : Rn × R+ → R+ be
measurable functions such that for any x ∈ Rn and for any t > 0,∫ ∞

r

(
1 + ln

t

r

)(
ess inft<s<∞

ϕ1(x, s)
Φ−1

(
s−n

))Φ−1
(
t−n
)dt
t
≤ Cϕ2(x, r), (4.4)

where C does not depend on x and r. Suppose Ta be a sublinear operator satisfying
(4.3) and bounded on LΦ(Rn). Then the operator Ta is bounded from MΦ,ϕ1 to
MΦ,ϕ2

‖Taf‖MΦ,ϕ2 (Rn) ≤ C‖a‖∗‖f‖MΦ,ϕ1 (Rn).

5. Nonsingular integral operators in the Orlicz space LΦ(Rn+)

The following theorem was proved in [10].

Theorem 5.1. Let x ∈ Rn+ and

K̃f(x) =
∫

Rn+

|f(y)|
|x̃− y|n

dy, x̃ = (x′,−xn). (5.1)

Then there exists a constant C independent of f , such that

‖K̃f‖Lp(Rn+) ≤ Cp‖f‖Lp(Rn+), 1 < p <∞,

‖K̃f‖WL1(Rn+) ≤ C‖f‖L1(Rn+).

Theorem 5.2. Let Φ be a Young function and K̃ be a nonsingular integral operator,
defined by (5.1). If Φ ∈ ∆2 ∩ ∇2, then the operator K̃ is bounded on LΦ(Rn+) and
if Φ ∈ ∆2, then the operator K̃ is bounded from LΦ(Rn+) to WLΦ(Rn+).
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Proof. First we prove that for Φ ∈ ∆2 the nonsingular integral operator K̃ is
bounded from LΦ(Rn+) to WLΦ(Rn+).

We take f ∈ LΦ(Rn+) satisfying ‖f‖LΦ = 1. Fix λ > 0 and define f1 = χ{|f |>λ} ·f
and f2 = χ{|f |≤λ} · f . Then f = f1 + f2. We have

|{|K̃f | > λ}| ≤ |{|K̃f1| > λ/2}|+ |{|K̃f2| > λ/2}|,

Φ(λ)|{|K̃f | > λ}| ≤ |Φ(λ){|K̃f1| > λ/2}|+ Φ(λ)|{|K̃f2| > λ/2}|.

We know that from the weak (1,1) boundedness and Lp, p > 1 boundedness of
K̃,

{|K̃(χ{|f |>λ} · f)| > λ}| . 1
λ

∫
{|f |>λ}

|f |,

{|K̃(χ{|f |≤λ} · f)| > λ}| . 1
λp

∫
{|f |≤λ}

|f |p.

Since f1 ∈WL1(Rn+) and Φ(λ)
λ increasing we have

Φ(λ)
∣∣{x ∈ Rn+ : |K̃f1(x)| > λ

2
}∣∣ . Φ(λ)

λ

∫
Rn+
|f1(x)|dx

=
Φ(λ)
λ

∫
{x∈Rn+:|f(x)|>λ}

|f(x)|dx

.
∫

Rn+
|f(x)|Φ(|f(x)|)

|f(x)|
dx

=
∫

Rn+
Φ(|f(x)|)dx.

By Lemma 2.2 and f2 ∈ Lp(Rn+) we have

Φ(λ)
∣∣{x ∈ Rn+ : |K̃f2(x)| > λ

2
}∣∣ . Φ(λ)

λp

∫
Rn+
|f2(x)|pdx

=
Φ(λ)
λp

∫
{x∈Rn+:|f(x)|≤λ}

|f(x)|pdx

.
∫

Rn+
|f(x)|pΦ(|f(x)|)

|f(x)|p
dx

=
∫

Rn+
Φ(|f(x)|)dx.

Thus we obtain

|{x ∈ Rn+ : |K̃f(x)| > λ}| ≤ C

Φ(λ)

∫
Rn+

Φ(|f(x)|)dx ≤ 1

Φ
(

λ
C‖f‖LΦ

) .
Since ‖ · ‖LΦ norm is homogeneous this inequality is true for every f ∈ LΦ(Rn+).

Now proved that for Φ ∈ ∆2∩∇2 the nonsingular integral operator K̃ is bounded
in LΦ(Rn+). As before we use distribution functions.∫

Rn+
Φ
(K̃f(x)

Λ

)
dx =

1
Λ

∫ ∞
0

ϕ
( λ

Λ
)
|{x ∈ Rn+ : |K̃f(x)| > λ}|dλ
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=
2
Λ

∫ ∞
0

ϕ
(2λ

Λ
)
|{x ∈ Rn+ : |K̃f(x)| > 2λ}|dλ.

What is different from the estimate for the maximal operator is the point that K̃
is not L∞(Rn+) bounded. Let p > 1 be sufficiently large. Then

|{x ∈ Rn+ : K̃f(x) > 2λ}| ≤ |{x ∈ Rn+ : |K̃(χ{|f |>λ} · f)(x)| > λ}|

+ |{x ∈ Rn+ : |K̃(χ{|f |≤λ} · f)(x)| > λ}|.

By the weak (1, 1) boundedness and Lp-boundedness of K̃ (see Theorem 5.1) we
have

|{x ∈ Rn+ : |K̃(χ{|f |>λ} · f)(x)| > λ}| . 1
λ

∫
{x∈Rn+:|f(x)|>λ}

|f(x)|dx,

|{x ∈ Rn+ : |K̃(χ{|f |≤λ} · f)(x)| > λ}| . 1
λp

∫
{x∈Rn+:|f(x)|≤λ}

|f(x)|pdx.

Using the same calculation used for the maximal operator works for the first term,

1
Λ

∫ ∞
0

ϕ
(2λ

Λ

)
{|K̃(χ{|f |>λ} · f)| > λ}|dλ ≤

∫
Rn+

Φ
(c|f |

Λ

)
. (5.2)

For the second term a similar computation still works, but we use that Φ ∈ ∆2,

1
Λ

∫ ∞
0

ϕ
(2λ

Λ

)
{|K̃(χ{|f |≤λ} · f)(x)| > λ}|dλ

.
1
Λ

∫ ∞
0

ϕ
(2λ

Λ

)(∫
{x∈Rn+:|f(x)|≤λ}

|f(x)|pdx
)dλ
λp

.
1
Λ

∫
Rn+
|f(x)|p

(∫ ∞
|f(x)|

ϕ
(2λ

Λ

)dλ
λp

)
dx.

Using Lemma 2.3 (1), we have

1
Λ

∫ ∞
0

ϕ
(2λ

Λ

)
{|K̃(χ{|f |≤λ} · f)(x)| > λ}|dλ

.
∫

Rn+
Φ
(2|f(x)|

Λ

)
dx ≤

∫
Rn+

Φ
(c|f(x)|

Λ

)
dx.

(5.3)

Thus, putting together (5.2) and (5.3), we obtain∫
Rn+

Φ
(K̃f(x)

Λ

)
dx ≤

∫
Rn+

Φ
(c0|f(x)|

Λ

)
dx.

Again we shall label the constant we want to distinguish from other less important
constants. As before, if we set Λ = c2‖f‖LΦ(Rn+), then we obtain∫

Rn+
Φ
(K̃f(x)

Λ

)
dx ≤ 1.

Hence the operator norm of T̃ is less than c2. �
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6. Sublinear operators generated by nonsingular integral operators
in the space MΦ,ϕ(Rn+)

We use the following statement on the boundedness of the weighted Hardy op-
erator

H∗wg(t) :=
∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a weight. The following theorem was proved in [22, 23] and in the case
w = 1 in [6].

Theorem 6.1. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside
a neighborhood of the origin. The inequality

sup
t>0

v2(t)H∗wg(t) ≤ C sup
t>0

v1(t)g(t) (6.1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and
only if

B := sup
t>0

v2(t)
∫ ∞
t

w(s)ds
sups<τ<∞ v1(τ)

<∞. (6.2)

Moreover, the value C = B is the best constant for (6.1).

Remark 6.2. In (6.1) and (6.2) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.

For any x ∈ Rn+ define x̃ = (x′,−xn) and recall that x0 = (x′, 0). Let T̃ be a
sublinear operator such that for any f ∈ L1(Rn+) with a compact support holds

|T̃ f(x)| ≤ C
∫

Rn+

|f(y)|
|x̃− y|n

dy. (6.3)

Lemma 6.3. Let Φ any Young function, f ∈ Lloc
Φ (Rn+), be such that∫ ∞

1

‖f‖LΦ(B+(x0,t))Φ−1
(
t−n
)dt
t
<∞ (6.4)

and T̃ be a sublinear operator satisfying (6.3).

(i) If T̃ bounded on LΦ(Rn+), then

‖T̃ f‖LΦ(B+(x0,r)) ≤
C

Φ−1
(
r−n

) ∫ ∞
2r

‖f‖LΦ(B+(x0,t))Φ−1
(
t−n
)dt
t
. (6.5)

(ii) If T̃ bounded from LΦ(Rn+) on WLΦ(Rn+), then

‖T̃ f‖WLΦ(B+(x0,r)) ≤
C

Φ−1
(
r−n

) ∫ ∞
2r

‖f‖LΦ(B+(x0,t))Φ−1
(
t−n
)dt
t
, (6.6)

where the constants are independent of x0, r and f .

Proof. (i) Denote B+
r = B+(x0, r), B+

t = B+(x0, t) and for any f ∈ Lloc
Φ (Rn+) write

f = f1+f2 with f1 = fχ2B+
r

and f2 = fχ(2B+
r )c . Because of the (Φ,Φ)-boundedness

of the operator T̃ (see Theorem 5.2) and f1 ∈ LΦ(Rn+) we have

‖T̃ f1‖LΦ(B+
r ) ≤ ‖T̃ f1‖LΦ(Rn+) ≤ C‖f1‖LΦ(Rn+) = C‖f‖LΦ(2B+

r ).

It is easy to see that for arbitrary points x ∈ B+
r and y ∈ (2B+

r )c it holds
1
2
|x0 − y| ≤ |x̃− y| ≤ 3

2
|x0 − y|. (6.7)
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Applying (6.3) and the Fubuni theorem to T̃ f2 we obtain

|T̃ f2(x)| ≤ C
∫

Rn+

|f2(y)|
|x̃− y|n

dy

≤ C
∫

(2B+
r )c

|f(y)|
|x0 − y|n

dy ≤ C
∫

(2B+
r )c
|f(y)|

∫ ∞
|x0−y|

dt

tn+1

≤ C
∫ ∞

2r

(∫
2r≤|x0−y|<t

|f(y)|dy
) dt

tn+1

≤ C
∫ ∞

2r

(∫
B+
t

|f(y)|dy
) dt

tn+1
.

Applying Hölder’s inequality (Lemma 2.9), we obtain∫
(2B+

r )c

|f(y)|
|x0 − y|n

dy .
∫ ∞

2r

‖f‖LΦ(B+
t )‖1‖LeΦ(B+

t )

dt

tn+1

=
∫ ∞

2r

‖f‖LΦ(B+
t )

1

Φ̃−1(|B+
t |−1)

dt

tn+1

≈
∫ ∞

2r

‖f‖LΦ(B+
t )Φ

−1
(
t−n
)dt
t
.

(6.8)

Direct calculations give

‖T̃ f2‖LΦ(B+
r ) .

1
Φ−1

(
r−n

) ∫ ∞
2r

‖f‖LΦ(B+
t )Φ

−1
(
t−n
)dt
t

(6.9)

and the above estimate holds for all f ∈ LΦ(Rn+) satisfying (6.4). Thus

‖T̃ f‖LΦ(B+
r ) . ‖f‖LΦ(2B+

r ) +
1

Φ−1
(
r−n

) ∫ ∞
2r

‖f‖LΦ(B+
t )Φ

−1
(
t−n
)dt
t
. (6.10)

On the other hand,

‖f‖LΦ(2Br) =
C

Φ−1
(
r−n

)‖f‖LΦ(2Br)

∫ ∞
2r

Φ−1
(
t−n
)dt
t

≤ C

Φ−1
(
r−n

) ∫ ∞
2r

‖f‖LΦ(B+
t )Φ

−1
(
t−n
)dt
t

(6.11)

which together with (6.10) gives (6.5).
(ii) Let now f ∈ LΦ(Rn+), the weak (Φ,Φ)-boundedness of T̃ (see Theorem 5.2)

implies

‖T̃ f1‖WLΦ(B+
r ) ≤ ‖T̃ f1‖WLΦ(Rn+) ≤ C‖f1‖LΦ(Rn+) = C‖f‖LΦ(2B+

r ).

Estimate (6.6) follows by (6.8). �

Theorem 6.4. Let Φ any Young function, ϕ1, ϕ2 : Rn × R+ → R+ be measurable
functions satisfying (4.2) and T̃ be a sublinear operator satisfying (6.3).

(i) If T̃ bounded in LΦ(Rn+) then it is bounded from MΦ,ϕ1(Rn+) in MΦ,ϕ2(Rn+)
and

‖T̃ f‖MΦ,ϕ2 (Rn+) ≤ C‖f‖MΦ,ϕ1 (Rn+). (6.12)
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(ii) If T̃ bounded from LΦ(Rn+) to WLΦ(Rn+) then it is bounded from MΦ,ϕ1(Rn+)
to WMΦ,ϕ2(Rn+) and

‖T̃ f‖MΦ,ϕ2 (Rn+) ≤ C‖f‖WMΦ,ϕ1 (Rn+)

with constants independent of f .

Proof. Let T̃ be bounded in LΦ(Rn+). Then by Lemma 6.3 we have

‖T̃ f‖MΦ,ϕ2 (Rn+) . sup
x0, r>0

ϕ2(x0, r)−1

∫ ∞
r

‖f‖LΦ(B+(x0,t))Φ−1
(
t−n
)dt
t
.

Applying the Theorem 6.1 to the above integral with

w(r) = Φ−1
(
r−n

)
, v2(x0, r) = ϕ2(x0, r)−1,

v1(x0, r) = ϕ1(x0, r)−1Φ−1
(
r−n

)
, g(x0, r) = ‖f‖LΦ(B+(x0,r)),

H∗wg(x0, r) =
∫ ∞
r

‖f‖LΦ(B+(x0,t))w(t)dt,

where condition (6.2) is equivalent to (4.2), we obtain

‖T̃ f‖MΦ,ϕ2 (Rn+) . sup
x∈Rn, r>0

ϕ1(x0, r)−1Φ−1
(
r−n

)
‖f‖LΦ(B+(x0,r)) = ‖f‖MΦ,ϕ1 (Rn+).

The case p = 1 is treated in the same manner using (6.6) and (6.2),

‖T̃ f‖WM1,ϕ2 (Rn+) . sup
x0, r>0

ϕ2(x0, r)−1

∫ ∞
r

‖f‖LΦ(B+(x0,t))Φ−1
(
t−n
)dt
t

= sup
x0, r>0

ϕ1(x0, r)−1Φ−1
(
r−n

)
‖f‖LΦ(B+(x0,r))

= ‖f‖MΦ,ϕ1 (Rn+).

�

7. Commutators of sublinear operators generated by nonsingular
integrals in the space MΦ,ϕ(Rn+)

For a function a ∈ BMO and sublinear operator T̃ satisfying (6.3) define the
commutator T̃a = [a, T̃ ]f = aT̃ f − T̃ (af). Suppose that for any f ∈ L1(Rn+) with
compact support and x /∈ supp f , it holds

|T̃af(x)| ≤ C
∫

Rn+
|a(x)− a(y)| |f(y)|

|x̃− y|n
dy, (7.1)

with a constant independent of f and x. Suppose in addition that T̃a is bounded
in LΦ(Rn+) satisfying ‖T̃af‖LΦ(Rn+) ≤ C‖a‖∗‖f‖LΦ(Rn+). Our aim is to show bound-

edness of T̃a in MΦ,ϕ(Rn+). For this goal we recall some well known properties of
the BMO functions.

Lemma 7.1 (John-Nirenberg lemma [31]). Let a ∈ BMO and p ∈ (1,∞). Then
for any ball B it holds( 1

|B|

∫
B
|a(y)− aB|pdy

)1/p

≤ C(p)‖a‖∗. (7.2)
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Definition 7.2. A Young function Φ is said to be of upper type p (resp. lower
type p) for some p ∈ [0,∞), if there exists a positive constant C such that, for all
t ∈ [1,∞)(resp. t ∈ [0, 1]) and s ∈ [0,∞),

Φ(st) ≤ CtpΦ(s).

Remark 7.3. We know that if Φ is lower type p0 and upper type p1 with 1 < p0 ≤
p1 < ∞, then Φ ∈ ∆2 ∩ ∇2. Conversely if Φ ∈ ∆2 ∩ ∇2, then Φ is lower type p0

and upper type p1 with 1 < p0 ≤ p1 <∞ (see [29]).

Before proving the main theorems, we need the following lemma.

Lemma 7.4 ([30]). Let b ∈ BMO(Rn). Then there is a constant C > 0 such that

|bBr − bBt | ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r, and t.

In the following lemma which was proved in [24] we provide a generalization of
the property (7.2), from Lp-norms to Orlicz norms.

Lemma 7.5. Let b ∈ BMO and Φ be a Young function. Let Φ is lower type p0

and upper type p1 with 1 ≤ p0 ≤ p1 <∞, then

‖b‖∗ ≈ sup
x∈Rn,r>0

Φ−1
(
r−n

)
‖b(·)− bB(x,r)‖LΦ(B(x,r)).

For the variable exponent Lebesgue space Lp(·) Lemma 7.5 was proved in [28].
For a Young function Φ, let

aΦ := inf
t∈(0,∞)

tΦ′(t)
Φ(t)

, bΦ := sup
t∈(0,∞)

tΦ′(t)
Φ(t)

.

Remark 7.6. It is known that Φ ∈ ∆2 ∩∇2 if and only if 1 < aΦ ≤ bΦ <∞ (See,
for example [33]).

Remark 7.7. Remarks 7.6 and Remark 7.3 show that a Young function Φ is lower
type p0 and upper type p1 with 1 < p0 ≤ p1 <∞ if and only if 1 < aΦ ≤ bΦ <∞.

To estimate the commutator we shall employ the same idea which we used in
the proof of Lemma 6.3.

Lemma 7.8. Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2, a ∈ BMO and T̃a be
a bounded operator in LΦ(Rn+) satisfying (7.1). Suppose that for all f ∈ Lloc

Φ (Rn+)
and r > 0 holds ∫ ∞

1

(
1 + ln

t

r

)
‖f‖LΦ(B+

t (x0,t))Φ
−1
(
t−n
)dt
t
<∞. (7.3)

Then

‖T̃af‖LΦ(B+
r ) .

‖a‖∗
Φ−1

(
r−n

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B+(x0,t)) Φ−1

(
t−n
)dt
t
.

Proof. Decompose f as f = fχ2B+
r

+ fχ(2B+
r )c = f1 + f2. From the boundedness

of T̃a in LΦ(Rn+) it follows that

‖T̃af1‖LΦ(B+
r ) ≤ ‖T̃af1‖LΦ(Rn+) . ‖a‖∗‖f1‖LΦ(Rn+) = ‖a‖∗‖f‖LΦ(2B+

r ).
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On the other hand, because of (6.7), we can write

‖T̃af2‖LΦ(B+
r ) .

(∫
B+
r

(∫
(2B+

r )c

|a(x)− a(y)||f(y)|
|x0 − y|n

dy
)p
dx
)1/p

.
(∫
B+
r

(∫
(2B+

r )c

|a(y)− aB+
r
||f(y)|

|x0 − y|n
dy
)p
dx
)1/p

+
(∫
B+
r

(∫
(2B+

r )c

|a(x)− aB+
r
||f(y)|

|x0 − y|n
dy
)p
dx
)1/p

= I1 + I2.

We estimate I1 as follows

I1 .
1

Φ−1
(
r−n

) ∫
(2B+

r )c

|a(y)− aB+
r
||f(y)|

|x0 − y|n
dy

=
1

Φ−1
(
r−n

) ∫
(2B+

r )c
|a(y)− aB+

r
||f(y)|

∫ ∞
|x0−y|

dt

tn+1
dy

=
1

Φ−1
(
r−n

) ∫ ∞
2r

∫
2r≤|x0−y|≤t

|a(y)− aB+
r
| |f(y)|dy dt

tn+1

.
1

Φ−1
(
r−n

) ∫ ∞
2r

∫
B+
t

|a(y)− aB+
r
||f(y)|dy dt

tn+1
.

Applying Hölder’s inequality, Lemma 7.1 and (7.4), we obtain

I1 .
( 1

Φ−1
(
r−n

) ∫ ∞
2r

∫
B+
t

|a(y)− aB+
t
||f(y)|dy dt

tn+1

+
1

Φ−1
(
r−n

) ∫ ∞
2r

|aB+
r
− aB+

t
|
∫
B+
t

|f(y)|dy dt

tn+1

)
.
( 1

Φ−1
(
r−n

) ∫ ∞
2r

∥∥∥a(·)− aB+
t

∥∥∥
LeΦ(B+

t )
‖f‖LΦ(B+

t )

dt

tn+1

+
1

Φ−1
(
r−n

) ∫ ∞
2r

|aB+
r
− aB+

t
|‖f‖LΦ(B+

t ) Φ−1
(
t−n
)dt
t

)
. ‖a‖∗

1
Φ−1

(
r−n

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B+

t ) Φ−1
(
t−n
)dt
t
.

To estimate I2 note that

I2 = ‖a(·)− aB+
r
‖LΦ(B+

r )

∫
(2B+

r )c

|f(y)|
|x0 − y|n

dy.

By Lemma 7.1 and (6.8) we obtain

I2 .
‖a‖∗

Φ−1
(
r−n

) ∫
(2B+

r )c

|f(y)|
|x0 − y|n

dy .
‖a‖∗

Φ−1
(
r−n

) ∫ ∞
2r

‖f‖LΦ(B+
t )Φ

−1
(
t−n
)dt
t
.

Summing I1 and I2 we obtain that for all p ∈ (1,∞),

‖T̃af2‖LΦ(B+
r ) .

‖a‖∗
Φ−1

(
r−n

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B+

t ) Φ−1
(
t−n
)dt
t
.

Finally,

‖T̃af‖LΦ(B+
r ) . ‖a‖∗ ‖f‖LΦ(2B+

r ) +
‖a‖∗

Φ−1
(
r−n

) ∫ ∞
2r

(
1+ln

t

r

)
‖f‖LΦ(B+

t ) Φ−1
(
t−n
)dt
t
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and the statement follows by (6.11). �

Theorem 7.9. Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2, a ∈ BMO and
ϕ1, ϕ2 : Rn × R+ → R+ be measurable functions satisfying (4.4). Suppose T̃a be
a sublinear operator bounded on LΦ(Rn+) and satisfying (7.1). Then T̃a is bounded
from MΦ,ϕ1(Rn+) to MΦ,ϕ2(Rn+) and

‖T̃af‖MΦ,ϕ2 (Rn+) ≤ C‖a‖∗‖f‖MΦ,ϕ1 (Rn+) (7.4)

with a constant independent of f .

The statement of the theorem follows by Lemma 7.8 and Theorem 6.1 in the
same manner as the proof of Theorem 6.4.

8. Singular and nonsingular integral operators in the spaces MΦ,ϕ

In this section we deal with Calderón-Zygmund type integrals and their com-
mutators with BMO functions. We start with the definition of the corresponding
kernel.

Definition 8.1. A measurable function K(x, ξ) : Rn × Rn \ {0} → R is called a
variable Calderón-Zygmund kernel if:

(i) K(x, ·) is a Calderón-Zygmund kernel for almost all x ∈ Rn:
(a) K(x, ·) ∈ C∞(Rn \ {0}),
(b) K(x, µξ) = µ−nK(x, ξ) for all µ > 0,
(c)

∫
Sn−1 K(x, ξ)dσξ = 0,

∫
Sn−1 |K(x, ξ)|dσξ < +∞,

(ii) max|β|≤2n ‖Dβ
ξK(x, ξ)‖L∞(Rn×Sn−1) = M <∞ independently of x.

The singular integrals

Kf(x) = P.V.
∫

Rn
K(x, x− y)f(y)dy,

C[a, f ](x) = P.V.
∫

Rn
K(x, x− y)f(y)[a(x)− a(y)]dy

= a(x)Kf(x)− K(af)(x)

are bounded in LΦ(Rn) (see [39]), moreover

|K(x, ξ)| ≤ |ξ|−n
∣∣K(x, ξ

|ξ|
)∣∣ ≤M |ξ|−n

which implies

|Kf(x)| ≤ C
∫

Rn

|f(y)|
|x− y|n

dy, |C[a, f ](x)| ≤ C
∫

Rn

|a(x)− a(y)||f(y)|
|x− y|n

dy

and hence the validity of all results from § 4. Let us note that any measurable
function ϕ : Rn × R+ → R+ satisfying the condition (4.4) satisfies also (4.2) with
ϕ1 ≡ ϕ2 ≡ ϕ. Hence the following results hold as a simple application of the
estimates from § 4.

Theorem 8.2. Let Φ be a Young function with Φ ∈ ∆2∩∇2 and ϕ : Rn×R+ → R+

be measurable function such that for all x ∈ Rn and r > 0∫ ∞
r

(
1 + ln

t

r

)(
ess inft<s<∞

ϕ1(x, s)
Φ−1

(
s−n

))Φ−1
(
t−n
)dt
t
≤ Cϕ(x, r). (8.1)
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Then for any f ∈ MΦ,ϕ(Rn) and a ∈ BMO there exist constants depending on
n, p, ϕ and the kernel such that

‖Kf‖MΦ,ϕ(Rn) ≤ C‖f‖MΦ,ϕ(Rn), ‖C[a, f ]‖MΦ,ϕ(Rn) ≤ C‖a‖∗‖f‖MΦ,ϕ(Rn).

The above theorem follows from (6.12) and (7.4).

Example 8.3. The weight ϕ(r) = rβ Φ−1
(
r−n

)
, 0 < β < n satisfies condition

(8.1).

Example 8.4. The weight ϕ(r) = rβ Φ−1
(
r−n

)
lnm(e + r), m ≥ 1, 0 < β < n

satisfies condition (8.1) and the space MΦ,ϕ does not coincide with any Morrey
space.

Since we aim at studying regularity properties of the solution of the Dirichlet
problem (3.1) we need of some additional local results.

Corollary 8.5. Let Ω ⊂ Rn, ∂Ω ∈ C1,1, a ∈ BMO(Ω) and f ∈ MΦ,ϕ(Ω) with Φ
and ϕ as in Theorem 8.2. Then

‖Kf‖MΦ,ϕ(Ω) ≤ C‖f‖MΦ,ϕ(Ω) ‖C[a, f ]‖MΦ,ϕ(Ω) ≤ C‖a‖∗‖f‖MΦ,ϕ(Ω) (8.2)

with C = C(n, p, ϕ,Ω,K).

Corollary 8.6. Let Φ and ϕ be as in Theorem 8.2 and a ∈ VMO with VMO-
modulus γa. Then for any ε > 0 there exists a positive number ρ0 = ρ0(ε, γa) such
that for any ball Br with a radius r ∈ (0, ρ0) and all f ∈MΦ,ϕ(Br) holds

‖C[a, f ]‖MΦ,ϕ(B+
r ) ≤ Cε‖f‖MΦ,ϕ(B+

r ), (8.3)

with C = C(n, p, ϕ,Ω,K).

To obtain the above estimates it suffices to extend K(x, ·) and f(·) as zero outside
Ω (see [9, Theorem 2.11] for details). Recall that the extension of a keeps its BMO
norm or VMO-modulus according to [1, 32].

For any x, y ∈ Rn+, x̃ = (x′,−xn) define the generalized reflection T (x; y) as

T (x; y) = x− 2xn
an(y)
ann(y)

T (x) = T (x;x) : Rn+ → Rn−,

where an is the last row of the coefficients matrix a. Then there exist positive
constants C1, C2 depending on n and Λ, such that

C1|x̃− y| ≤ |T (x)− y| ≤ C2|x̃− y|, ∀x, y ∈ Rn+.
For any f ∈MΦ,ϕ(Rn+) and a ∈ BMO consider the nonsingular integral operators

K̃f(x) =
∫

Rn+
K(x, T (x)− y)f(y)dy, C̃[a, f ](x) = a(x)Kf(x)− K(af)(x).

The kernel K(x, T (x)−y) : Rn×Rn+ → R is not singular and verifies the conditions
(i)(b) and (ii) from Definition 8.1. Moreover

|K(x, T (x)− y)| ≤M |T (x)− y|−n ≤ C|x̃− y|−n,
which implies

|K̃f(x)| ≤ C
∫

Rn+

|f(y)|
|x̃− y|

dy, |C̃[a, f ](x)| ≤ C
∫

Rn+
|a(x)− a(y)| |f(y)|

|x̃− y|
dy.

The following estimates are simple consequence of the results in § 6 and § 7.
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Theorem 8.7. Let Φ be a Young function with Φ ∈ ∆2 ∩∇2, a ∈ BMO(Rn+) and
ϕ be measurable function satisfying (8.1). Then the operators K̃f and C̃[a, f ] are
continuous in MΦ,ϕ and for all f ∈MΦ,ϕ(Rn+) holds

‖K̃f‖MΦ,ϕ(Rn+) ≤ C‖f‖MΦ,ϕ(Rn+),

‖C̃[a, f ]‖MΦ,ϕ(Rn+) ≤ C‖a‖∗‖f‖MΦ,ϕ(Rn+)

(8.4)

with a constant dependent on known quantities only.

Corollary 8.8. Let Φ and ϕ be as in Theorem 8.7 and a ∈ VMO with a VMO-
modulus γa. Then for any ε > 0 there exists a positive number ρ0 = ρ0(ε, γa) such
that for any ball B+

r with a radius r ∈ (0, ρ0) and all f ∈MΦ,ϕ(B+
r ) holds

‖C̃[a, f ]‖MΦ,ϕ(B+
r ) ≤ Cε‖f‖MΦ,ϕ(B+

r ), (8.5)

where C is independent of ε, f and r.

The proof of the above corollary is as that of [9, Theorem 2.13].

9. Dirichlet problem

We consider the Dirichlet problem for second order linear equations

Lu := aij(x)Diju = f(x) a.a. x ∈ Ω,

u ∈ W2,Φ,ϕ(Ω) ∩W 0
1,Φ(Ω)

(9.1)

subject to the following conditions:

(H1) Uniform ellipticity of L: there exists a constant Λ > 0, such that

Λ−1|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 a.a. x ∈ Ω, ∀ξ ∈ Rn

aij(x) = aji(x) 1 ≤ i, j ≤ n.

This assumption implies immediately essential boundedness of the coeffi-
cients aij ∈ L∞(Ω).

(H2) Regularity of the data: aij ∈ VMO(Ω) and f ∈ MΦ,ϕ(Ω) with 1 < p <∞
and ϕ : Ω× R+ → R+ measurable.

Theorem 9.1 (Interior estimate). Let u ∈ W loc
2,Φ(Ω) and L be a linear uniformly

elliptic operator with VMO coefficients such that Lu ∈M loc
Φ,ϕ(Ω) with Φ ∈ ∆2 ∩∇2

and ϕ satisfying (8.1). Then Diju ∈MΦ,ϕ(Ω′) for any Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω and

‖D2u‖MΦ,ϕ(Ω′) ≤ C
(
‖u‖MΦ,ϕ(Ω′′) + ‖Lu‖MΦ,ϕ(Ω′′)

)
, (9.2)

where the constant depends on known quantities and dist (Ω′, ∂Ω′′).

Proof. Take an arbitrary point x ∈ suppu and a ball Br(x) ⊂ Ω′, choose a point
x0 ∈ Br(x) and fix the coefficients of L in x0. Consider the constant coefficients
operator L0 = aij(x0)Dij . From the classical theory we know that a solution
v ∈ C∞0 (Br(x)) of L0v = (L0 − L)v + Lv can be presented as Newtonian type
potential

v(x) =
∫
Br

Γ0(x− y)[(L0 − L)v(y) + Lv(y)]dy,
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where Γ0(x− y) = Γ(x0, x− y) is the fundamental solution of L0. Taking Dijv and
unfreezing the coefficients we obtain for all i, j = 1, . . . , n (cf. [9])

Dijv(x) = P.V.
∫
Br

Γij(x, x− y)[Lv(y) +
(
ahk(x)− ahk(y)

)
Dhkv(y)]dy

+ Lv(x)
∫

Sn
Γj(x, y)yidσy

= KijLv(x) + Cij [ahk, Dhkv](x) + Lv(x)
∫

Sn−1
Γj(x; y)yidσy.

(9.3)

Here Γij(x, ξ) stand for the derivatives DξiξjΓ(x, ξ). The known properties of the
fundamental solution imply that Γij(x, ξ) are variable Calderón-Zygmund kernels
in the sense of Definition 8.1. The representation formula (9.3) still holds for any
v ∈ W2,p(Br) ∩W 0

1,p(Br) because of the approximation properties of the Sobolev
functions with C∞0 functions. In view of (8.2), (8.3) and (9.3) for each ε > 0 there
exists r0(ε) such that for any r < r0(ε) it holds

‖D2v‖Φ,ϕ;r ≤ C
(
ε‖D2v‖Φ,ϕ;r + ‖Lv‖Φ,ϕ;r

)
, ‖ · ‖Φ,ϕ;r := ‖ · ‖MΦ,ϕ(B+

r ).

Choosing ε (and hence also r!) small enough we can move the norm of D2v on the
left-hand side that gives

‖D2v‖Φ,ϕ;r ≤ C‖Lv‖Φ,ϕ;r . (9.4)

Define a cut-off function η(x) such that for θ ∈ (0, 1), θ′ = θ(3 − θ)/2 > θ and
s = 0, 1, 2 we have

η(x) =

{
1 x ∈ Bθr
0 x 6∈ Bθ′r

η(x) ∈ C∞0 (Br), |Dsη| ≤ C[θ(1− θ)r]−s.

Applying (9.4) to v(x) = η(x)u(x) ∈W2,Φ,ϕ(Br) ∩W 0
1,Φ(Br) we obtain

‖D2u‖Φ,ϕ;θr ≤ C‖Lv‖Φ,ϕ;θ′r

≤ C
(
‖Lu‖Φ,ϕ;θ′r +

‖Du‖Φ,ϕ;θ′r

θ(1− θ)r
+
‖u‖Φ,ϕ;θ′r

[θ(1− θ)r]2
)
.

Define the weighted semi-norm

Θs = sup
0<θ<1

[
θ(1− θ)r

]s‖Dsu‖Φ,ϕ;θr, s = 0, 1, 2.

Because of the choice of θ′ we have θ(1−θ) ≤ 2θ′(1−θ′). Thus, after standard trans-
formations and taking the supremum with respect to θ ∈ (0, 1) the last inequality
rewrites as

Θ2 ≤ C
(
r2‖Lu‖Φ,ϕ;r + Θ1 + Θ0

)
. (9.5)

Lemma 9.2 (Interpolation inequality). There exists a constant C independent of
r such that

Θ1 ≤ εΘ2 +
C

ε
Θ0 for any ε ∈ (0, 2).

Proof. By simple scaling arguments we obtain in MΦ,ϕ(Rn) an interpolation in-
equality analogous to [17, Theorem 7.28]

‖Du‖Φ,ϕ;r ≤ δ‖D2u‖Φ,ϕ;r +
C

δ
‖u‖Φ,ϕ;r, δ ∈ (0, r) .
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We can always find some θ0 ∈ (0, 1) such that

Θ1 ≤ 2[θ0(1− θ0)r]‖Du‖Φ,ϕ;θ0r

≤ 2[θ0(1− θ0)r]
(
δ‖D2u‖Φ,ϕ;θ0r +

C

δ
‖u‖Φ,ϕ;θ0r

)
.

The assertion follows choosing δ = ε
2 [θ0(1− θ0)r] < θ0r for any ε ∈ (0, 2). �

Interpolating Θ1 in (9.5), we obtain

r2

4
‖D2u‖Φ,ϕ;r/2 ≤ Θ2 ≤ C

(
r2‖Lu‖Φ,ϕ;r + ‖u‖Φ,ϕ;r

)
and hence the Caccioppoli-type estimate

‖D2u‖Φ,ϕ;r/2 ≤ C
(
‖Lu‖Φ,ϕ;r +

1
r2
‖u‖Φ,ϕ;r

)
. (9.6)

Let v = {vij}nij=1 ∈ [LΦ,ω(Br)]n
2

be arbitrary function matrix. Define the operators

Sijhk(vhk)(x) = Cij [ahk, vhk](x) i, j, h, k = 1, . . . , n.

Because of the VMO properties of aij ’s we can choose r so small that
n∑

i,j,h,k=1

‖Sijhk‖ < 1. (9.7)

Now for a given u ∈W2,Φ(Br) ∩W 0
1,Φ(Br) with Lu ∈MΦ,ϕ(Br) define

Hij(x) = KijLu(x) + Lu(x)
∫

Sn−1
Γj(x; y)yidσy

and (8.2) implies Hij ∈MΦ,ϕ(Br). Define the operator W by the setting

Wv =
{ n∑
h,k=1

(
Sijhkvhk +Hij(x)

)}n
ij=1

:
[
MΦ,ϕ(Br)

]n2

→
[
MΦ,ϕ(Br)

]n2

.

By (9.7) the operator W is a contraction mapping and there exists a unique fixed
point ṽ = {ṽij}nij=1 ∈ [MΦ,ϕ(Br)]n

2
of W such that Wṽ = ṽ. On the other hand it

follows from the representation formula (9.3) that also D2u = {Diju}nij=1 is a fixed
point of W. Hence D2u ≡ ṽ, that is Diju ∈MΦ,ϕ(Br) and in addition (9.6) holds.
The interior estimate (9.2) follows from (9.6) by a finite covering of Ω′ with balls
Br/2, r < dist(Ω′, ∂Ω′′). �

To prove a local boundary estimate for the norm of Diju we define the space
W γ0

2,Φ(B+
r ) as a closure of Cγ0 = {u ∈ C∞0 (B(x0, r)) : u(x) = 0 for xn ≤ 0} with

respect to the norm of W2,p.

Theorem 9.3 (Boundary estimate). Let u ∈ W γ0
2,Φ(B+

r ) and suppose that Lu ∈
MΦ,ϕ(B+

r ) with Φ ∈ ∆2 ∩ ∇2 and ϕ satisfying (8.1). Then Diju ∈ MΦ,ϕ(B+
r ) and

for each ε > 0 there exists r0(ε) such that

‖Diju‖Φ,ϕ;B+
r
≤ C‖Lu‖Φ,ϕ;B+

r
, ∀r ∈ (0, r0). (9.8)
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Proof. For u ∈W γ0
2,Φ(B+

r ) the boundary representation formula holds (see [10])

Diju(x) = P.V.
∫
B+
r

Γij(x, x− y)Lu(y)dy

+ P.V.
∫
B+
r

Γij(x, x− y)
[
ahk(x)− ahk(y)

]
Dhku(y)dy

+ Lu(x)
∫

Sn−1
Γj(x, y)yidσy + Iij(x), ∀i, j = 1, . . . , n,

(9.9)

where we have set

Iij(x) =
∫
B+
r

Γij(x, T (x)− y)Lu(y)dy

+
∫
B+
r

Γij(x, T (x)− y)
[
ahk(x)− ahk(y)

]
Dhku(y)dy

∀i, j = 1, . . . , n− 1,

Iin(x) = Ini(x)

=
∫
B+
r

Γil(x, T (x)− y)(DnT (x))l

×
{[
ahk(x)− ahk(y)

]
Dhku(y) + Lu(y)

}
dy, ∀i = 1, . . . , n− 1,

Inn(x) =
∫
B+
r

Γls(x, T (x)− y)(DnT (x))l(DnT (x))s

×
{[
ahk(x)− ahk(y)

]
Dhku(y) + Lu(y)

}
dy,

where DnT (x) =
(
(DnT (x))1, . . . , (DnT (x))n

)
= T (en, x). Applying estimates

(8.4) and (8.5), taking into account the VMO properties of the coefficients aij ’s, it
is possible to choose r0 so small that

‖Diju‖p,ϕ;B+
r
≤ C‖Lu‖p,ϕ;B+

r
for each r < r0.

For an arbitrary function matrix w = {wij}nij=1 ∈ [MΦ,ϕ(B+
r )]n

2
define

Sijhk(whk)(x) = Cij [ahk, whk](x), i, j, h, l = 1, . . . , n,

S̃ijhk(whk)(x) = C̃ij [ahk, whk](x), i, j = 1, . . . , n− 1; h, k = 1, . . . , n,

S̃inhk(whk)(x) = C̃il[ahk, whk](DnT (x))l, i, h, k = 1, . . . , n,

S̃nnhk(whk)(x) = C̃ls[ahk, whk](x)(DnT (x))l(DnT (x))s, h, k = 1, . . . , n.

Because of (8.3) and (8.5) we can take r so small that
n∑

i,j,h,k=1

‖Sijhk + S̃ijhk‖ < 1. (9.10)

Now, given u ∈W γ0
2,p(B+

r ) with Lu ∈MΦ,ϕ(B+
r ) we set

H̃ij(x) = KijLu(x) + K̃ijLu(x) + K̃ilLu(x)(DnT (x))l

+ K̃lsLu(x)(DnT (x))l(DnT (x))s + Lu(x)
∫

Sn−1
Γj(x, y)yidσy
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and the Theorems 8.2 and 8.7 imply H̃ij ∈MΦ,ϕ(B+
r ). Define the operator

Uw =
{ n∑
h,k=1

(
Sijhk(whk) + S̃ijhk(whk)

)
) + H̃ij(x)

}n
ij=1

.

By (9.10) it is a contraction mapping in
[
MΦ,ϕ(B+

r )
]n2

and there is unique fixed
point w̃ = {w̃ij}nij=1 such that Uw̃ = w̃. On the other hand, it follows from the
representation formula (9.9) that also D2u = {Diju}nij=1 is a fixed point of U .
Hence D2u ≡ w̃, Diju ∈MΦ,ϕ(B+

r ) and the estimate (9.8) holds. �

Theorem 9.4. Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2 and L be uni-
formly elliptic operator satisfying conditions H1) and H2). Then for any function
f ∈ MΦ,ϕ(Ω) the unique solution of the problem (9.1) has second derivatives in
MΦ,ϕ(Ω). Moreover

‖D2u‖MΦ,ϕ(Ω) ≤ C
(
‖u‖MΦ,ϕ(Ω) + ‖f‖MΦ,ϕ(Ω)

)
(9.11)

and the constant C depends on known quantities only.

Proof. Since MΦ,ϕ(Ω) ⊂ LΦ(Ω), problem (9.1) is uniquely solvable in the Sobolev
space W2,Φ(Ω) ∩W 0

1,Φ(Ω) according to [10]. By local flattering of the boundary,
covering with semi-balls, taking a partition of unity subordinated to that covering
and applying of estimate (9.8) we obtain a boundary a priori estimate that unified
with (9.2) ensures validity of (9.11). �
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