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Abstract. In this article, we discuss the existence of positive solution to a
nonlinear p-Laplacian fractional differential equation whose nonlinearity con-

tains a higher-order derivative

Dβ
0+φp

`
Dα

0+u(t)
´

+ f
`
t, u(t), u′(t), . . . , u(n−2)(t)

´
= 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(n−2)(1) = au(n−2)(ξ) = 0, Dα
0+u(0) = Dα

0+u(1) = 0,

where n− 1 < α ≤ n, n ≥ 2, 1 < β ≤ 2, 0 < ξ < 1, 0 ≤ a ≤ 1

and 0 ≤ aξα−n ≤ 1, φp(s) = |s|p−2s, p > 1, φ−1
p = φq ,

1
p

+ 1
q

= 1.

Dα
0+ , Dβ

0+ are the standard Riemann-Liouville fractional derivatives, and

f ∈ C((0, 1) × [0,+∞)n−1, [0,+∞)). The Green’s function of the fractional

differential equation mentioned above and its relevant properties are presented,

and some novel results on the existence of positive solution are established by
using the mixed monotone fixed point theorem and the upper and lower so-

lution method. The interesting of this paper is that the nonlinearity involves

the higher-order derivative, and also, two examples are given in this paper to
illustrate our main results from the perspective of application.

1. Introduction

In the past decades, there has been a growing interest in the study of the frac-
tional differential equations due to the intensive development of the fractional cal-
culus theory itself and its applications in various sciences such as engineering, con-
trol theory, blood flow phenomena, bode analysis of feedback amplifiers, electro-
analytical chemistry, and aerodynamics, etc., for details, see [1, 7, 5, 14, 15, 12] and
references therein. For example, in studying a transfer process in porous material,
Mehaute [20] discussed the following fractional differential equations

0D
1/d−1
t J(t) = LX(t),

where J(t) is the macroscopic flow across the material interface, X(t) is the local
driving force, L is a constant, and d is the fractal dimension of the material. In
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the meantime, the existence theory of solutions to the fractional boundary-value
problems has attracted the attention of many researchers quite recently, see [2, 3,
6, 18, 19, 21, 23, 26, 28, 29, 34] and their references.

We find that p-Laplacian differential equation has been widely applied in analyz-
ing mechanics, physics, dynamic systems and other related fields of mathematical
modeling. Hence, there have been many published papers which are devoted to the
existence of solutions to the differential equations with p-Laplacian operator, see
[8, 9, 10, 17, 24, 25, 27, 30, 31, 32] and their references. For example, in study-
ing the turbulent flow in a porous medium, Leibenson introduced the p-Laplacian
equation in [13] as follows

(φp(x′(t)))′ = f(t, x(t), x′(t)),

where φp(s) is p-Laplacian operator, i.e., φp(s) = |s|p−2s for p > 1 and (φp)−1 = φq,
and 1/p+ 1/q = 1.

So, based on the above illustration, it is of significance to make the study of the
nonlinear p-Laplacian fractional differential equation. In order to better explore
the existence of positive solution to the nonlinear p-Laplacian fractional differential
equation, here we briefly review some related results in the existing literature [31,
11, 16, 4].

Tian and Li [31] investigated the existence of positive solution to the following
fractional differential equations with p-Laplacian operator

Dα
0+φp

(
Dβ

0+u(t)
)

+ f
(
t, u(t)

)
= 0, t ∈ (0, 1),

u(0) = 0, Dγ
0+u(1) = λDγ

0+u(ξ) = 0, Dβ
0+u(0) = 0,

(1.1)

where φp(s) = |s|p−2s, p > 1, φ−1
p = φq, 1

p + 1
q = 1, α, β, γ ∈ R, 0 < α < 1,

1 < β ≤ 2, 0 < γ ≤ 1 and 1 + γ ≤ β, 0 < ξ < 1, λ ∈ [0,+∞) and λξβ−γ−1 <

1. Dα
0+ , Dβ

0+ are the standard Riemann-Liouville fractional derivatives, and f ∈
C([0, 1]× [0,+∞), [0,+∞)). The existence results on positive solution to fractional
differential equations (1.1) are obtained by using some fixed point theorems in a
cone.

There are very few publications concerning the existence of positive solutions
to fractional differential equations with nonlinear terms involving the derivative
[4, 11, 16]. Cheng et al. [4] investigated the positive solutions to the following
fractional differential equations whose nonlinearity contains the one-order derivative
as the form

Dα
0+u(t) + f

(
t, u(t), u′(t)

)
= 0, t ∈ (0, 1), n− 1 < α ≤ n,

u(i)(0) = 0, i = 0, 1, 2, . . . , n− 2, [Dβ
0+u(t)]t=1 = 0, 2 ≤ β ≤ n− 2,

(1.2)

where u(i) represents the ith derivative of u, n > 4 (n ∈ N), Dα
0+ is the standard

Riemann-Liouville fractional derivative of order n − 1 < α ≤ n and f(t, u, u′) :
[0, 1]× [0,∞)× (−∞,+∞)→ [0,∞) satisfies Carathéodory type conditions. Some
sufficient conditions for the existence of positive solutions to boundary-value prob-
lem (1.2) are established by using fixed-point theorem.

It is notable that the nonlinear term f(t, u(t)) in equation (1.1) does not involve
the derivative. In [4, 11, 16], attention was mainly focused on the existence of frac-
tional differential equations with nonlinear terms involving the first-order derivative
and the p-Laplacian operator is not involved. Apparently, the nonlinear term which
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is to be studied in this paper

f(t, u(t), u′(t), . . . , u(n−2)(t)), n = 1, 2, . . . ,

contains the higher-derivative, and we believe the study in this paper is theoreti-
cally and practically significant because it will represent a more general case. Nat-
urally, it is interesting and necessary to study the existence of positive solutions
to p-Laplacian fractional differential equations with nonlinear terms involving the
higher-derivative.

In this paper, we mainly study the existence of positive solutions to the follow-
ing p-Laplacian fractional differential equations with nonlinear terms involving the
higher-derivative:

Dβ
0+φp(Dα

0+u(t)) + f
(
t, u(t), u′(t), . . . , u(n−2)(t)

)
= 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(n−2)(1) = au(n−2)(ξ) = 0, Dα
0+u(0) = Dα

0+u(1) = 0,

(1.3)

where n− 1 < α ≤ n, n ≥ 2, 1 < β ≤ 2, 0 < ξ < 1, 0 ≤ a ≤ 1 and 0 ≤ aξα−n ≤ 1,
φp(s) = |s|p−2s, p > 1, φ−1

p = φq, 1
p + 1

q = 1. Dα
0+ , Dβ

0+ are the standard Riemann-
Liouville fractional derivatives, and f ∈ C((0, 1)× [0,+∞)n−1, [0,+∞)).

The Green’s function of the boundary-value problem (1.3) and the relevant prop-
erties are to be presented later, and because of the nonlinear terms involving the
higher-derivative in fractional differential equations (1.3), it’s very difficult or even
impossible to obtain the existence of positive solution of it by using some fixed
point theorem in a cone, such as nonlinear alternative of Leray-Schauder type and
Krasnosel’skii’s fixed point theorem, and it is the same for the methods listed in
[4, 11, 16, 31]. The reason for that is the nonlinearity is in a high dimensional
space and is not controlled in a cone because of the nonlinear terms involving the
higher-derivative, and so we establish some novel results on the existence of positive
solution by using the mixed monotone fixed point theorem and the upper and lower
solution method.

The first special feature and innovative contribution of our work is that we
present in this paper the Green’s function of the differential equation and its rel-
evant properties, which is very difficult because the differential equation relates
to the standard Riemann-Liouville fractional derivatives and p-Laplacian opera-
tor. The second special feature and innovative contribution of our work is that
the nonlinearity involves the higher-order derivative, which is also not so easy for
the nonlinearity is not controlled in a cone because of the nonlinear terms involv-
ing the higher-derivative. Therefore, we try to deal with this problem by using a
new method which is different from many other works [4, 11, 16, 31]. In addition,
two examples are also given in this paper to illustrate our main results from the
viewpoint of applications.

The structure of our paper is as follows. Section 1 is the introduction of the
paper. In Section 2, some necessary definitions and lemmas which are cited in our
paper are presented. In Section 3, we construct an equivalent fractional differential
equation. The Green’s function of the equivalent fractional differential equation is
constructed, and its properties are presented in Section 4. The existence results on
unique positive solution to the fractional boundary-value problem (1.3) are obtained
in Section 5. The existence theorem of at least single positive solution to the
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fractional boundary-value problem (1.3) is proved in Section 6. In Section 7, we
give two examples to illustrate our main results.

2. Preliminaries

To prove our main results, in this section we present some basic definitions and
technical lemmas which can help us to better understand our main results and
proofs. For the basic terminologies, we refer the reader to references [7, 11, 22, 33].

Definition 2.1 ([11]). The Riemann-Liouville fractional integral of order α > 0 of
a function y: (0, ∞)→ R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

provided that the right side is pointwise defined on (0,∞).

Definition 2.2 ([11]). The Riemann-Liouville fractional derivative of order α > 0
of a function y : (0,∞)→ R is given by

Dα
0+y(t) =

1
Γ(n− α)

(
d

dt
)n
∫ t

0

(t− s)n−α−1y(s)ds,

where n is the smallest integer greater than or equal to α, provided that the right
side is pointwise defined on (0,∞).

Let P be a normal cone of a Banach space E, and e ∈ P with ‖e‖ ≤ 1, e 6= θ (θ
is zero element of E). Define

Qe = {x ∈ P : there exist constants m,M > 0 such that me ≤ x ≤Me}.

Definition 2.3 ([33]). Let T be a operator satisfies T : Qe × Qe → Qe. T is
said to be mixed monotone if T (x, y) is nondecreasing in x and nonincreasing in
y, i.e., if x1 ≤ x2 (x1, x2 ∈ Qe) implies T (x1, y) ≤ T (x2, y) for any y ∈ Qe, and
y1 ≥ y2 (y1, y2 ∈ Qe) implies T (x, y1) ≤ T (x, y2) for any x ∈ Qe. Element x∗ ∈ Qe
is called a fixed point of T if T (x∗, x∗) = x∗.

Next we give some Lemmas which are used in our main results.

Lemma 2.4 ([11]). The equality Iγ0+I
δ
0+y(t) = Iγ+δ

0+ y(t), γ > 0, δ > 0 holds for
y ∈ C(0, 1) ∩ L(0, 1).

Lemma 2.5 ([11]). The equality Dγ
0+I

γ
0+y(t) = y(t), γ > 0 holds for y ∈ C(0, 1) ∩

L(0, 1).

Lemma 2.6 ([11]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative
of α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then the fractional differential equation

Dα
0+y(t) = 0,

has a unique solution y(t) = C1t
α−1 + C2t

α−2 + · · · + Cnt
α−n, where Ci ∈ R,

i = 1, 2, . . . , n, n is the smallest integer greater than or equal to α.

Lemma 2.7 ([11]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative
of α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+Dα
0+y(t) = y(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n,

for some Ci ∈ R, i = 1, 2, . . . , n, where n is the smallest integer greater than or
equal to α.
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Lemma 2.8 ([33]). Assume that the operator T : Qe×Qe → Qe is mixed monotone
operator and there exists a constant δ (0 < δ < 1), such that

T (tx,
1
t
y) ≥ tδT (x, y), x, y ∈ Qe, 0 < t < 1.

Then the operator T has a unique fixed point x∗(x∗ ∈ Qe).

3. Equivalence of fractional differential equation

In this section, we construct an equivalent fractional differential equation, and
prove that search for the solution of fractional differential equation (1.3) is equiva-
lent to finding the solution of it.

Lemma 3.1. Let u(t) = In−2
0+ v(t), v ∈ C[0, 1], then the fractional boundary-value

problem (1.3) is equivalent to the following fractional differential equation

Dβ
0+φp(Dα−n+2

0+ v(t)) + f(t, In−2
0+ v(t), In−3

0+ v(t), . . . , I1
0+v(t), v(t)) = 0,

t ∈ (0, 1)

v(0) = 0, v(1) = av(ξ), Dα−n+2
0+ v(0) = Dα−n+2

0+ v(1) = 0,

(3.1)

where n− 1 < α ≤ n, n ≥ 2, 1 < β ≤ 2, 0 < ξ < 1, 0 ≤ a ≤ 1 and 0 ≤ aξα−n ≤ 1,
φp = |s|p−2s, p > 1, φ−1

p = φq, 1
p + 1

q = 1 and f ∈ C((0, 1)× [0,+∞)n−1, [0,+∞)).
Moreover, v ∈ C([0, 1], [0,+∞)) is a positive solution of the differential equation
(3.1) means that u(t) = In−2

0+ v(t) is a positive solution of the differential equation
(1.3).

Proof. Let u(t) = In−2
0+ v(t), it follow from the definition of Riemann-Liouville frac-

tional derivative, Lemma 2.4 and Lemma 2.5 that

Dn
0+I

n−α
0+ u(t) = Dn

0+I
n−α
0+ In−2

0+ v(t) = Dn
0+I

2n−α−2
0+ v(t) = Dα−n+2

0+ v(t),

u′(t) = D1
0+I

n−2
0+ v(t) = D1

0+I1
0+I

n−3
0+ v(t) = In−3

0+ v(t),

u′′(t) = D2
0+I

n−2
0+ v(t) = D2

0+I2
0+I

n−4
0+ v(t) = In−4

0+ v(t),
. . .

u(n−3)(t) = Dn−3
0+ In−2

0+ v(t) = Dn−3
0+ In−3

0+ I1
0+v(t) = I1

0+v(t),

u(n−2)(t) = Dn−2
0+ In−2

0+ v(t) = v(t).

Therefore

Dβ
0+(φpDα−n+2

0+ v(t)) + f(t, In−2
0+ v(t), In−3

0+ v(t), . . . , I1
0+v(t), v(t)) = 0,

v(0) = un−2(0) = un−3(0) = · · · = u(0) = 0,

v(1) = av(ξ), Dα−n+2
0+ v(0) = Dα−n+2

0+ v(1) = 0.

From above discussions, let u(t) = In−2
0+ v(t), then the differential equation (1.3) is

equivalent to the differential equation (3.1).
Now, let v ∈ C([0, 1], [0,+∞)) is a positive solution of the differential equation

(3.1). Then

Dβ
0+φp(Dα−n+2

0+ v(t)) = Dβ
0+φp(Dn

0+I
2n−α−2
0+ v(t))

= Dβ
0+φp(Dn

0+I
n−α
0+ In−2

0+ v(t))

= Dβ
0+φp(Dα

0+I
n−2
0+ v(t))
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= Dβ
0+φp(Dα

0+u(t)),

and

f(t, In−2
0+ v(t), In−3

0+ v(t), . . . , I1
0+v(t), v(t)) = f(t, u(t), u′(t), . . . , u(n−2)(t)),

which implies that u(t) = In−2
0+ v(t) is a positive solution of the differential equation

(1.3). The proof is complete. �

4. Properties of Green’s Function

In this section, we obtain the Green’s function of fractional boundary-value prob-
lem (3.1) and its some properties.

Lemma 4.1. Assume that y ∈ C[0, 1] and n − 1 < α ≤ n, then the following
fractional boundary-value problem

Dα−n+2
0+ v(t) + y(t) = 0, t ∈ (0, 1),

v(0) = 0, v(1) = av(ξ),
(4.1)

has a unique solution

v(t) =
∫ 1

0

G(t, s)y(s)d(s),

where
G(t, s)

=



[t(1−s)]α−n+1−a[t(ξ−s)]α−n+1−(1−aξα−n+1)(t−s)α−n+1

(1−aξα−n+1)Γ(α−n+2) , 0 ≤ s ≤ t ≤ 1, s ≤ ξ,
[t(1−s)]α−n+1−(1−aξα−n+1)(t−s)α−n+1

(1−aξα−n+1)Γ(α−n+2) , 0 < ξ ≤ s ≤ t ≤ 1,
[t(1−s)]α−n+1−a[t(ξ−s)]α−n+1

(1−aξα−n+1)Γ(α−n+2) , 0 ≤ t ≤ s ≤ ξ < 1,
[t(1−s)]α−n+1

(1−aξα−n+1)Γ(α−n+2) , 0 ≤ t ≤ s ≤ 1, ξ ≤ s.
(4.2)

Lemma 4.2. Let n − 1 < α ≤ n, 0 < ξ < 1, 0 ≤ a ≤ 1. If y(t) ∈ C[0, 1] and
y(t) ≥ 0 hold, then the fractional differential equation (4.1) has a unique solution
v(t) ≥ 0, t ∈ [0, 1].

Lemma 4.3. Assume that y ∈ C[0, 1] and n − 1 < α ≤ n, 0 < ξ < 1, 1 < β ≤ 2,
0 ≤ a ≤ 1, then the following fractional differential equation

Dβ
0+φp(Dα−n+2

0+ v(t)) = y(t), t ∈ (0, 1),

v(0) = 0, v(1) = av(ξ), Dα−n+2
0+ v(0) = Dα−n+2

0+ v(1) = 0,
(4.3)

has a unique solution

v(t) =
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)y(τ)dτ
)
ds,

where

H(s, τ) =

{
sβ−1(1−τ)β−1−(s−τ)β−1

Γ(β) , 0 ≤ τ ≤ s ≤ 1,
sβ−1(1−τ)β−1

Γ(β) , 0 ≤ s ≤ τ ≤ 1,
(4.4)

and G(t, s) is defined in Lemma 4.1.
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Proof. It follows from Lemma 2.7 that

φp(Dα−n+2
0+ v(t)) = Iβ0+y(t) + C1t

β−1 + C2t
β−2, t ∈ (0, 1),

where C1, C2 ∈ R. According to the boundary condition Dα−n+2
0+ v(0) = 0 and

Dα−n+2
0+ v(1) = 0, one has

C1 = −Iβ0+y(t)|t=1 = − 1
Γ(β)

∫ 1

0

(1− τ)β−1y(τ)dτ, C2 = 0,

this implies

φp(Dα−n+2
0+ v(t)) = Iβ0+y(t)− tβ−1Iβ0+y(1)

=
1

Γ(β)

∫ t

0

(t− τ)β−1y(τ)dτ − tβ−1

Γ(β)

∫ 1

0

(1− τ)β−1y(τ)dτ

= −
∫ 1

0

H(t, τ)y(τ)dτ,

i.e.,

Dα−n+2
0+ v(t) + φq

(∫ 1

0

H(t, τ)y(τ)dτ
)

= 0.

Therefore, the fractional boundary-value problems (4.3) is equivalent to the follow-
ing fractional boundary-value problems

Dα−n+2
0+ v(t) + φq

(∫ 1

0

H(t, τ)y(τ)dτ
)

= 0, t ∈ (0, 1),

v(0) = 0, v(1) = av(ξ).
(4.5)

It follows from Lemma 4.1 that the fractional boundary-value problems (4.5) exists
a unique solution

v(t) =
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)y(τ)dτ
)
ds.

The proof is complete. �

Lemma 4.4. Assume that 0 ≤ aξα−n ≤ 1 holds, there exist the functions G(t, s)
and H(t, s) be defined by (4.2) and (4.4) such that

(i) G(t, s) and H(t, s) are continuous functions on [0, 1]× [0, 1];
(ii) G(t, s) ≤ tα−n+1

Γ(α−n+2) for (t, s) ∈ [0, 1] × [0, 1], H(t, s) ≤ tβ−1

Γ(β) for (t, s) ∈ [0, 1] ×
[0, 1];

(iii) G(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1], H(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1];
(iv) G(t, s) ≤ G(s, s) for (t, s) ∈ [0, 1] × [0, 1], H(t, s) ≤ H(s, s) for (t, s) ∈ [0, 1] ×
[0, 1];

(v) there exist positive functions γ(s) ∈ C[0, 1] and ρ(s) ∈ C[0, 1] such that

min
t∈[ξ,1]

G(t, s) ≥ γ(s) max
t∈[0,1]

G(t, s) = γ(s)G(s, s) for 0 < s < 1,

and
min
t∈[ξ,1]

H(t, s) ≥ ρ(s) max
t∈[0,1]

H(t, s) = ρ(s)H(s, s) for 0 < s < 1.
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Proof. From the definition of G(t, s) and H(t, s), it is easy to check that (i) and
(ii) be satisfied. We shall prove that (iii) holds, set

g1(t, s) = [t(1− s)]α−n+1 − a[t(ξ − s)]α−n+1 − (1− aξα−n+1)(t− s)α−n+1,

for 0 ≤ s ≤ t ≤ 1, s ≤ ξ;
g2(t, s) = [t(1− s)]α−n+1 − (1− aξα−n+1)(t− s)α−n+1,

for 0 < ξ ≤ s ≤ t ≤ 1;

g3(t, s) = [t(1− s)]α−n+1 − a[t(ξ − s)]α−n+1, 0 ≤ t ≤ s ≤ ξ < 1; ;

g4(t, s) = [t(1− s)]α−n+1, 0 ≤ t ≤ s ≤ 1, ξ ≤ s.

To prove that (iii) is true, we need to show that gi ≥ 0 for i = 1, 2, 3, 4.
(1) If t < ξ, since 0 ≤ aξα−n+1 ≤ 1 and 0 < ξ < 1, we have

g1(t, s)

= (t− ts)α−n+1 − a(tξ − ts)α−n+1 − (t− s)α−n+1 + aξα−n+1(t− s)α−n+1

= [(t− ts)α−n+1 − (t− s)α−n+1]− aξα−n+1
[(
t− ts

ξ

)α−n+1 − (t− s)α−n+1
]

≥ (t− ts)α−n+1 −
(
t− ts

ξ

)α−n+1 ≥ 0.

Moreover, if t ≥ ξ, then

g1(t, s) = tα−n+1
[
(1− s)α−n+1 − a(ξ − s)α−n+1 − (1− aξα−n+1)(1− s

t
)α−n+1

]
= tα−n+1

{
[(1− s)α−n+1 − (1− s

t
)α−n+1]

+ aξα−n+1[(1− s

t
)α−n+1 − (1− s

ξ
)α−n+1]

}
≥ 0.

(2) If 0 < ξ ≤ s ≤ t ≤ 1, according to 0 ≤ aξα−n ≤ 1, there is

g2(t, s) ≥ (1− s)α−n+1tα−n+1 − (t− s)α−n+1

= tα−n+1[(1− s)α−n+1 − (1− s

t
)α−n+1] ≥ 0.

(3) If 0 ≤ t ≤ s ≤ ξ < 1, we obtain

g3(t, s) = tα−n+1
[
(1− s)α−n+1 − aξα−n+1(1− s

ξ
)α−n+1

]
≥ tα−n+1[(1− s)α−n+1 − (1− s

ξ
)α−n+1]

≥ 0, for 0 ≤ aξα−n ≤ 1.

(4) It is obvious that g4(t, s) ≥ 0 for 0 ≤ t ≤ s ≤ 1, ξ ≤ s.
Similarly, H(t, s) ≥ 0 for t, s ∈ (0, 1). From above discussions, we conclude that

G(t, s) ≥ 0 and H(t, s) ≥ 0 for any t, s ∈ (0, 1). So property (iii) holds.
Now we prove that (iv) holds. Firstly, we check that g1(t, s) and g2(t, s) are

nonincreasing with respect to t ∈ [s, 1].

∂g1(t, s)
∂(t)

= (α− n+ 1)tα−n(1− s)α−n+1 − a(ξ − s)α−n+1(α− n+ 1)tα−n

− (1− aξα−n+1)(α− n+ 1)(t− s)α−n

= (α− n+ 1)[tα−n(1− s)α−n+1 − a(ξ − s)α−n+1tα−n
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− (1− aξα−n+1)(t− s)α−n]

= (α− n+ 1)tα−n[(1− s)α−n+1 − aξα−n+1(1− s

ξ
)α−n+1

− (1− aξα−n+1)(1− s

t
)α−n]

≤ (α− n+ 1)tα−n
[
(1− s)α−n+1 − aξα−n+1(1− s

ξ
)(1− s)α−n+1

− (1− aξα−n+1)(1− s)α−n
]

= (α− n+ 1)tα−n(1− s)α−n[(1− s)− aξα−n+1(1− s

ξ
)− (1− aξα−n+1)]

= (α− n+ 1)tα−n(1− s)α−n[s(aξα−n − 1)]
≤ 0,

and
∂g2(t, s)
∂(t)

= (α− n+ 1)tα−n(1− s)α−n+1 − (1− aξα−n+1)(α− n+ 1)(t− s)α−n

= (α− n+ 1)[tα−n(1− s)α−n+1 − (1− aξα−n+1)(t− s)α−n]

= (α− n+ 1)tα−n[(1− s)α−n+1 − (1− s

t
)α−n(1− aξα−n+1)]

≤ (α− n+ 1)tα−n[(1− s)α−n+1 − (1− s)α−n(1− aξα−n+1)]

= (α− n+ 1)tα−n(1− s)α−n[(1− s)− (1− aξα−n+1)]

= (α− n+ 1)tα−n(1− s)α−n(aξα−n+1 − s)
≤ (α− n+ 1)tα−n(1− s)α−n(aξα−n+1 − ξ)
= (α− n+ 1)tα−n(1− s)α−nξ(aξα−n − 1)
≤ 0.

Then, g1(t, s) and g2(t, s) is non-increasing with respect to t ∈ [s, 1].
Secondly, we show that g3(t, s) and g4(t, s) are nondecreasing with respect to

t ∈ [0, s].

∂g3(t, s)
∂(t)

= (α− n+ 1)tα−n(1− s)α−n+1 − a(ξ − s)α−n+1(α− n+ 1)tα−n

= (α− n+ 1)tα−n[(1− s)α−n+1 − a(ξ − s)α−n+1]

≥ (α− n+ 1)tα−n[(1− s)α−n+1 − a(1− s)α−n+1]

= (α− n+ 1)tα−n(1− s)α−n(1− a) ≥ 0,

which implies that g3(t, s) is nondecreasing with respect to t on [0, s]. It is obvious
that g4(t, s) is nondecreasing with respect to t on [0, s]. Therefore,

G(t, s) ≤ G(s, s) for 0 ≤ s ≤ t ≤ 1,

G(t, s) ≤ G(s, s) for 0 ≤ t ≤ s ≤ 1.

In conclusion
G(t, s) ≤ G(s, s) for (t, s) ∈ [0, 1]× [0, 1].

Thirdly, setting

h1(t, s) = tβ−1(1− s)β−1 − (t− s)β−1, 0 ≤ s ≤ t ≤ 1,
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h2(t, s) = tβ−1(1− s)β−1, 0 ≤ t ≤ s ≤ 1,

we have
∂h1(t, s)
∂(t)

= (β − 1)tβ−2(1− s)β−1 − (β − 1)(t− s)β−2

= (β − 1)[tβ−2(1− s)β−1 − (t− s)β−2]

= (β − 1)tβ−2[(1− s)β−1 − (1− s

t
)β−2] ≤ 0,

which means that h1(t, s) is nonincreasing with respect to t for 0 ≤ s ≤ t ≤ 1. It
is easily to see that h2(t, s) is nondecreasing with respect to t for 0 ≤ t ≤ s ≤ 1.
Thus

H(t, s) ≤ H(s, s)for 0 ≤ s ≤ t ≤ 1

and
H(t, s) ≤ H(s, s) for 0 ≤ t ≤ s ≤ 1.

From the above discussion,

H(t, s) ≤ H(s, s) for (t, s) ∈ [0, 1]× [0, 1].

So property (iv) holds.
Let’s now show that (v) is true. First, g1(t, s), g2(t, s) are nonincreasing with

respect to t ∈ [s, 1], and g3(t, s), g4(t, s) are nondecreasing with respect to t ∈ [0, s],
so there is

min
ξ≤t≤1

G(t, s) =

{
minξ≤t≤1{g1(t, s), g3(t, s)}, 0 ≤ s < ξ,

minξ≤t≤1{g2(t, s), g4(t, s)}, ξ ≤ s < 1,

=

{
g1(t, s), 0 ≤ s < ξ,

λ1(s), ξ ≤ s < 1,

where λ1(s) = min{g2(1, s), g4(ξ, s)}, λ1(s) ∈ C(ξ, 1) and λ1(s) > 0. Let

γ(s) =

{
g1(t,s)
G(s,s) , 0 ≤ s < ξ,
λ1(s)
G(s,s) , ξ ≤ s < 1,

where

G(s, s) =

{
[s(1−s)]α−n+1−a[s(ξ−s)]α−n+1

(1−aξα−n+1)Γ(α−n+2) , 0 ≤ s < ξ,
[s(1−s)]α−n+1

(1−aξα−n+1)Γ(α−n+2) , ξ ≤ s < 1,

From above discussions,

min
t∈[ξ,1]

G(t, s) ≥ γ(s) max
t∈[0,1]

G(t, s) = γ(s)G(s, s), 0 < s < 1.

Second, h1(t, s) is nonincreasing with respect to t on [s, 1], and h2(t, s) is nonde-
creasing with respect to t on [0, s], one has

min
ξ≤t≤1

H(t, s) =

{
minξ≤t≤1{h1(t, s), h2(t, s)}, 0 ≤ s < ξ,

minξ≤t≤1{h1(t, s), h2(t, s)}, ξ ≤ s < 1,

=

{
h1(t, s), 0 ≤ s < ξ,

λ2(s), ξ ≤ s < 1,
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where λ2(s) = min{h1(1, s), h2(ξ, s)}, λ2(s) ∈ C(ξ, 1) and λ2(s) > 0. Let

ρ(s) =

{
h1(t,s)
H(s,s) , 0 ≤ s < ξ,
λ2(s)
H(s,s) , ξ ≤ s < 1,

where H(s, s) = 1
Γ(β) [s(1− s)]β−1. Therefore, we obtain that

min
s∈[ξ,1]

H(t, s) ≥ ρ(s) max
t∈[0,1]

H(t, s) = ρ(s)H(s, s), 0 < s < 1.

The proof is complete. �

5. Existence of a unique positive solution

In this section, we discuss the existence of a unique positive solution to fractional
boundary-value problem (1.3) by using the mixed monotone fixed point theorem.
We need the following assumptions:

(H1) Let f(t, x1, x2, . . . , xn−1) = g(t, x1, x2, . . . , xn−1) + h(t, x1, x2, . . . , xn−1),
where g : (0, 1) × [0,+∞) × Rn−1 → [0,+∞) and h : (0, 1) × [0,+∞) ×
(R/0)n−2 → [0,+∞) are continuous;

(H2) g(t, x1, x2, . . . , xn−1) is nondecreasing in t and xi and h(t, x1, x2, . . . , xn−1)
is nonincreasing in t and xi, where t, xi ∈ (0, 1)× [0,+∞)× (R/0)n−2, i =
1, 2, . . . , n− 1;

(H3) There exists a constant b ∈ (0, 1) such that

g(t, kx1, kx2, . . . , kxn−1) ≥ kbg(t, x1, x2, . . . , xn−1), k ∈ (0, 1),

h(t, k−1x1, k
−1x2, . . . , k

−1xn−1) ≥ kbh(t, x1, x2, . . . , xn−1), k ∈ (0, 1).

where xi > 0 and i = 1, 2, . . . , n− 1;
(H4) kr : [0, 1] → [0,+∞) is continuous and

∫ 1

0
φq(s−b(α−1))ds < +∞, where

0 ≤ r < 1.

Let us denote E1 = C(0, 1) equipped with the norm ||v|| = sup
t∈[0,1]

|v(t)|, then E1

is a Banach space. Let P be a normal cone of E1 defined by

P =
{
v ∈ E1 : v(t) ≥ 0, t ∈ [0, 1]

}
.

Define

Qe =
{
v ∈ P :

1
M
e(t) ≤ v(t) ≤Me(t), t ∈ [0, 1]

}
,

where e(t) = tα−n+1, M is a positive constant defined by

M > min
{

1,
[ (g(1, 1, . . . , 1))q−1

∫ 1

0
φq(sβ−1)ds

Γ(α− n+ 1)(Γ(β))q−1

+
(ζ−bh(0, 1, 1, . . . , 1))q−1

∫ 1

0
φq(sβ−1

∫ 1

0
τ−b(α−1)dτ)ds

Γ(α− n+ 1)(Γ(β))q−1

] 1
b(1−q)

,[
(h(1, 1, 1, . . . , 1))q−1

∫ 1

ξ

γ(s)G(s, s)φq
(∫ 1

ξ

ρ(τ)H(τ, τ)τ b(α−1)
)
dτ)ds

+ (h(1, 1, 1, . . . , 1))q−1

∫ 1

ξ

γ(s)G(s, s)φq
(∫ 1

ξ

ρ(τ)H(τ, τ)dτ
)
ds
] 1
b(1−q)

}
,
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where 0 < ζ < min
{

1, Γ(α−n+2)
Γ(α) , Γ(α−n+2)

Γ(α−1) , . . . , Γ(α−n+2)
Γ(α)−n+3

}
. It is easy to obtain that

e ∈ P and ‖e‖ = 1, e 6= θ. The operator T is defined by

T (v, w)(t) =
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)(g(τ, In−2
0+ v(τ), , . . . , I1

0+v(τ), v(τ))

+ h(τ, In−2
0+ w(τ), , . . . , I1

0+w(τ), w(τ))dτ
)
ds, t ∈ (0, 1).

Theorem 5.1. Assume that (H1)–(H4) are satisfied. Then the fractional boundary-
value problem (1.3) has a unique positive solution.

Proof. By the definition of the operator T and its properties, it suffices to show
that all conditions of Lemma 2.8 are satisfied with respect to t.

Firstly. we show that T : Qe ×Qe → Qe. Let xi = 1, Assumption (H3) implies
that

g(t, k, k, . . . , k) ≥ kbg(t, 1, 1, . . . , 1), k ∈ (0, 1).
Set x̄ := x1 = x2 = · · · = xn−1, and k = 1

x̄ , x̄ > 1, one has

g(t, x̄, . . . , x̄) ≤ x̄bg(t, 1, . . . , 1), x̄ > 1.

Similarly, from (H3), for xi > 0, if we let k−1xi = yi, i = 1, 2, . . . , n− 1, then

h(t, y1, . . . , yn−1) ≥ kbh(t, ky1, . . . , kyn−1), k ∈ (0, 1), yi > 0, i = 1, 2, . . . , n− 1.

Now, let yi = 1, i = 1, 2, . . . , n− 1, we obtain

h(t, 1, . . . , 1) ≥ kbh(t, k, . . . , k), k ∈ (0, 1).

From the above discussion, we have

h(t, k−1, . . . , k−1) ≥ kbh(t, 1, . . . , 1),

h(t, ky1, . . . , kyn−1) ≤ k−bh(t, y1, . . . , yn−1),

h(t, k, . . . , k) ≤ k−bh(t, 1, . . . , 1),

where k ∈ (0, 1), yi > 0, i = 1, 2, . . . , n− 1.
Since v ∈ Qe and the monotonicity of Riemann-Liouville fractional integral Iδ0+ ,

we obtain that

In−2
0+ v(t) > 0, In−3

0+ v(t) > 0, . . . , I1
0+v(t) > 0, v(t) > 0,

g
(
t, In−2

0+ v(t), In−3
0+ v(t), . . . , I1

0+v(t), v(t)
)

≤ g
(
t, In−2

0+ Me(t), In−3
0+ Me(t), . . . , I1

0+Me(t),Me(t)
)

≤ g
(
t, In−2

0+ M, In−3
0+ M, . . . , I1

0+M,M
)

= g
(
t,

M

(n− 2)!
tn−2,

M

(n− 3)!
tn−3, . . . ,Mt,M

)
≤ g(t,M,M, . . . ,M,M)

≤M bg(t, 1, 1, . . . , 1, 1)

≤M bg(1, 1, 1, . . . , 1, 1),

and

h
(
t, In−2

0+ w(t), In−3
0+ w(t), . . . , I1

0+w(t), w(t)
)
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≤ h
(
t, In−2

0+

1
M
e(t), In−3

0+

1
M
e(t), . . . , I1

0+
1
M
e(t),

1
M
e(t)

)
= h

(
t,

Γ(α− n+ 2)
MΓ(α)

tα−1,
Γ(α− n+ 2)
MΓ(α− 1)

tα−2, . . . ,

Γ(α− n+ 2)
MΓ(α− n+ 3)

tα−n+2,
1
M
tα−n+1

)
≤ h

(
t,
ζ

M
tα−1,

ζ

M
tα−1, . . . ,

ζ

M
tα−n+3,

ζ

M
tα−n+2

)
≤ h

(
t,
ζ

M
tα−1,

ζ

M
tα−1, . . . ,

ζ

M
tα−n+4,

ζ

M
tα−n+3

)
≤ . . .

≤ h
(
t,
ζ

M
tα−1,

ζ

M
tα−1, . . . ,

ζ

M
tα−1,

ζ

M
tα−1

)
≤ (

ζ

M
)−bt−b(α−1)h(t, 1, 1, . . . , 1, 1)

≤ (
ζ

M
)−bt−b(α−1)h(0, 1, 1, . . . , 1, 1),

where

0 < ζ < min
{

1,
Γ(α− n+ 2)

Γ(α)
,

Γ(α− n+ 2)
Γ(α− 1)

, . . . ,
Γ(α− n+ 2)
Γ(α)− n+ 3

}
,

for 0 < ζ
M tα−1 < 1. We also obtain

g
(
t, In−2

0+ v(t), In−3
0+ v(t), . . . , I1

0+v(t), v(t)
)

≥ g
(
t, In−2

0+

1
M
e(t), In−3

0+

1
M
e(t), . . . , I1

0+
1
M
e(t),

1
M
e(t)

)
= g
(
t,

Γ(α− n+ 2)
MΓ(α)

tα−1,
Γ(α− n+ 2)
MΓ(α− 1)

tα−2, . . . ,

Γ(α− n+ 2)
MΓ(α− n+ 3)

tα−n+2,
1
M
tα−n+1

)
≥ g
(
t,
ζ

M
tα−1,

ζ

M
tα−1, . . . ,

ζ

M
tα−n+3,

ζ

M
tα−n+2

)
≥ g
(
t,
ζ

M
tα−1,

ζ

M
tα−1, . . . ,

ζ

M
tα−n+4,

ζ

M
tα−n+3

)
≥ . . .

≥ g
(
t,
ζ

M
tα−1,

ζ

M
tα−1, . . . ,

ζ

M
tα−1,

ζ

M
tα−1

)
≥ (

ζ

M
)−btb(α−1)g(t, 1, 1, . . . , 1, 1)

≥ (
ζ

M
)−btb(α−1)g(0, 1, 1, . . . , 1, 1),

where 0 < ζ
M tα−1 < 1, and

h
(
t, In−2

0+ w(t), In−3
0+ w(t), . . . , I1

0+w(t), w(t)
)

≥ h
(
t, In−2

0+ Me(t), In−3
0+ Me(t), . . . , I1

0+Me(t),Me(t)
)
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≥ h
(
t, In−2

0+ M, In−3
0+ M, . . . , I1

0+M,M
)

= h
(
t,

M

(n− 2)!
tn−2,

M

(n− 3)!
tn−3, . . . ,Mt,M

)
≥ h(t,M,M, . . . ,M,M)

≥M−bh(t, 1, 1, . . . , 1, 1)

≥M−bh(1, 1, 1, . . . , 1, 1).

From the above and Lemma 4.4 it follows that T (v, w) ∈ C([0, 1], [0,+∞)). Then∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)g(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))dτ
)
ds

≤ tα−n+1

Γ(α− n+ 2)

∫ 1

0

φq

(sβ−1

Γ(β)

∫ 1

0

g(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))dτ
)
ds

≤ tα−n+1

Γ(α− n+ 2)

∫ 1

0

φq

(sβ−1M bg(1, 1, . . . , 1)
Γ(β)

)
ds

≤ tα−n+1(M bg(1, 1, . . . , 1))q−1

Γ(α− n+ 1)(Γ(β))q−1

∫ 1

0

φq(sβ−1)ds,

and ∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)h(τ, In−2
0+ w(τ), . . . , I1

0+w(τ), w(τ))dτ
)
ds

≤ tα−n+1

Γ(α− n+ 2)

∫ 1

0

φq

(sβ−1

Γ(β)

∫ 1

0

h(τ, In−2
0+ w(τ), . . . , I1

0+w(τ), w(τ))dτ
)
ds

≤ tα−n+1

Γ(α− n+ 2)

∫ 1

0

φq

(sβ−1

Γ(β)

∫ 1

0

(
ζ

M
)−bτ−b(α−1)h(0, 1, 1, . . . , 1)dτ

)
ds

≤ tα−n+1(ζ−bM bh(0, 1, 1, . . . , 1))q−1

Γ(α− n+ 1)(Γ(β))q−1

∫ 1

0

φq

(
sβ−1

∫ 1

0

τ−b(α−1)dτ
)
ds.

Then
T (v, w)(t) ≤Mtα−n+1 = Me(t), t ∈ (0, 1).

From the inequalities∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)g(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))dτ
)
ds

≥
∫ 1

ξ

G(t, s)φq
(∫ 1

ξ

H(s, τ)g(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))dτ
)
ds

≥
∫ 1

ξ

γ(s)G(s, s)φq
(∫ 1

ξ

ρ(τ)H(τ, τ)g(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))dτ
)
ds

≥
∫ 1

ξ

γ(s)G(s, s)φq
(∫ 1

ξ

ρ(τ)H(τ, τ)(
ζ

M
)bτ b(α−1)g(0, 1, 1, . . . , 1)dτ

)
ds

=
(
ζbM−bg(0, 1, 1, . . . , 1)

)q−1
∫ 1

ξ

γ(s)G(s, s)φq
(∫ 1

ξ

ρ(τ)H(τ, τ)τ b(α−1)dτ
)
ds

≥ tα−n+1
(
ζbM−bg(0, 1, 1, . . . , 1)

)q−1
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×
∫ 1

ξ

γ(s)G(s, s)φq
(∫ 1

ξ

ρ(τ)H(τ, τ)τ b(α−1)dτ
)
ds.

and∫ 1

0

G(t, s)φq(
∫ 1

0

H(s, τ)h
(
τ, In−2

0+ w(τ), . . . , I1
0+w(τ), w(τ)

)
dτ)ds

≥
∫ 1

ξ

G(t, s)φq
(∫ 1

ξ

H(s, τ)h(τ, In−2
0+ w(τ), . . . , I1

0+w(τ), w(τ))dτ
)
ds

≥
∫ 1

ξ

γ(s)G(s, s)φq
(∫ 1

ξ

ρ(τ)H(τ, τ)h(τ, In−2
0+ w(τ), . . . , I1

0+w(τ), w(τ))dτ
)
ds

≥
∫ 1

ξ

γ(s)G(s, s)φq
(∫ 1

ξ

ρ(τ)H(τ, τ)M−bh(1, 1, 1, . . . , 1)dτ
)
ds

≥
(
M−bh(1, 1, 1, . . . , 1)

)q−1
∫ 1

ξ

γ(s)G(s, s)φq(
∫ 1

ξ

ρ(τ)H(τ, τ)dτ)ds

≥ tα−n+1
(
M−bh(1, 1, 1, . . . , 1)

)q−1
∫ 1

ξ

γ(s)G(s, s)φq
(∫ 1

ξ

ρ(τ)H(τ, τ)dτ
)
ds,

we deduce that

T (v, w)(t) ≥ 1
M
tα−n+1 =

1
M
e(t), t ∈ (0, 1).

Therefore, we concluded that T : Qe ×Qe → Qe.
Secondly, we prove that T : Qe ×Qe → Qe is a mixed monotone operator. Let

v1, v2 ∈ Qe and v1 ≤ v2, we obtain∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)g(τ, In−2
0+ v1(τ), . . . , I1

0+v1(τ), v1(τ))dτ
)
ds

≤
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)g(τ, In−2
0+ v2(τ), . . . , I1

0+v2(τ), v2(τ))dτ
)
ds,

i.e.,
T (v1, w)(t) ≤ T (v2, w)(t), w ∈ Qe. (5.1)

Thus T (v, w)(t) is nondecreasing in v for any w ∈ Qe.
Let w1, w2 ∈ Qe and w1 ≥ w2. Then∫ 1

0

G(t, s)φq(
∫ 1

0

H(s, τ)h(τ, In−2
0+ w1(τ), . . . , I1

0+w1(τ), w1(τ))dτ)ds

≤
∫ 1

0

G(t, s)φq(
∫ 1

0

H(s, τ)h(τ, In−2
0+ w2(τ), . . . , I1

0+w2(τ), w2(τ))dτ)ds,

i.e.,
T (v, w1)(t) ≤ T (v, w2)(t), w ∈ Qe. (5.2)

Therefore T (v, w)(t) is nonincreasing in w for any v ∈ Qe. Consequently, according
to (5.1) and (5.2), we conclude that the operator T : Qe × Qe → Qe is a mixed
monotone operator.

Finally, we show that the operator T has a fixed point. If v, w ∈ Qe, it follows
from (H3) that∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)g
(
τ, In−2

0+ tv(τ), . . . , I1
0+tv(τ), tv(τ)

)
dτ
)
ds
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=
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)g
(
τ, tIn−2

0+ v(τ), . . . , tI1
0+v(τ), tv(τ)

)
dτ
)
ds

≥
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)tbg
(
τ, In−2

0+ v(τ), . . . , I1
0+v(τ), v(τ)

)
dτ
)
ds

≥ tb
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)g
(
τ, In−2

0+ v(τ), . . . , I1
0+v(τ), v(τ)

)
dτ
)
ds,

and∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)h(τ, In−2
0+ t−1w(τ), . . . , I1

0+t−1w(τ), t−1w(τ))dτ
)
ds

=
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)h(τ, t−1In−2
0+ w(τ), . . . , t−1I1

0+w(τ), t−1w(τ))dτ
)
ds

≥
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)tbh(τ, In−2
0+ w(τ), . . . , I1

0+w(τ), w(τ))dτ
)
ds

≥ tb
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)h(τ, In−2
0+ w(τ), . . . , I1

0+w(τ), w(τ))dτ
)
ds,

we obtain

T
(
tx,

1
t
y
)
≥ tbT (x, y), x, y ∈ Qe, t ∈ (0, 1), b ∈ (0, 1).

Therefore, from Lemma 2.8 it follows that the operator T has a fixed point. That is
to say, the fractional differential equation (3.1) has a unique positive solution v(t),
v ∈ Qe. By Lemma 3.1, we know that the fractional boundary-value problem (1.3)
has a unique positive solution u(t), such that

Γ(α− n+ 2)
MΓ(α)

tα−1 =
1
M
In−2
0+ e(t) ≤ u(t)

≤MIn−2
0+ e(t) =

MΓ(α− n+ 2)
Γ(α)

tα−1, t ∈ (0, 1).

The proof is complete. �

Now we introduce the following assumptions:

(H5) f(t, x1, x2, . . . , xn−1) = g(t, x1, x2, . . . , xn−1)×h(t, x1, x2, . . . , xn−1), where
g : (0, 1)× [0,+∞)×Rn−1 → [0,+∞) and h : (0, 1)× [0,+∞)×(R/0)n−2 →
[0,+∞) are continuous;

(H6) For xi > 0, i = 1, 2, . . . , n−1, there exist constants b1, b2 > 0, 0 < b1 + b2 <
1, such that

g(t, kx1, kx2, . . . , kxn−1) ≥ kb1g(t, x1, x2, . . . , xn−1), k ∈ (0, 1),

h(t, k−1x1, k
−1x2, . . . , k

−1xn−1) ≥ kb2h(t, x1, x2, . . . , xn−1), k ∈ (0, 1);

Corollary 5.2. Assume that (H2), (H4), (H5) and (H6) are satisfied, then the
fractional boundary-value problem (1.3) has a unique positive solution.

The proof is done in the same way as the proof of Theorem 5.1; we omit it.
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6. Existence of at least one positive solution

In this section, we show the existence of at least one positive solution to the
fractional boundary-value problem (1.3) by using the upper and lower solution
method.

Let E2 = {v : v(t) ∈ C2[0, 1] and φp(Dα−n+2
0+ v(t)) ∈ C2[0, 1]} denote the Banach

space endowed with the norm || v ||= max
t∈[0,1]

{sup |v(t)|, sup |φp(Dα−n+2
0+ v(t)|}.

The operator F is defined by

(Fv)(t) =
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)f(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))dτ
)
ds,

for t ∈ (0, 1). Now we have two definitions on the lower and upper solutions of the
fractional differential equation (3.1).

Definition 6.1. A function m(t) is called a lower solution of the fractional differ-
ential equation (3.1), if m(t) ∈ E2, and m(t) satisfies

Dβ
0+(φpDα−n+2

0+ m(t)) ≥ f(t, In−2
0+ m(t), In−3

0+ m(t), . . . , I1
0+m(t),m(t)), t ∈ (0, 1),

m(0) ≤ 0,m(1) ≤ am(ξ), Dα−n+2
0+ m(0) ≥ Dα−n+2

0+ m(1).
(6.1)

Definition 6.2. A function n(t) is called an upper solution of the fractional dif-
ferential equation (3.1), if n(t) ∈ E2, and n(t) satisfies

Dβ
0+(φpDα−n+2

0+ n(t)) ≤ f(t, In−2
0+ n(t), In−3

0+ n(t), . . . , I1
0+n(t), n(t)), t ∈ (0, 1),

n(0) ≥ 0, n(1) ≥ an(ξ), Dα−n+2
0+ n(0) ≤ Dα−n+2

0+ n(1).
(6.2)

We introduce the following assumptions:

(H9) f(t, x1, x2, . . . , xn−1) ∈ C((0, 1)×(0,+∞)n−1, [0,+∞)) is nonincressing rel-
ative to xi, , and there exists a constant L1 > 0, such that | f(t, x1, x2, . . . , xn−1) |≤
L1, where xi > 0, i = 1, 2, . . . , n− 1;

(H10) For any constant µ > 0, we have

0 <
∫ 1

0

H(t, t)f(t, In−2
0+ µtα−n+1, . . . , I1

0+µtα−n+1, µtα−n+1)dt < +∞;

(H11) There exists a continuous function p(t), t ∈ [0, 1], such that∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)f(τ, In−2
0+ p(τ), . . . , I1

0+p(τ), p(τ))dτ
)
ds = q(t) ≥ p(t),∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)f(τ, In−2
0+ q(τ), . . . , I1

0+q(τ), q(τ))dτ
)
ds ≥ p(t).

Theorem 6.3. If (H9)–(H11) are satisfied, then problem (1.3) has at least one
positive solution.

Proof. We divide our proof into four steps.

Step 1. Let M1 := max
[0,1]×[0,1]

G(t, s),M2 := max
[0,1]×[0,1]

H(t, s). Set Ω1 = {v ∈ E2 :

||v|| ≤M1φq(M2L1)}, we prove that F (Ω1) ⊂ Ω1.
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For any v ∈ Ω1, we obtain that

(Fv)(t) =
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)f(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))dτ
)
ds

≤M1φq(M2L1).

Consequently F (Ω1) ⊂ Ω1.
By computations, we have∫ 1

0

G(t, s)φp
(∫ 1

0

H(s, τ)(Fv)(t)dτ
)
ds = f

(
t, In−2

0+ v(t), . . . , I1
0+v(t), v(t)

)
,

for t ∈ (0, 1),

(Fv)(0) = 0, (Fv)(1) = a(Fv)(ξ),

Dα−n+2
0+ (Fv)(0) = Dα−n+2

0+ (Fv)(1) = 0.

(6.3)

Step 2. Set m(t) = Fq(t), n(t) = Fp(t), in this step, we prove that m(t), n(t) are
lower and upper solutions of the fractional differential equation (3.1), respectively.
From the assumptions (H9) and (H11), we obtain

p(t) ≤ q(t) = Fp(t), F q(t) ≤ q(t) = Fp(t), t ∈ [0, 1], (6.4)

this means that m(t) ≤ n(t). Since F (Ω1) ⊂ Ω1, there is m(t), n(t) ∈ Ω1. According
to (6.1), (6.2), we have

Dβ
0+φp

(
Dα−n+2

0+ m(t)
)
− f

(
t, In−2

0+ m(t), In−3
0+ m(t), . . . , I1

0+m(t),m(t)
)

≤ Dβ
0+φp

(
Dα−n+2

0+ (Fq)(t)
)
− f

(
t, In−2

0+ q(t), In−3
0+ q(t), . . . , I1

0+q(t), q(t)
)

= 0,

m(0) = 0, m(1) = am(ξ), Dα−n+2
0+ m(0) = Dα−n+2

0+ m(1) = 0.
(6.5)

and

Dβ
0+φp

(
Dα−n+2

0+ n(t)
)
− f

(
t, In−2

0+ n(t), In−3
0+ n(t), . . . , I1

0+n(t), n(t)
)

≥ Dβ
0+φp

(
Dα−n+2

0+ (Fp)(t)
)
− f

(
t, In−2

0+ p(t), In−3
0+ p(t), . . . , I1

0+p(t), p(t)
)

= 0,

n(0) = 0, n(1) = an(ξ), Dα−n+2
0+ n(0) = Dα−n+2

0+ n(1) = 0.
(6.6)

Hence, m(t) and n(t) are lower and upper solutions of the fractional differential
equation (3.1), respectively.
Step 3. Let

g1

(
t, In−2

0+ v(t), In−3
0+ v(t), . . . , I1

0+v(t), v(t)
)

=


f
(
t, In−2

0+ m(t), In−3
0+ m(t), . . . , I1

0+m(t),m(t)
)
, v(t) < m(t),

f
(
t, In−2

0+ v(t), In−3
0+ v(t), . . . , I1

0+v(t), v(t)
)
, m(t) ≤ v(t) ≤ n(t),

f
(
t, In−2

0+ n(t), In−3
0+ n(t), . . . , I1

0+n(t), n(t)
)
, v(t) > n(t).

(6.7)

Consider the fractional differential equation

Dβ
0+φp

(
Dα−n+2

0+ n(t)
)

+ g1

(
t, In−2

0+ v(t), In−3
0+ v(t), . . . , I1

0+v(t), v(t)
)

= 0,
0 < t < 1,

v(0) = 0, v(1) = av(ξ), Dα−n+2
0+ v(0) = Dα−n+2

0+ v(1) = 0.

(6.8)
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Set Ω2 = {v ∈ E2 : ||v|| ≤ M1φq(M2L2)}, then Ω2 is a closed, bounder and
convex set, where

L2 := sup
t∈[0,1],v∈Ω2

|g1(t, In−2
0+ v(t), . . . , I1

0+v(t), v(t))|+ 1.

The operator A : Ω2 → E2 is defined by

Av(t) =
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)g1

(
τ, In−2

0+ v(τ), . . . , I1
0+v(τ), v(τ)

)
dτ
)
ds,

where G(t, s) and H(s, τ) are defined in Lemma 4.1 and Lemma 4.3. From Lemma
4.2, if v ∈ Ω2, we have Av(t) ≥ 0, and the fixed point of the operator A is the
solution of the fractional differential equation (6.8).

Now, we show that A is a completely continuous operator. Let v ∈ Ω2, it
follow from the nonnegative and continuity of G(t, s), H(t, s) and Lemma 4.4 that
A : Ω2 → Ω2 is continuous.

For any v ∈ Ω2,

|(Av)(t)|

=
∣∣∣∣ ∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)g1(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))dτ
)
ds

∣∣∣∣
≤
∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)|g1(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))|dτ
)
ds

≤ Lq−1
2

∫ 1

0

G(t, s)φq
(∫ 1

0

H(s, τ)dτ
)
ds

≤ Lq−1
2

∫ 1

0

G(s, s)φq
(∫ 1

0

H(τ, τ)dτ
)
ds

< +∞,

which means that A is uniformly bounded.
The function G(t, s) is a continuous function for t, s ∈ [0, 1] × [0, 1]; then it is

uniformly continuous for t, s ∈ [0, 1]× [0, 1]. Hence for fixed s ∈ [0, 1] and any ε > 0,
there exists a constant δ > 0, such that

G(t1, s)−G(t2, s) <
ε

Lq−1
2 φq(

∫ 1

0
H(τ, τ)dτ)

,

where t1, t2 ∈ [0, 1] and |t1 − t2| < δ. Therefore

|Av(t2)−Av(t1)|

≤
∫ 1

0

|G(t2, s)−G(t1, s)|φq
(∫ 1

0

H(s, τ)g1(τ, In−2
0+ v(τ), . . . , I1

0+v(τ), v(τ))dτ
)
ds

≤ Lq−1
2

∫ 1

0

|G(t2, s)−G(t1, s)|φq(
∫ 1

0

H(τ, τ)dτ)ds

≤ Lq−1
2 φq(

∫ 1

0

H(τ, τ)dτ)
∫ 1

0

|G(t2, s)−G(t1, s)|ds

< ε for any v ∈ Ω2,

which implies that A is equicontinuous. It follows from the Arzela-Ascoli theorem
that the operator A : Ω2 → Ω2 is completely continuous.



20 Y.-H. SU, Y. YUN, D. WANG, W. HU EJDE-2018/105

Similar to Step 1, we have A(Ω2) ⊂ Ω2. According to the Schauder’s fixed point
theorem, the operator A has a fixed point, that is to say, the fractional differential
equation (6.8) has a positive solution.
Step 4. We prove that the fractional differential equation (1.3) has at least one
positive solution. Suppose that d(t) is a solution of (6.8), then

d(0) = 0, d(1) = ad(ξ), Dα−n+2
0+ d(0) = Dα−n+2

0+ d(1) = 0.

From (H9), we know that

f
(
t, In−2

0+ n(t), In−3
0+ n(t), . . . , I1

0+n(t), n(t)
)

≤ g1

(
t, In−2

0+ d(t), In−3
0+ d(t), . . . , I1

0+d(t), d(t)
)

≤ f(t, In−2
0+ m(t), In−3

0+ m(t), . . . , I1
0+m(t),m(t)), t ∈ [0, 1].

According to (H11) and (6.4),

f
(
t, In−2

0+ q(t), In−3
0+ q(t), . . . , I1

0+q(t), q(t)
)

≤ g1

(
t, In−2

0+ d(t), In−3
0+ d(t), . . . , I1

0+d(t), d(t)
)

≤ f
(
t, In−2

0+ p(t), In−3
0+ p(t), . . . , I1

0+p(t), p(t)
)
, t ∈ [0, 1].

It follows from p(t) ∈ Ω2 and (6.3) that

Dβ
0+φp

(
Dα−n+2

0+ n(t)
)

= Dβ
0+φp

(
Dα−n+2

0+ (Fp)(t)
)

= f
(
t, In−2

0+ p(t), In−3
0+ p(t), . . . , I1

0+p(t), p(t)
)
, t ∈ [0, 1].

From the above discussions, we obtain

Dβ
0+φp

(
Dα−n+2

0+ n(t)
)
−Dβ

0+φp
(
Dα−n+2

0+ d(t)
)

= f
(
t, In−2

0+ p(t), In−3
0+ p(t), . . . , I1

0+p(t), p(t)
)

− g1

(
t, In−2

0+ d(t), In−3
0+ d(t), . . . , I1

0+d(t), d(t)
)

≥ 0, t ∈ [0, 1].

and

(n− d)(0) = 0, (n− d)(1) = a(n− d)(ξ),

Dα−n+2
0+ (n− d)(0) = Dα−n+2

0+ (n− d)(1) = 0.

If we let z(t) = φp(Dα−n+2
0+ n(t)) − φp(Dα−n+2

0+ d(t)), then z(0) = z(1) = 0. By
Lemma 4.2, we have z(t) ≤ 0. Hence,

φp(Dα−n+2
0+ n(t)) ≤ φp(Dα−n+2

0+ d(t)), t ∈ [0, 1].

Since φp is monotone increasing,

Dα−n+2
0+ n(t) ≤ Dα−n+2

0+ d(t),

that is
Dα−n+2

0+ (n− d)(t) ≤ 0.
By Lemma 4.2, we have (n−d)(t) ≥ 0. Thus we conclude that n(t) ≥ d(t), t ∈ [0, 1].

In the same way, it is easy to prove that m(t) ≤ d(t), t ∈ [0, 1]. Hence d(t) is a
positive solution of the boundary-value problem (3.1), that is, Lemma 3.1 imolies
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that u(t) = In−2
0+ d(t) is a positive solution of boundary-value problem (1.3). The

proof is complete. �

7. Examples

In this section, we give two simple examples to illustrate our main results.

Example 7.1. We consider the boundary-value problem

D
4/3
0+ φp(D

7/2
0+ u(t)) + t(u1/4(t) + (u′)1/2(t) + (u′′)3/4(t))

+ t−1/2(u−1/4(t) + (u′)−1/2(t) + (u′′)−3/4(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = au′′(ξ), D7/2
0+ u(0) = D

7/2
0+ u(1) = 0.

(7.1)

Proof. Set

g(t, u(t), u′(t), u′′(t)) = t(u1/4(t) + (u′)1/2(t) + (u′′)3/4(t)),

h(t, u(t), u′(t), u′′(t)) = t−1/2(u−1/4(t) + (u′)−1/2(t) + (u′′)−3/4(t)).

where 0 < t < 1 and u(t) > 0, u′(t) > 0, u′′(t) > 0. Obviously, g(t, u(t), u′(t), u′′(t))
is nondecreasing relative to t and u(t), u′(t), u′′(t), and h(t, u(t), u′(t), u′′(t)) is non-
increasing relative to t and u(t), u′(t), u′′(t).

By k ∈ (0, 1) and u(t) > 0, u′(t) > 0, u′′(t) > 0, we have

g(t, ku(t), ku′(t), ku′′(t)) = t(k1/4u1/4(t) + k1/2(u′)1/2(t) + k3/4(u′′)3/4(t))

≥ tk3/4(u1/4(t) + (u′)1/2(t) + (u′′)3/4(t))

= k3/4g(t, u(t), u′(t), u′′(t)),

and

h(t, k−1u(t), k−1u′(t), k−1u′′(t))

= t−1/2(k1/4u−1/4(t) + k1/2(u′)−1/2(t) + k3/4(u′′)−3/4(t))

≤ t−1/2k3/4(u−1/4(t) + (u′)−1/2(t) + (u′′)−3/4(t))

= k3/4h(t, u(t), u′(t), u′′(t)).

From above discussion, the assumptions (H1)–(H4) are satisfied. It follows from
Theorem 5.1 that the boundary-value problem (7.1) has a unique positive solution.
The proof is complete. �

Next we give an example which is difficult to obtain the existence of positive
solution to the fractional boundary-value problem (7.2) by using Theorem 5.1.

Example 7.2. We consider the boundary-value problem

D
7/3
0+ φp

(
D

7/2
0+ u(t)

)
= t2 +

u(t)
2

+
u′(t)

3
+
u′′(t)

4
, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) =
1
2
u′′(

1
3

), D
7/2
0+ u(0) = D

7/2
0+ u(1) = 0.

(7.2)

Proof. The function

D
7/3
0+ φp

(
D

7/2
0+ u(t)

)
= t2 +

u(t)
2

+
u′(t)

3
+
u′′(t)

4
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is changed into the form of

D
7/3
0+ φp

(
D

7/2
0+ u(t)

)
− t2 − u(t)

2
− u′(t)

3
− u′′(t)

4
= 0.

Let u(t) = I2
0+v(t), we have

D
7/3
0+ φp

(
D

3/2
0+ v(t)

)
− t2 − 1

2
I2
0+v(t)− 1

3
I1
0+v(t)− 1

4
v(t) = 0, 0 < t < 1,

v(0) = 0, v(1) =
1
2
v(

1
3

), D3/2
0+ v(0) = D

3/2
0+ v(1) = 0,

(7.3)

then the hypotheses (H9) are satisfied. For any µ > 0, we obtain∫ 1

0

H(τ, τ)f
(
τ, I2

0+µτ1/2, I1
0+µτ1/2, µτ1/2

)
dτ

=
∫ 1

0

H(τ, τ)
(
t2 +

1
2
I2
0+µτ1/2 +

1
3
I1
0+µτ1/2 +

1
4
µτ1/2

)
dτ < +∞,

which implies that (H10) holds.

f
(
t,

1
2
I2
0+v(t),

1
3
I1
0+v(t),

1
4
v(t)

)
= t2 +

1
2
I2
0+v(t) +

1
3
I1
0+v(t) +

1
4
v(t)

≤ r−1/2
(
t2 +

1
2
I2
0+v(t) +

1
3
I1
0+v(t) +

1
4
v(t)

)
= r−1/2f

(
t,

1
2
I2
0+v(t),

1
3
I1
0+v(t),

1
4
v(t)

)
.

Let a(t) = t1/2, we obtain

b(t) := Ta(t) =
∫ 1

0

G(t, s)φp(
∫ 1

0

H(τ, τ)f(τ, I2
0+µτ1/2, I1

0+µτ1/2, µτ1/2)dτ)ds ∈ Ω1,

and Tb(t) = T 2a(t) ∈ Ω1. Hence, there exist two positive numbers µ1, µ2, such
that

Ta(t) ≥ µ1a(t), T 2a(t) ≥ µ2a(t).

Let 0 < µ0 ≤ min{1, µ1, µ
7/3
2 }, by the monotonicity of T , we obtain

T (µ0a(t)) ≥ Ta(t) ≥ µ1a(t) ≥ µ0a(t),

and
T 2(µ0a(t)) ≥ µ1/4

0 T 2a(t) ≥ µ1/4
0 µ2a(t) ≥ µ0a(t).

If we take p(t) = µ0t
1/2, then

q(t) = Tp(t)

=
∫ 1

0

G(t, s)φp
(∫ 1

0

H(τ, τ)f(τ, I2
0+µτ1/2, I1

0+µτ1/2, µτ1/2)dτ
)
ds

≥ µ0t
1/2 = p(t),

and

Tq(t) = T 2p(t)

=
∫ 1

0

G(t, s)φp
(∫ 1

0

H(τ, τ)f(τ, T (I2
0+µτ1/2), T (I1

0+µτ1/2), T (µτ1/2))dτ
)
ds

≥ µ0t
1/2 = p(t).



EJDE-2018/105 p-LAPLACIAN FRACTIONAL DIFFERENTIAL EQUATIONS 23

Therefore, condition (H11) holds. By Theorem 6.3, the fractional boundary-value
problem (7.3) has at least one positive solution, that is to say, it follows from Lemma
3.1 that the fractional boundary-value problem (7.2) has at least one positive solu-
tion. The proof is complete. �
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