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BOUNDED VARIATION SOLUTIONS TO
STURM-LIOUVILLE PROBLEMS

JACEK GULGOWSKI

Communicated by Pavel Drabek

Abstract. In this article we consider singular Sturm-Liouville problems whose
right-hand side is a function of bounded Jordan variation. We present neces-

sary and sufficient conditions for all solutions to be of bounded Jordan varia-
tion.

1. Regular and singular Sturm-Liouville problems

Let I = [0, 1] denote the closed unit interval. As usual, Lp(a, b) will denote the
space of all equivalence classes (of almost everywhere equality) of the real-valued
functions whose p-th power is Lebesgue-integrable on (a, b). By Lploc(a, b) we will
denote the space of functions belonging to Lp(a′, b′) for all [a′, b′] ⊂ (a, b). The
space of functions absolutely continuous in the closed interval [a, b] will be denoted
by AC[a, b], while the set of all functions x : (a, b)→ R which restrictions belong to
all spaces AC[a′, b′], for [a′, b′] ⊂ (a, b) will be denoted by ACloc(a, b). The Jordan
variation of the function x : [a, b] → R will be denoted by

∨b
a x and the space of

all functions of bounded Jordan variation in the interval [a, b] will be denoted by
BV ([a, b]). By χA we will denote the characteristic function of the set A ⊂ I.

Let us now have a look at the classical linear Sturm-Liouville problem
−(p(t)x′(t))′ + q(t)x(t) = h(t) for a.e. t ∈ (0, 1)

x(0) sin η − p(0)x′(0) cos η = 0,

x(1) sin ζ + p(1)x′(1) cos ζ = 0,

(1.1)

where η, ζ ∈ [0, π2 ]. The solution to this problem is such a function x : I → R that
both x′(t) and (p(t)x′(t))′ exists a.e. in I, and x, px′ ∈ AC(I) and the boundary
conditions are satisfied.

Assume now that p ∈ C1(I), q ∈ C(I) and p(t) > 0 for t ∈ I. In this case we
may talk of the solutions to the problem (1.1) in a classical sense (i.e. belonging
to C2(I) when h ∈ C(I) and to C1(I) with x′ ∈ AC(I) when h ∈ L1(I)) – see
[3, 7]. Such solutions are, of course, functions of bounded Jordan variation. But
the situation may change when the assumptions on coefficients p and q are released
– as we will further observe.
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The more general attitude towards Sturm-Liouville boundary value problems
allows for such p, q that 1/p, q ∈ L1(I), with the function r = 1/p allowing for sign
changes and even for achieving 0 on the positive measure set. In this last case we
should think of x′(t) = 0 whenever r(t) = 0. The assumptions of this kind still keep
us in the orbit of the so-called regular Sturm-Liouville problems but we may also
release even these, leading to the so-called singular Sturm-Liouville problems with
Fokker-Planck, Bessel’s or Whittaker problems as an example (see [4, Chapter 2.5]).
In this case it may happen that the solutions x are not defined in the endpoints
a ∈ {0, 1}, hence the boundary conditions should be understood in a different way.
This issue will be discussed in details later.

In case of regular Sturm-Liouville problems the question whether a solution x
is of bounded Jordan variation seems to have a trivially positive answer (since
x ∈ AC(I)), but actually this may be stated only when x′ ∈ L1(I), which is not
always the case! We should note that in case of singular problems we cannot assume
that x is absolutely continuous in the closed interval I. Hence there may exist a
solution x of unbounded Jordan variation.

Example 1.1. Let p : I → R be given by p(t) = (−1)n+1 1
n for t ∈ [tn−1, tn], where

tn = 6
π2

∑n
k=1

1
k2 , n = 1, 2, . . . . Then r = 1/p 6∈ L1(I) but r ∈ L1([0, a]) for each

a ∈ [0, 1). Let us look at the boundary value problem

(p(t)x′(t))′ = 1 for a. e. t ∈ I
x(0) = x(1) = 0 .

(1.2)

As it may be easily observed, we have

x′(t) = r(t)(t− C),

for some constant C ∈ R and t ∈ [0, 1).
Since r(τ)(τ − C) ∈ L1(0, t) for any t ∈ [0, 1) we can see that, having the

boundary condition x(0) = 0,

x(t) =
∫ t

0

τr(τ)dτ − C
∫ t

0

r(τ)dτ.

Let us denote R(t) =
∫ t
0
r(τ)dτ and R0(t) =

∫ t
0
τr(τ)dτ , then we are looking for a

function x(t) = R0(t)− CR(t).
Let us now assume that t = tN . We will find the values R(tN ) and R0(tN ).

R(tN ) =
N∑
k=1

∫ tk

tk−1

(−1)k+1kdτ =
6
π2

N∑
k=1

(−1)k+1 1
k
.

Since the series
∑+∞
k=1(−1)k+1 1

k converges to ln 2, it follows that limN→+∞R(tN ) =
6
π2 ln 2. Similarly,

R0(tN ) =
N∑
k=1

∫ tk

tk−1

(−1)k+1kτdτ =
6
π2

N∑
k=1

(−1)k+1 1
k

tk−1 + tk
2

.

Since the sequence
(

1
2 (tk−1 + tk)

)
k∈N is monotone and bounded we conclude, by

Abel’s convergence test, that limN→+∞R0(tN ) = r0 exists. We also observe that
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r0 <
6
π2 ln 2. This is a consequence of the estimate

r0 =
6
π2

+∞∑
k=1

( 1
2k − 1

t2k−2 + t2k−1

2
− 1

2k
t2k−1 + t2k

2
)

<
6
π2

+∞∑
k=1

( 1
2k − 1

t2k−2 + t2k−1

2
− 1

2k
t2k−2 + t2k−1

2
)

=
6
π2

+∞∑
k=1

t2k−2 + t2k−1

2
( 1

2k − 1
− 1

2k
)

<
6
π2

+∞∑
k=1

( 1
2k − 1

− 1
2k
)

=
6
π2

ln 2.

As we can see in case t ∈ (tN−1, tN ) the values of R(t) and R0(t) lay between
R(tN−1) and R(tN ) or R0(tN−1) and R0(tN ) respectively, so limt→1− R(t) = 6

π2 ln 2
and limt→1− R0(t) = r0. This means that the limt→1− x(t) = r0−C 6

π2 ln 2 and with
the appropriate value of constant C = C0 = π2r0

6 ln 2 we may say that x(1) = 0.
Let us now estimate the difference

|x(tn)−x(tn−1)| = 6
π2

∣∣∣(−1)n+1 1
n

tn + tn−1

2
−C0(−1)n+1 1

n

∣∣∣ =
6
nπ2

∣∣∣ tn + tn−1

2
−C0

∣∣∣.
Since limn→+∞

tn+tn−1
2 = 1 6= C0 , it follows that

∑+∞
n=1 |x(tn) − x(tn−1)| = +∞

which shows that x is not the function of bounded Jordan variation.

In case of the singular Sturm-Liouville problems the boundary conditions as
given in (1.1) may turn out to be not reasonable any more. For a detailed review
of different situations we suggest the monograph by Zettl (see [9]). Also the review
paper [6] would be of much help here.

The most general form of the Sturm-Liouville equation is given as the spectral
problem

− (p(t)x′(t))′ + q(t)x(t) = λw(t)x(t). (1.3)

We will refer to this general theory in a special case of w(t) ≡ 1 and λ = 0. We will
also limit ourselves to the real-valued functions belonging to the domain D, which
is defined as the natural domain of the differential operator

x 7→ −(p(t)x′(t))′ + q(t)x(t). (1.4)

i.e. is given as the set D of all such functions x : I → R that both x, px′ ∈ ACloc(I).
Actually, we will consider the so-called maximal domain of the differential operator
(1.4) Dmax = D∩L2(I) (see [9]). This is the very natural assumption to take when
we are going to look at the problem from the operator theory perspective.

Hence, we will look at the linear differential equation

− (p(t)x′(t))′ + q(t)x(t) = 0 (1.5)

in the search for solutions x ∈ Dmax.
The interesting issues are related to the behaviour of the differential operator

near the endpoints of the interval I, i.e. in the neighbourhood of 0 and 1. There is
a standard classification of endpoints (see [9, Definition 7.3.1]), which dates back
to 1910 and the works of Weyl. Let us assume that the endpoint a ∈ {0, 1}. Then
we have the following:
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• Regular endpoint if there exists such an open interval J ⊂ I with a ∈ J
such that q, r ∈ L1(J);
• Singular endpoint if there exists such an open interval J ⊂ I with a ∈ J ,
J 6= I such that

∫
J
|q(t)|+ |r(t)|dt = +∞;

• the singular point is called Limit-point (denoted later by LP) when there
exists at least one solution x0 to the problem (1.5) satisfying

∫
J
|x0(t)|2dt =

+∞ for certain open interval J ⊂ I, J 6= I satisfying a ∈ J ;
• the singular point is called Limit-circle (denoted later by LC) when all

solutions to the problem (1.5) belong to L2(J) for an open interval J ⊂ I,
a ∈ J , J 6= I;

Remark 1.2. Since we look for locally AC solutions the classification given above
does not depend on the selection of the interval J , as long as J 6= I.

Remark 1.3. The original definitions of LP and LC taken from [9] or [6] refer to
the more general spectral problem (1.3) and formally depend on λ. But it may
actually be proved that it does not depend on λ (cf. [6, Remark 5.1]) and the
classification given above is the same as the one given in [9].

The most general setting of boundary conditions referring to (1.3) requires the
notion of the Lagrange sesquilinear form (cf. [9, Remark 8.2.1]), which is given by

[f, g](t) = f(t)(pg′)(t)− g(t)(pf ′)(t) = p(t)(f(t)g′(t)− f ′(t)g(t)),

for all f, g ∈ Dmax. It may be shown (see [9, Lemma 10.2.3]) that for any f, g ∈
Dmax both limits

lim
t→0+

[f, g](t) and lim
t→1−

[f, g](t)

exist and are finite. From now on, when writing [f, g](0) and [f, g](1) we will refer
to the appropriate limit.

The appropriate selection of function g ∈ Dmax gives rise to the boundary condi-
tion depending on [g, x](1) or [g, x](0) = 0. The details depend here on the endpoint
classification. One should, first of all, observe that in case of the LP endpoint a
there is no need to specify the boundary condition at all, since for all functions
g, x ∈ Dmax there is [g, x](a) = 0 (see [9, Lemma 10.4.1]). In case of one regular or
LC and one LP endpoint the boundary value problem may be given as

−(p(t)x′(t))′ + q(t)x(t) = h(t) for a.e. t ∈ (0, 1)

[g, x](a) = 0,
(1.6)

where a ∈ {0, 1} is not a LP endpoint and g ∈ Dmax.
When both endpoints are regular or LC,

−(p(t)x′(t))′ + q(t)x(t) = h(t) for a.e. t ∈ (0, 1)

[g1, x](0)− [g2, x](0) = 0,

[g1, x](1)− [g2, x](1) = 0,
(1.7)

for certain selection of functions g1, g2 ∈ Dmax.
From now on we refer to the most general version of Sturm-Liouville boundary

value problem as the one given by
−(p(t)x′(t))′ + q(t)x(t) = h(t) for a.e. t ∈ (0, 1)

[g1, x](0)− [g2, x](0) = 0 if 0 is not an LP endpoint,

[g1, x](1)− [g2, x](1) = 0 if 1 is not an LP endpoint,
(1.8)
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within the convention that if there is only one LP endpoint then we take g2 = 0.
It may be shown (cf. [9, Chapter 10, Section 4.1]) that, in case of the regu-

lar endpoint, this general form of boundary conditions covers the case of classical
boundary conditions (1.1).

Remark 1.4. We should note that the boundary conditions in the form [g1, x](a)−
[g2, x](a) = 0, where a ∈ {0, 1} may also take the form [gi, x](a) = 0, where
i ∈ {1, 2}. This is the case when the function gj for j 6= i will satisfy gj(t) = 0 in
some open neighbourhood of a.

2. Green function

The main tool used when solving the problem (1.1) is the Green function, i.e.
such G : (0, 1)× (0, 1)→ R that x is a solution to (1.1) if and only if

x(t) =
∫ 1

0

G(s, t)h(s)ds. (2.1)

This requires, of course, some care, at least in specifying the space which function
h belongs to, as well as the assumption that 0 is not the eigenvalue of the problem
(1.1). We are not going to be very strict about it at the moment and we will return
to this issue later.

In the classical theory the Green function (see [7, Chapter XI, Exercise 2.1]) for
the problem (1.1) with q ∈ C(I), p ∈ C1(I), p > 0, is given as

G(s, t) =

{
c−1x1(s)x2(t) 0 ≤ s ≤ t ≤ 1
c−1x1(t)x2(s) 0 ≤ t ≤ s ≤ 1,

(2.2)

where x1, x2 : I → R are linearly independent solutions of (1.1) satisfying the initial
conditions

x1(0) sin η − p(0)x′1(0) cos η = 0, x2(1) sin ζ + p(1)x′2(1) cos ζ = 0

and c is the appropriate constant, c 6= 0.
Similar formula (see [8]) may be given for the problem (1.1) with r = 1/p ∈ L1(I),

p ∈ C1((0, 1), (0,+∞)) and q = 0. Moreover, in the paper [5, Theorem 3.1] the
Green function G : (0, 1) × (0, 1) → R for the singular problem (1.1) satisfying
r = 1/p ∈ L1(0, c) and r = 1/p 6∈ L1(c, 1) for some c ∈ (0, 1), and such q ∈ L1

loc(0, 1)
that q(t)

∫ t
0
r(s)ds ∈ L1(0, 1) is given by (2.2), with the appropriate selection of the

basic solutions x1 and x2.
General theorems on the existence of the Green function for the problem (1.8),

with r, q ∈ L1
loc(I), are given for example in [9, Theorems 9.4.2, 10.10.1]. It is

worth noting that there are, in general, no assumptions on the sign of p and q.
The theorem given below is actually the reformulation of facts given in [9], but we
present it here, with a proof, for the sake of the clarity.

Theorem 2.1. Assume the function x = 0 is the only solution to (1.8) with h =
0. Let x1, x2 ∈ Dmax be two linearly independent solutions of the equation (1.5)
satisfying:

(a) exactly two LP endpoints: no further assumptions;
(b) exactly one non LP (i.e. regular or LC) endpoint a, the other endpoint

being LP :
[g1, x1](a) = 0; (2.3)
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(c) both endpoints being regular or LC:

[g1, x1](0)− [g2, x1](0) = 0, (2.4)

[g1, x2](1)− [g2, x2](1) = 0, (2.5)

Then

(i) the function (0, 1) 3 t 7→ (p(t)x′1(t))x2(t)−(p(t)x′2(t))x1(t) = c is a nonzero
constant;

(ii) the function G : (0, 1)× (0, 1)→ R given by

G(s, t) =

{
c−1x1(s)x2(t) 0 < s ≤ t < 1
c−1x1(t)x2(s) 0 < t ≤ s < 1

(2.6)

is the Green function for problem (1.8). This means that for any h ∈ L2(I)
there exists a unique solution x ∈ Dmax to problem (1.8) given by

x(t) =
∫ 1

0

G(s, t)h(s)ds

= c−1x2(t)
∫ t

0

x1(s)h(s)ds+ c−1x1(t)
∫ 1

t

x2(s)h(s)ds.
(2.7)

Proof. Property (i) is a standard Wronskian-type argument, checked by a direct
calculation. Since the function t 7→ (p(t)x′1(t))x2(t) − (p(t)x′2(t))x1(t) is locally
absolutely continuous it is enough to check that its derivative equals 0 almost
everywhere.

To prove property (ii) it is sufficient to observe that substitution of x given by
(2.7) into our differential operator gives −(p(t)x′(t))′ + q(t)x(t) = h(t).

We should now check that the function x satisfies the boundary conditions. We
will check if [g1, x](a) − [g2, x](a) = 0 for endpoint a which is not LP. First, let us
now observe that for i = 1, 2 we have

[gi, x](t) = p(t)gi(t)x′(t)− p(t)g′i(t)x(t)

= c−1p(t)gi(t)
(
x′2(t)

∫ t

0

x1(s)h(s)ds+ x′1(t)
∫ 1

t

x2(s)h(s)ds
)

− c−1p(t)g′i(t)
(
x2(t)

∫ t

0

x1(s)h(s)ds+ x1(t)
∫ 1

t

x2(s)h(s)ds
)

= c−1[gi, x2](t)
∫ t

0

x1(s)h(s)ds+ c−1[gi, x1](t)
∫ 1

t

x2(s)h(s)ds.

We should note that, since the functions x1, x2, h belong to L2(I), all integrals in
the formula above are finite. We also know that the values [gi, xj ](0) and [gi, xj ](1)
are well-defined and finite (for i, j = 1, 2) – cf. [9, Section 10.4]. Therefore,

[gi, x](1) = c−1[gi, x2](1)
∫ 1

0

x1(s)h(s)ds,

[gi, x](0) = c−1[gi, x1](0)
∫ 1

0

x2(s)h(s)ds,

[g1, x](0)− [g2, x](0) = c−1

∫ 1

0

x2(s)h(s)ds
(
[g1, x1](0)− [g2, x1](0)

)
= 0,
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[g1, x](1)− [g2, x](1) = c−1

∫ 1

0

x1(s)h(s)ds
(
[g1, x2](1)− [g2, x2](1)

)
= 0,

which follows from assumptions (2.4) and (2.5).
The uniqueness is the consequence of the assumption that guarantees that 0 is

the only solution to the problem (1.8) with the right-hand side equal to 0. �

Remark 2.2. In case both endpoints are regular we take g1 and g2 as functions
satisfying g1(0) = cos η, p(0)g′1(0) = sin η, g1(1) = 0, p(1)g′1(1) = 0 and g2(1) =
cos ζ, p(1)g′2(1) = sin ζ, g2(0) = 0, p(0)g′2(0) = 0 (see [9, Lemma 10.4.4] and further
discussion there). This actually recreates the classical boundary conditions given
for problem (1.1).

3. Bounded variation solutions

As mentioned in the previous section, having the Green function, we may trans-
late the problem (1.8) into the Hammerstein equation (2.1) with G : (0, 1)×(0, 1)→
R given by (2.6) and x1, x2 satisfying assumptions of Theorem 2.1. Then, the value
of the integral operator K : L2(0, 1)→ L2(0, 1) is given by

x(t) = (Kh)(t) =
∫ 1

0

G(s, t)h(s)ds (3.1)

is the unique solution to the problem (1.8) with the right-hand side h ∈ BV (I).
Now, the question whether the problem (1.8) admits the solutions of unbounded

variation may be translated into the properties of the kernel of the integral operator,
for the Hammerstein equation (i.e. the Green function). We should refer to some
of the recent results on the subject.

First of all, in [2, Theorem 4] we may find the characterization of the kernels
that induce the continuous linear map from BV (I) to BV (I), i.e. the assumptions
that guarantee that for a BV right-hand side h of the problem (1.8) there exist
only BV solutions:

Theorem 3.1. Let K be a linear integral operator generated by the kernel k : I×I →
R, that is, K is given by the formula

Kx(t) =
∫ 1

0

k(t, s)x(s)ds, t ∈ I. (3.2)

The operator K maps continuously the space BV (I) into itself if and only if the
following conditions are satisfiedp:

(H1) for every t ∈ I, the function s 7→ k(t, s) is Lebesgue integrable on I;
(H2) there exists a positive constant M such that

sup
ξ∈I

1∨
0

(∫ ξ

0

k(·, s)ds
)
≤M.

Moreover, for some kernels k : I × I → R the integral operator K given by (3.2)
maps the space L∞(I) of all essentially bounded functions into the space BV (I) of
functions of bounded variation (see [2, Proposition 4]). That would mean that in
such case, for any right-hand side h belonging to L∞(I), we have only BV solutions
to problem (1.8).

This may actually be easily generalized to:
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Theorem 3.2. Assume p ∈ [1,+∞] is fixed and the kernel k : I × I → R is such
that

(a) for every t ∈ I the function s 7→ k(t, s) is Lebesgue measurable;
(b) the function s 7→ k(0, s) belongs to Lp(I);
(c)

∨1
0 k(·, s) ≤ m(s) for a.e. s ∈ I, where m ∈ Lp(I), .

Then the operator K, generated by the kernel k, continuously maps the space Lq(I)
into the space BV (I), where 1/p+ 1/q = 1.

Based on the observation given above we prove the following theorem.

Theorem 3.3. Assume there exist functions x1, x2 : I → R satisfying assumptions
of Theorem 2.1 and x1, x2 ∈ BV (I). Then for any h ∈ L1(I) the solution x to the
problem (1.8) is of bounded variation.

Proof. We are going to show that the Green function G(s, t) given by (2.6) satisfies
the conditions (a)–(c) of Theorem 3.2 for a function m ∈ L∞(I). Since functions
belonging to BV (I) are measurable and bounded, then conditions (a) and (b) are
obvious. Now, we are going to check the condition (c).

Let us fix s ∈ I. Then

k(t, s) = G(s, t) = c−1x1(t)x2(s)χ[0,s](t) + c−1x1(s)x2(t)χ[s,1](t)

and
1∨
0

k(·, s) ≤ |c−1x2(s)|
( s∨

0

x1 + |x1(s)|
)

+ |c−1x1(s)|
( 1∨
s

x2 + |x2(s)|
)

≤ |c−1|
(
|x1(s)|

1∨
0

x2 + |x2(s)|
1∨
0

x1 + 2|x1(s)| |x2(s)|
)
.

Withm(s) := |c−1|
(
|x1(s)|

∨1
0 x2+|x2(s)|

∨1
0 x1+2|x1(s)||x2(s)|

)
there is, of course,

m ∈ L∞(I). This completes the proof. �

Now, the question appears what if x1 or x2 are not of bounded Jordan variation.
Does it imply that there exists the unbounded variation solution to the problem
(1.8), with the right-hand side belonging to the space BV (I)? We are going to
show that it is not that easy. The first observation is that, since both functions are
locally AC, then the one with unbounded variation must have infinite variation in
the neighbourhood of 0 or 1.

To characterize the Green functions G that induce the integral operator trans-
ferring functions of bounded Jordan variation into the functions of bounded Jordan
variation, we will refer to the characterization given in Theorem 3.1. First, the
crucial role of the functions ϕξ : I → R, given by

ϕξ(t) =
∫ 1

0

G(s, t)χ[0,ξ](s)ds (3.3)

for fixed ξ ∈ [0, 1], should be noted. This is because the assumption (H2) of Theo-
rem 3.1 requires the variance of all functions ϕξ be uniformly bounded. Actually, as
it may be easily observed, we may replace the functions ϕξ, by functions ψξ : I → R,
given by

ψξ(t) =
∫ 1

0

G(s, t)χ[ξ,1](s)ds. (3.4)
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In what follows we will also refer to the function α : I → R given by

α(t) =
∫ 1

0

G(s, t)ds = c−1x2(t)
∫ t

0

x1(s)ds+ c−1x1(t)
∫ 1

t

x2(s)ds. (3.5)

Lemma 3.4. Let ξ ∈ [0, 1], ϕξ, ψξ, α : I → R be given by (3.3), (3.4) and (3.5)
respectively. Then

1∨
0

ϕξ =
∣∣∣c−1

∫ ξ

0

x1(s)ds
∣∣∣ 1∨
ξ

x2 +
ξ∨
0

[
α− c−1

∫ 1

ξ

x2(s)ds · x1

]
and

1∨
0

ψξ =
∣∣∣c−1

∫ 1

ξ

x2(s)ds
∣∣∣ ξ∨

0

x1 +
1∨
ξ

[
α− c−1

∫ ξ

0

x1(s)ds · x2

]
.

Proof. Let us fix ξ ∈ [0, 1]. As we may see

ϕξ(t) =

{
c−1x2(t)

∫ ξ
0
x1(s)ds for t ∈ (ξ, 1]

c−1x2(t)
∫ t
0
x1(s)ds+ c−1x1(t)

∫ ξ
t
x2(s)ds for t ∈ [0, ξ].

(3.6)

Similarly we have

ψξ(t) =

{
c−1x1(t)

∫ 1

ξ
x2(s)ds for t ∈ [0, ξ]

c−1x2(t)
∫ t
ξ
x1(s)ds+ c−1x1(t)

∫ 1

t
x2(s)ds for t ∈ (ξ, 1].

(3.7)

Let us also observe that for t ∈ [0, ξ],

ϕξ(t) = c−1x2(t)
∫ t

0

x1(s)ds+ c−1x1(t)
∫ ξ

t

x2(s)ds = α(t)− c−1x1(t)
∫ 1

ξ

x2(s)ds

and for t ∈ (ξ, 1] we have

ψξ(t) = c−1x2(t)
∫ t

ξ

x1(s)ds+ c−1x1(t)
∫ 1

t

x2(s)ds = α(t)− c−1x2(t)
∫ ξ

0

x1(s)ds.

This completes the proof. �

Lemma 3.5. Let ξ ∈ [0, 1], ϕξ, ψξ, α : I → R be given by (3.3), (3.4) and (3.5)
respectively. Then if there exists such ξ ∈ (0, 1) that

∨ξ
0 x1 = +∞ then

∨1
0 ψξ =

+∞. Similarly, if
∨1
ξ x2 = +∞ for some ξ ∈ (0, 1), then

∨1
0 ϕξ = +∞.

Proof. Assume now that
∨ξ

0 x1 = +∞ holds. If this is the case, then it does not
depend on the selection of ξ ∈ (0, 1). Then, since x2 6= 0, we may pick such
ξ ∈ (0, 1) that

∫ 1

ξ
x2(s)ds = c0 6= 0. Then

∣∣∣c−1
∫ 1

ξ
x2(s)ds

∣∣∣∨ξ0 x1 = +∞, meaning

(by Lemma 3.4) that
∨1

0 ψξ = +∞. Similarly we handle the case
∨1
ξ x2 = +∞,

concluding that
∨1

0 ϕξ = +∞. �

Lemma 3.6. Let ξ ∈ [0, 1], ϕξ, ψξ : I → R be given by (3.3) and (3.4) respectively.
Let y1, y2 : I → R be given by y1(t) = x1(t)

∫ 1

t
x2(s)ds and y2(t) = x2(t)

∫ t
0
x1(s)ds.

Then, if there exists such ξ ∈ (0, 1) that
∨ξ

0 x1 < +∞ and
∨ξ

0 y2 = +∞ then∨1
0 ϕξ = +∞. Similarly, if

∨1
ξ x2 < +∞ and

∨1
ξ y1 = +∞ for some ξ ∈ (0, 1), then∨1

0 ψξ = +∞.
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Proof. Assume now that
∨ξ

0 x1 < +∞ and
∨ξ

0 y2 = +∞. We show that
ξ∨
0

ϕξ =
ξ∨
0

[
c−1x2(t)

∫ t

0

x1(s)ds+ c−1x1(t)
∫ ξ

t

x2(s)ds
]

= +∞.

As we may observe:
ξ∨
0

ϕξ =
ξ∨
0

[
c−1y2(t) + c−1x1(t)

∫ ξ

t

x2(s)ds
]

The function [0, ξ] 3 t 7→ x1(t)
∫ ξ
t
x2(s)ds is the product of the bounded variation

and absolutely continuous functions, hence is of bounded variation. But the sum of
function from BV (I) and the one with unbounded Jordan variation (i.e. function
y2) gives the function of unbounded Jordan variation. This completes the first part
of the proof.

The second conclusion may be proved the same way. �

The following two propositions are direct consequences of Lemma 3.4.

Proposition 3.7. Assume that
∨1
ξ x2 < +∞ for each ξ ∈ (0, 1). Then if

lim sup
ξ→0+

∣∣∣∫ ξ

0

x1(s)ds
∣∣∣ 1∨
ξ

x2(t) = +∞, (3.8)

then supξ∈I
∨1

0 ϕξ = +∞.

Proposition 3.8. Assume that
∨ξ

0 x1 < +∞ for each ξ ∈ (0, 1). Then if

lim sup
ξ→1−

∣∣∣∫ 1

ξ

x2(s)ds
∣∣∣ ξ∨

0

x1(t) = +∞, (3.9)

then supξ∈I
∨1

0 ψξ = +∞.

Now, we are ready to present the conditions for functions x1 and x2, so the
corresponding Green function is the kernel of the integral operator (3.1) which
maps the space of functions of bounded variation into itself.

Theorem 3.9. Assume the map G : (0, 1) × (0, 1) → R is given as in Theorem
2.1. Then the integral operator K : L2(I) → L2(I) given by (3.1) maps the space
BV (I) into itself if and only if all of the following conditions are satisfied:

(1) there exists ξ ∈ (0, 1) such that
∨1
ξ x2 < +∞;

(2) there exists ξ ∈ (0, 1) such that
∨ξ

0 x1 < +∞;
(3) there exists ξ ∈ (0, 1) such that

∨1
ξ y1 < +∞, where y1(t) = x1(t)

∫ 1

t
x2(s)ds;

(4) there exists ξ ∈ (0, 1) such that
∨ξ

0 y2 < +∞, where y2(t) = x2(t)
∫ t
0
x1(s)ds;

(5) lim supξ→0+

∣∣∫ ξ
0
x1(s)ds

∣∣∨1
ξ x2 = M0 < +∞;

(6) lim supξ→1−

∣∣∫ 1

ξ
x2(s)ds

∣∣∨ξ
0 x1 = M1 < +∞.

Remark 3.10. Because x1, x2 are locally absolutely continuous, the quantifier ∃ξ ∈
(0, 1) appearing in conditions (1)–(4) can be equivalently replaced with ∀ξ ∈ (0, 1).
In what follows we should also remember that x1, x2 ∈ L2(I), so also x1, x2 ∈ L1(I)
and the functions

∫ t
0
x1(s)ds and

∫ 1

t
x2(s)ds are absolutely continuous in the entire

closed interval I.
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Proof of Theorem 3.9. We observe that if all of the conditions (1)–(6) are satisfied,
then

sup
ξ∈I

1∨
0

ϕξ < +∞.

First, we observe that
∨1

0 α < +∞. Let us estimate
1∨
0

α =
1∨
0

(
c−1x2(t)

∫ t

0

x1(s)ds+ c−1x1(t)
∫ 1

t

x2(s)ds
)

≤
1∨
0

(
c−1x2(t)

∫ t

0

x1(s)ds
)

+
1∨
0

(
c−1x1(t)

∫ 1

t

x2(s)ds
)

≤
1/2∨
0

(
c−1x2(t)

∫ t

0

x1(s)ds
)

+
1∨

1/2

(
c−1x2(t)

∫ t

0

x1(s)ds
)

+
1/2∨
0

(
c−1x1(t)

∫ 1

t

x2(s)ds
)

+
1∨

1/2

(
c−1x1(t)

∫ 1

t

x2(s)ds
)

≤ |c−1|
1/2∨
0

y2 + |c−1|
1∨

1/2

x2

∫ 1

0

|x1(s)|ds

+ |c−1|
1/2∨
0

x1

∫ 1

0

|x2(s)|ds+ |c−1|
1∨

1/2

y1.

The estimates of the first and fourth term are finite by (3) and (4). The second
and third terms are estimated by (1) and (2) because

∨b
a xy ≤ ‖x‖BV ‖y‖BV (see

[1, Proposition 1.10]) and
∨b
a

∫ t
c
x(s)ds =

∫ b
a
|x(s)|ds for any [a, b] ⊂ [0, 1].

Let us now take a closer look at the conditions (5) and (6). First, we should
note that from (5) it may be concluded that there exists such ξ0 ∈ (0, 1), that for
all ξ ∈ (0, ξ0) ∣∣∣∫ ξ

0

x1(s)ds
∣∣∣ 1∨
ξ

x2 ≤M0 + 1.

On the other hand, for all ξ ∈ [ξ0, 1) we estimate∣∣∣∫ ξ

0

x1(s)ds
∣∣∣ 1∨
ξ

x2 ≤
∫ 1

0

|x1(s)|ds
1∨
ξ0

x2.

Let us denote M̃ :=
∫ 1

0
|x1(s)|ds

∨1
ξ0
x2. By (1) M̃ is finite.

Hence we know that

sup
ξ∈(0,1)

∣∣∣∫ ξ

0

x1(s)ds
∣∣∣ 1∨
ξ

x2 ≤M0 + M̃ + 1 := K0 < +∞.

Similarly, from (6) and (2), we may conclude that

sup
ξ∈(0,1)

∣∣∣∫ 1

ξ

x2(s)ds
∣∣∣ ξ∨

0

x1 := K1 < +∞
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From Lemma 3.4 we infer that
1∨
0

ϕξ =
∣∣∣c−1

∫ ξ

0

x1(s)ds
∣∣∣ 1∨
ξ

x2 +
ξ∨
0

[
α(t)− c−1x1(t)

∫ 1

ξ

x2(s)ds
]

and we estimate
1∨
0

ϕξ ≤
1∨
0

α+ |c−1|
(∣∣∣∫ ξ

0

x1(s)ds
∣∣∣ 1∨
ξ

x2 +
∣∣∣∫ 1

ξ

x2(s)ds
∣∣∣ ξ∨

0

x1

)

≤
1∨
0

α+K0 +K1 < +∞,

and the estimate is valid for any ξ ∈ (0, 1). This proves that the condition (H2) is
satisfied and hence that, by Theorem 3.1, the integral operator K maps BV (I) to
BV (I).

Now, it is time to note that each of the assumptions (1)–(6) is a necessary
condition for having all solutions to the problem (1.8) with right-hand side h ∈
BV (I) of bounded variation. Conditions (1) and (2) are necessary by Lemma 3.5.
Conditions (3) and (4) are necessary by Lemma 3.6. Conditions (5) and (6) are
necessary by Propositions 3.7 and 3.8 and Lemma 3.5. �

Example 3.11 (Legendre equation [6, Section 19]). Let us consider the equation

− ((1− t2)x′(t))′ = 0 t ∈ (0, 1) (3.10)

with the boundary conditions x(0) = 0 and [g, x](1) = 0, where g(t) = 1. Here
0 is the regular endpoint, while 1 is the LC endpoint. The two basic solutions
x1(t) = 1

2 ln 1+t
1−t and x2(t) = 1 satisfy the assumptions of Theorem 2.1. It is

not difficult to check that the functions x1, x2 satisfy all assumptions (1)–(6) of
theorem 3.9, even if x1 is of unbounded Jordan variation. Hence there does not
exist a solution to the Legendre equation which is a function of unbounded variation,
when the right-hand side h belongs to BV (I).

Example 3.12 (Legendre equation, again). Let us again look at the Lengendre
equation (3.10) but now with the different boundary conditions x′(0) = 0 and
[g, x](1) = 0 with g(t) = 1

2 ln 1+t
1−t . As we can easily check the two basic solutions

x1(t) = 1 and x2(t) = 1
2 ln 1+t

1−t . Since the function x2 is unbounded in the neigh-
bourhood of 1 we have

∨1
1/2 x2 = +∞. Since (1) is not satisfied we know that there

exists the right-hand side of (3.10) of bounded variation with the corresponding
solution being function of unbounded Jordan variation.
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